JPH0950058A - Semiconductor layer structure and its production and semiconductor device using the method - Google Patents

Semiconductor layer structure and its production and semiconductor device using the method

Info

Publication number
JPH0950058A
JPH0950058A JP20201095A JP20201095A JPH0950058A JP H0950058 A JPH0950058 A JP H0950058A JP 20201095 A JP20201095 A JP 20201095A JP 20201095 A JP20201095 A JP 20201095A JP H0950058 A JPH0950058 A JP H0950058A
Authority
JP
Japan
Prior art keywords
semiconductor
thin film
layer
lattice constant
layer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20201095A
Other languages
Japanese (ja)
Other versions
JP3914584B2 (en
Inventor
Yae Okuno
八重 奥野
Hiroaki Inoue
宏明 井上
Kazuhisa Uomi
和久 魚見
Masahiko Kondo
正彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20201095A priority Critical patent/JP3914584B2/en
Publication of JPH0950058A publication Critical patent/JPH0950058A/en
Application granted granted Critical
Publication of JP3914584B2 publication Critical patent/JP3914584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a periodic structure of which the face bearings change or a novel period structure of which the face bearings and lattice constants change and a simple process for production. SOLUTION: Semiconductor patterned thin film layers 2 are formed by direct adhesion on a semiconductor substrate 1 and a semiconductor layer 3 is crystal grown over the entire surface. At this time, the semiconductor substrate 1 and the semiconductor patterned thin film layers 2 are arranged and are directly adhered in such a manner that the lattice arrangements of both are not equivalent at the one section perpendicular to the direct adhesive boundary of the semiconductor substrate 1 and the semiconductor patterned thin film layers 2. As a result, the face bearings of the semiconductor layer 3 change to the form of patterns within the growth plane. Further, the period structure in which the lattice constants in addition to the face bearings change to the forms of the patterns is obtd. by setting the lattice constants of the semiconductor substrate 1 and the semiconductor patterned thin film layers 2 so as to vary. As a result, the easy production of the various face bearing periodic structures is made possible. Further, the simultaneous periodic structures of the face bearings and the lattice constants are provided. Contribution is made to the development of a second harmonic generator and light emitting and light receiving elements added with novel functions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体層構造とその作
製方法およびそれを用いた半導体装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor layer structure, a method for manufacturing the same, and a semiconductor device using the same.

【0002】[0002]

【従来の技術】近年、文献(アプライド フィジックス
レタ−ズ(Applied Physics Letters)、66巻 451頁(1995
年))に記載のごとく、二つの半導体を、接着剤を用い
たり絶縁膜を介することなく、それらの表面同士を貼り
合わせて高温・加圧下で一体化する直接接着という手法
が示されている。この手法により、同文献に記載のごと
く、種類の異なる半導体を様々な面方位関係で一体化す
ることができる。
2. Description of the Related Art In recent years, literature (Applied Physics
Letters (Applied Physics Letters), Vol. 66, p. 451 (1995
(Year)), a method of direct bonding has been shown in which the two semiconductors are bonded together at their high temperatures and pressures without using an adhesive or an insulating film. . By this method, as described in the same document, different kinds of semiconductors can be integrated in various plane orientation relationships.

【0003】この手法を利用して、図14に示すよう
に、面方位の異なる半導体が交互に積層された構造(以
下、面方位周期構造と呼ぶ)を作製し、第2次高調波を
発生させた例が報告されている(エレクトロニクス レ
タ−ズ(Electronics Letters)、29巻 1492頁(1993
年))。この作製例では、GaAs膜94とこれと面方位の
異なるGaAs膜95を交互に直接接着し、合計9層のGaAs
膜より成る周期構造を作製している(図では6層分のみ
示している)。しかしながらこの作製例においては、面
方位周期構造を作製するために(周期数−1)回の直接
接着工程を行う必要があり、作製に手間がかかるという
難点がある。
Using this technique, as shown in FIG. 14, a structure in which semiconductors having different plane orientations are alternately laminated (hereinafter referred to as a plane orientation periodic structure) is produced to generate a second harmonic. This is reported (Electronics Letters, Vol. 29, p. 1492 (1993).
Year)). In this manufacturing example, a GaAs film 94 and a GaAs film 95 having a different plane orientation are directly adhered alternately to form a total of 9 layers of GaAs.
A periodic structure made of a film is produced (only 6 layers are shown in the figure). However, in this manufacturing example, it is necessary to perform the direct bonding step (the number of cycles-1) times in order to manufacture the plane-orientation periodic structure, and there is a drawback that the manufacturing takes time.

【0004】一方、図15に示すように、直接接着法に
よらずに面方位周期構造を作製した他の例が報告されて
いる(アプライド フィジックス レタ−ズ(Applied Phy
sicsLetters)、64巻 3107頁(1994年))。この作製例で
は、(100)GaAs基板91上に(100)ZnTeパタ−ン状薄膜層
92を結晶成長により形成し、CdTe層93を結晶成長す
る。このときCdTe層93は、(100)ZnTeパタ−ン状薄膜
層92の上の部分は(100)CdTeに、それ以外の部分は(11
1)CdTeとなる。従って、CdTe層93の面方位が成長面内
でパタ−ン状にあるいは周期的に変化した構造を得られ
る。しかし、CdTe層93の面方位の組み合わせは本作製
例のものに限られており、この作製例の手法によれば特
定の材料系の特定の面方位の周期構造しか作製すること
ができない。
On the other hand, as shown in FIG. 15, another example in which a plane-orientation periodic structure is produced without using the direct bonding method has been reported (Applied Physics Letters).
sicsLetters), 64, 3107 (1994)). In this manufacturing example, a (100) ZnTe pattern thin film layer 92 is formed on a (100) GaAs substrate 91 by crystal growth, and a CdTe layer 93 is crystal-grown. At this time, in the CdTe layer 93, the portion above the (100) ZnTe pattern thin film layer 92 is (100) CdTe and the other portion is (11).
1) It becomes CdTe. Therefore, it is possible to obtain a structure in which the plane orientation of the CdTe layer 93 changes in a pattern or periodically in the growth plane. However, the combination of the plane orientations of the CdTe layer 93 is limited to that of this production example, and the method of this production example can produce only a periodic structure of a particular material system in a particular plane orientation.

【0005】[0005]

【発明が解決しようとする課題】面方位周期構造は、前
記のごとく第2次高調波を発生させることができるほ
か、発光・受光素子等の他の光デバイスにおいても新し
い機能を付加させることができる。しかしながら現在の
ところ、このような面方位周期構造を作製する手法に
は、前記のごとく、直接接着法のみでは工程が煩雑であ
る、パタ−ン上エピタキシャル成長法では面方位の組み
合わせが限られるという欠点がそれぞれある。本発明
は、これらの欠点を改善し、従来の面方位周期構造につ
いてより多くの種類をより簡便に作製する手段、さらに
新しい面方位周期構造およびその作製手段を提供するこ
とを目的とする。
The plane azimuth periodic structure can generate the second harmonic as described above, and can add a new function to other optical devices such as light emitting / receiving elements. it can. However, at present, in the method of producing such a plane orientation periodic structure, as described above, the steps are complicated only by the direct bonding method, and the combination of plane orientations is limited in the pattern epitaxial growth method. There is each. An object of the present invention is to improve these drawbacks and to provide a means for more easily producing more kinds of conventional plane-orientation periodic structures, and a new plane-orientation periodic structure and its production means.

【0006】[0006]

【課題を解決するための手段】上記目的は、第一の半導
体基板上にこれと同一のブラヴェ格子を単位格子とする
第二の半導体パタ−ン状薄膜層を形成し、その後それら
の上に第三の半導体層を結晶成長して得られる半導体装
置において、第二の半導体パタ−ン状薄膜層は第一の半
導体基板上に直接接着されてなること、および直接接着
の際に直接接着界面に垂直な一断面における第一の半導
体基板の格子配列と第二の半導体パタ−ン状薄膜層の格
子配列が等価でないように配置することによって達成さ
れる。また、このとき、第一の半導体基板と第二の半導
体パタ−ン状薄膜層の格子定数が僅かに異なるように設
定することによって、面方位に加えて格子定数および屈
折率が同時に変化する新しい周期構造を得ることも可能
となる。
The above object is to form a second semiconductor pattern thin film layer having the same Brave lattice as a unit lattice on a first semiconductor substrate, and thereafter forming a second semiconductor pattern thin film layer on them. In the semiconductor device obtained by crystal growth of the third semiconductor layer, the second semiconductor pattern thin film layer is directly bonded on the first semiconductor substrate, and the direct bonding interface is used during the direct bonding. This is achieved by arranging the lattice arrangement of the first semiconductor substrate and the lattice arrangement of the second semiconductor pattern thin film layer in a cross section perpendicular to the plane such that they are not equivalent. Further, at this time, by setting the lattice constants of the first semiconductor substrate and the second semiconductor pattern thin film layer to be slightly different from each other, the lattice constant and the refractive index are simultaneously changed in addition to the plane orientation. It is also possible to obtain a periodic structure.

【0007】[0007]

【作用】本発明の一手段を図1を用いて説明する。まず
始めに、半導体基板1上に、半導体パタ−ン状薄膜層2
を直接接着を中心とした工程により形成する。パタ−ン
は一次元または二次元のいずれでもで構わない。ここ
で、半導体基板1と半導体パタ−ン状薄膜層2はいずれ
も面心立方格子を単位格子とする結晶であり、III−V
族或いはII−VI族化合物半導体を想定しており、図中の
○はIII族またはII族原子を、●はV族またはVI族原子
を表している。半導体基板1の(100)面と半導体パタ−
ン状薄膜層2の(110)面を向かい合わせて直接接着する
ので、図1に示すように、半導体基板1の結晶面方位
[100]と半導体パタ−ン状薄膜層2の結晶面方位[11
0]は180度逆になる。また、半導体基板1の劈開面であ
る(0-11)面と半導体パタ−ン状薄膜層2の劈開面であ
る(-110)面を揃えて直接接着すると、半導体基板1の
結晶面方位[011]と半導体パタ−ン状薄膜層2の結晶
面方位[001]は平行になる。(ただし、(0-11)の-1
の”-”記号は、ミラ−指数表示における負側を表すオ
−バ−ラインの代用である。)図1下部に示すように、
この構造を接着界面に垂直な一断面で見ると、半導体基
板1と半導体パタ−ン状薄膜層2の間で、○原子と●原
子の並び方が異なっている。この現象を「半導体基板1
の格子配列と半導体パタ−ン状薄膜層2の格子配列が等
価でない」と表す。次に、半導体パタ−ン状薄膜層2が
形成された半導体基板1の表面全面に、半導体層3を結
晶成長する。半導体層3も面心立方格子を単位格子とす
る半導体である。このとき半導体層3の面方位は、半導
体パタ−ン状薄膜層2の上の部分は半導体パタ−ン状薄
膜層2と同じ面方位に、それ以外の部分は半導体基板1
と同じ面方位になる。従って、半導体層3の面方位が成
長面内でパタ−ン状に変化した面方位周期構造が、一回
の直接接着工程と一回の結晶成長工程で得られる。半導
体層3の結晶成長速度は、半導体パタ−ン状薄膜層2上
の部分とそれ以外の部分で異なるので、半導体層3の表
面を平坦にする必要がある場合は、半導体パタ−ン状薄
膜層2の膜厚を調節するか、成長後の表面を研磨すれば
良い。
The means of the present invention will be described with reference to FIG. First, a semiconductor pattern thin film layer 2 is formed on a semiconductor substrate 1.
Is formed by a process centered on direct bonding. The pattern may be one-dimensional or two-dimensional. Here, the semiconductor substrate 1 and the semiconductor pattern thin film layer 2 are both crystals having a face-centered cubic lattice as a unit lattice, and III-V
A group or II-VI group compound semiconductor is assumed, and a circle in the figure represents a group III or II atom, and a circle represents a group V or VI atom. (100) surface of semiconductor substrate 1 and semiconductor pattern
Since the (110) plane of the thin film-shaped thin film layer 2 faces each other and is directly bonded, as shown in FIG. 1, the crystal plane orientation [100] of the semiconductor substrate 1 and the crystallographic plane orientation of the semiconductor patterned thin film layer 2 [ 11
0] is the opposite of 180 degrees. When the (0-11) plane which is the cleavage plane of the semiconductor substrate 1 and the (-110) plane which is the cleavage plane of the semiconductor pattern thin film layer 2 are aligned and directly bonded, the crystal plane orientation of the semiconductor substrate 1 [ [0111] and the crystal plane orientation [001] of the semiconductor pattern thin film layer 2 are parallel to each other. (However, (0-11) -1
The "-" symbol is a substitute for the overline representing the negative side in the Miller exponent notation. ) As shown in the lower part of Figure 1,
When this structure is viewed in a cross section perpendicular to the bonding interface, the arrangement of ◯ atoms and ● atoms is different between the semiconductor substrate 1 and the semiconductor pattern thin film layer 2. This phenomenon is referred to as “semiconductor substrate 1
Is not equivalent to the lattice arrangement of the semiconductor pattern thin film layer 2. " Next, the semiconductor layer 3 is crystal-grown on the entire surface of the semiconductor substrate 1 on which the semiconductor pattern thin film layer 2 is formed. The semiconductor layer 3 is also a semiconductor having a face-centered cubic lattice as a unit lattice. At this time, the plane orientation of the semiconductor layer 3 is the same as that of the semiconductor pattern thin film layer 2 on the upper portion of the semiconductor pattern thin film layer 2, and the other portion is the semiconductor substrate 1
It has the same plane orientation as. Therefore, a plane-orientation periodic structure in which the plane orientation of the semiconductor layer 3 changes in a pattern within the growth plane can be obtained by one direct bonding step and one crystal growth step. Since the crystal growth rate of the semiconductor layer 3 is different between the portion on the semiconductor pattern thin film layer 2 and the other portion, when the surface of the semiconductor layer 3 needs to be flat, the semiconductor pattern thin film The thickness of the layer 2 may be adjusted or the surface after growth may be polished.

【0008】また、本発明の他の一手段では、図2に示
すように、半導体基板1と半導体パタ−ン状薄膜層2は
(100)面同士を向かい合わせて直接接着されている。こ
のため、半導体基板1の結晶面方位[100]と半導体パ
タ−ン状薄膜層2の結晶面方位[100]は180度逆にな
る。さらに、半導体基板1の結晶面方位[011]と半導
体パタ−ン状薄膜層2の結晶面方位[011]を平行とし
ている。このため、半導体基板1の結晶面方位[0-11]
と半導体パタ−ン状薄膜層2の結晶面方位[0-11]は18
0度逆である。この構造においては、接着界面に垂直な
一断面において、半導体基板1と半導体パタ−ン状薄膜
層2の間で○原子と●原子の並び方が反転している。即
ち、半導体基板1の格子配列と半導体パタ−ン状薄膜層
2の格子配列が等価でない。化合物半導体においては
[100]と[-100]、および[011]と[0-11]が各々等
価でないため、このような配列順序の反転が起こる。本
手段においては、半導体層3の結晶成長速度は半導体パ
タ−ン状薄膜層2上の部分とそれ以外の部分で等しく、
半導体パタ−ン状薄膜層2が充分薄ければ半導体層3の
表面はほぼ平坦となる。
Further, in another means of the present invention, as shown in FIG. 2, the semiconductor substrate 1 and the semiconductor pattern thin film layer 2 are
Directly bonded with the (100) faces facing each other. Therefore, the crystal plane orientation [100] of the semiconductor substrate 1 and the crystal plane orientation [100] of the semiconductor pattern thin film layer 2 are opposite by 180 degrees. Further, the crystal plane orientation [011] of the semiconductor substrate 1 and the crystal plane orientation [011] of the semiconductor pattern thin film layer 2 are parallel. Therefore, the crystal plane orientation of the semiconductor substrate 1 [0-11]
And the crystal plane orientation [0-11] of the semiconductor pattern thin film layer 2 is 18
The opposite is 0 degrees. In this structure, the arrangement of ◯ atoms and ● atoms between the semiconductor substrate 1 and the semiconductor pattern thin film layer 2 is reversed in one cross section perpendicular to the bonding interface. That is, the lattice arrangement of the semiconductor substrate 1 and the lattice arrangement of the semiconductor pattern thin film layer 2 are not equivalent. In a compound semiconductor, [100] and [-100], and [011] and [0-11] are not equivalent to each other, and thus such arrangement order inversion occurs. In this means, the crystal growth rate of the semiconductor layer 3 is equal in the portion on the semiconductor pattern thin film layer 2 and the other portion,
If the semiconductor pattern thin film layer 2 is sufficiently thin, the surface of the semiconductor layer 3 will be substantially flat.

【0009】上記2例で説明したごとく、半導体基板1
の面方位と半導体パタ−ン状薄膜層2の面方位の組み合
わせは、他のあらゆる面方位の組み合わせとすることが
可能である。従って本発明によって、従来の手段と比し
てより多くの種類の組み合わせの面方位周期構造がより
簡便に得られる。
As described in the above two examples, the semiconductor substrate 1
It is possible to combine any of the above-mentioned plane orientations and the plane orientation of the semiconductor pattern thin film layer 2 with any other combination of plane orientations. Therefore, according to the present invention, more kinds of combinations of plane orientation periodic structures can be obtained more easily than the conventional means.

【0010】さらに、それらの手段において、半導体パ
タ−ン状薄膜層2の格子定数(=b)を半導体基板1の
格子定数(=a)より僅かに大きくする(b>a)。そ
して半導体層3は3種類以上の構成元素より成る材料と
し、その結晶成長時の格子定数の設定値(=c)を半導
体基板1と半導体パタ−ン状薄膜層2の格子定数の平均
値(=(a+b)/2)にする。この結果、成長された半
導体層3の実際の格子定数は、半導体パタ−ン状薄膜層
2の上の部分では設定値より半導体パタ−ン状薄膜層2
の格子定数に近く(=c+α)、それ以外の部分では半
導体基板1の格子定数に近く(=c−α)なる。即ち、
半導体層3の成長面内で元素の偏析が起こる。これによ
り面方位と共に格子定数および光の屈折率がパタ−ン状
に変化した周期構造を得ることができる。
Further, in these means, the lattice constant (= b) of the semiconductor pattern thin film layer 2 is made slightly larger than the lattice constant (= a) of the semiconductor substrate 1 (b> a). The semiconductor layer 3 is made of a material composed of three or more kinds of constituent elements, and the set value (= c) of the lattice constant during crystal growth is the average value of the lattice constants of the semiconductor substrate 1 and the semiconductor pattern thin film layer 2 ( = (A + b) / 2). As a result, the actual lattice constant of the grown semiconductor layer 3 is higher than the set value in the upper portion of the semiconductor pattern thin film layer 2 than the set value.
Is close to the lattice constant of (= c + α), and other portions are close to the lattice constant of the semiconductor substrate 1 (= c−α). That is,
Segregation of elements occurs within the growth plane of the semiconductor layer 3. As a result, it is possible to obtain a periodic structure in which the lattice constant and the refractive index of light change in a pattern with the plane orientation.

【0011】このように本発明によって、従来にはない
新しい構造を作製することが可能となる。
As described above, according to the present invention, it is possible to manufacture a new structure which has not been heretofore available.

【0012】[0012]

【実施例】以下本発明に係る半導体層構造とその製造方
法およびそれを用いた半導体装置の幾つかの実施例につ
いて、図3から図13を用いて詳細に説明する。
EXAMPLES Some examples of a semiconductor layer structure according to the present invention, a method for manufacturing the same, and a semiconductor device using the same will be described in detail with reference to FIGS.

【0013】(実施例1)図3より図4を用いて本発明
に係る半導体層構造およびその製造方法の第1の実施例
を説明する。
(Embodiment 1) A first embodiment of a semiconductor layer structure and a method of manufacturing the same according to the present invention will be described with reference to FIGS.

【0014】まず図3(a)に示すように、(100)n-InP
基板11と(110)n-InP基板13の表面を貼り合わせて
直接接着する。直接接着の工程は、例えば、各々の表面
を硫酸とHF希釈液で順次洗浄し、水洗してスピンナ乾燥
後、表面同士を貼り合わせてそれらの上に30g/cm2程度
の重石をのせ、アニ−ル炉内に置く。この時、n-InP基
板11およびn-InP基板13のどちらが上でも構わな
い。炉内にH2ガスを流しながら温度を600℃に昇温して3
0分保持すれば、n-InP基板11の表面とn-InP基板13
の表面が直接接着される。またこの時、n-InP基板11
の面方位とn-InP基板13の面方位が図3(a)に示す関係
となるように両者を貼り合わせて直接接着する。従っ
て、n-InP基板11とn-InP基板13は、図1のごとく格
子配列が互いに等価でない状態となる。直接接着の後、
n-InP基板13を裏面から研磨して約1μmの厚さにし、
さらに臭素を主成分とする混合液でエッチングして0.1
μmの厚さのn-InP薄膜層211とする(図3(b))。
First, as shown in FIG. 3A, (100) n-InP
The surfaces of the substrate 11 and the (110) n-InP substrate 13 are bonded together and directly bonded. The process of direct bonding is, for example, sequentially washing each surface with sulfuric acid and a HF diluting solution, washing with water and spinner drying, then pasting the surfaces together and placing a weight of about 30 g / cm 2 on them, and − Place in the furnace. At this time, either the n-InP substrate 11 or the n-InP substrate 13 may be on top. While flowing H 2 gas into the furnace, raise the temperature to 600 ° C and
If held for 0 minutes, the surface of the n-InP substrate 11 and the n-InP substrate 13
The surface of is directly bonded. At this time, the n-InP substrate 11
And the surface orientation of the n-InP substrate 13 have the relationship shown in FIG. Therefore, the lattice arrangements of the n-InP substrate 11 and the n-InP substrate 13 are not equivalent to each other as shown in FIG. After direct bonding,
The back surface of the n-InP substrate 13 is polished to a thickness of about 1 μm,
Further, etching is performed with a mixed solution containing bromine as a main component to 0.1.
The n-InP thin film layer 211 having a thickness of μm is formed (FIG. 3B).

【0015】次に、InP薄膜層211上にSiO2ストライ
プ6(厚さ0.2μm、幅5.0μm、5.0μm間隔)をInP薄
膜層211の[-110]方向に平行に形成し、これをマス
クとしてInP薄膜層211を臭素を主成分とする混合液
でエッチングして、ストライプ状のInPパタ−ン状薄膜
層212を形成する(図4(a))。この時、InP薄膜層2
11を完全にエッチングする必要があるが、n-InP基板
11はあまり深くエッチングしない方が良いため、接着
界面をエッチングし終えた程度で止めるように注意す
る。この後、SiO2ストライプ6をHF希釈液でエッチング
除去し、InPパタ−ン状薄膜層212が形成されたn-InP
基板11表面全面に、n-InP層31(厚さ7.0μm)を有
機金属気相成長(MOCVD)法により成長する(図4
(b))。このとき、n-InP層31の面方位は、InPパタ−
ン状薄膜層212の上の部分はInPパタ−ン状薄膜層2
12と同じ面方位に、それ以外の部分はn-InP基板11
と同じ面方位になる。従って、n-InP層31の面方位が
図1のごとく成長面内でストライプパタ−ン状に変化し
た周期構造が得られる。n-InP層31の成長速度はInPパ
タ−ン状薄膜層212の上の部分とそれ以外の部分で異
なるので、n-InP層31の表面は平坦でないが、必要で
あればInPパタ−ン状薄膜層212の膜厚を調整する
か、表面を研磨して平坦化すれば良い。
Next, SiO 2 stripes 6 (thickness 0.2 μm, width 5.0 μm, intervals of 5.0 μm) are formed on the InP thin film layer 211 in parallel with the [-110] direction of the InP thin film layer 211, and this is used as a mask. As a result, the InP thin film layer 211 is etched with a mixed solution containing bromine as a main component to form a stripe-shaped InP pattern thin film layer 212 (FIG. 4A). At this time, the InP thin film layer 2
Although it is necessary to completely etch 11, the n-InP substrate 11 should not be etched too deeply, so care should be taken to stop the bonding interface only after etching. Then, the SiO 2 stripes 6 are removed by etching with a HF diluting solution to form an n-InP pattern thin film layer 212 having an InP pattern.
An n-InP layer 31 (thickness 7.0 μm) is grown on the entire surface of the substrate 11 by metal organic chemical vapor deposition (MOCVD) method (FIG. 4).
(b)). At this time, the plane orientation of the n-InP layer 31 is the InP pattern.
The upper part of the thin film layer 212 is the InP pattern thin film layer 2.
N-InP substrate 11 with the same plane orientation as 12
It has the same plane orientation as. Therefore, a periodic structure is obtained in which the plane orientation of the n-InP layer 31 changes into a stripe pattern in the growth plane as shown in FIG. Since the growth rate of the n-InP layer 31 is different between the portion above the InP pattern thin film layer 212 and the other portions, the surface of the n-InP layer 31 is not flat, but if necessary, the InP pattern 31 The film thickness of the thin film layer 212 may be adjusted or the surface may be polished to be flat.

【0016】本実施例で得られた構造は、実施例5およ
び7に後述するように、第2次高調波の発生装置や、レ
ーザの活性層等の光デバイスの構造に用いることができ
る。また、SiO2ストライプ6を一次元のストライプでは
なく、二次元のパタ−ンとすれば、n-InP層31の面方
位が成長面内で二次元パタ−ン状に変化した周期構造が
得られる。本実施例においては、InPのみを用いて面方
位周期構造を作成したが、それぞれ他の材料としても同
様の構造を得ることができる。例えば、InPとこれと格
子定数の等しいInGaAsPやMgZnCdSe、GaAsとZnSeおよび
これらと格子定数の等しいInGaAsP等の組み合わせが挙
げられる。但し、結晶欠陥の発生を防ぐため、本実施例
では格子定数はほぼ等しいものを用いることが好まし
い。また、用いた材料は全てn型としたが、素子へ応用
する際には素子の特性に合わせて個々の材料をp型やア
ンド−プや半絶縁性にしても良い。その他、膜厚につい
ても本実施例に限らない。SiO2ストライプ6は本実施例
と異なる方位に形成してもよく、その幅および間隔も本
実施例に限らない。SiO2の替わりに、エッチングマスク
として使用できる他の材料、例えばホトレジスト等を用
いても良い。さらに、本実施例ではn-InP基板11とn-I
nP基板13の面方位関係を図3(a)に示すように設定し
たが、他の面方位関係、例えば図2に示すような面方位
関係で同様に構造を作成しても良い。但しその場合は、
n-InP基板13の替わりに別の(100)n-InP基板を用い
る。他の面方位関係の場合も同様である。直接接着の際
の表面の洗浄要領や接着条件、および結晶成長方法も本
実施例に限らない。
The structure obtained in this example can be used in the structure of a second harmonic generator or an optical device such as an active layer of a laser, as described later in Examples 5 and 7. If the SiO 2 stripe 6 is not a one-dimensional stripe but a two-dimensional pattern, a periodic structure in which the plane orientation of the n-InP layer 31 changes into a two-dimensional pattern in the growth plane is obtained. To be In the present embodiment, the plane-orientation periodic structure was created using only InP, but the same structure can be obtained by using other materials. For example, InP and InGaAsP or MgZnCdSe having the same lattice constant as InP, GaAs and ZnSe, and InGaAsP having the same lattice constant as these are listed. However, in order to prevent the generation of crystal defects, it is preferable to use those having substantially the same lattice constant in this embodiment. Although all the materials used are n-type, when applied to an element, each material may be p-type, undope, or semi-insulating depending on the characteristics of the element. In addition, the film thickness is not limited to this embodiment. The SiO 2 stripes 6 may be formed in a different orientation from that of this embodiment, and the width and spacing thereof are not limited to those of this embodiment. Instead of SiO 2 , another material that can be used as an etching mask, such as photoresist, may be used. Further, in this embodiment, the n-InP substrate 11 and nI
Although the plane orientation relationship of the nP substrate 13 is set as shown in FIG. 3A, other plane orientation relationships, for example, plane orientation relationships as shown in FIG. However, in that case,
Instead of the n-InP substrate 13, another (100) n-InP substrate is used. The same applies to other plane orientation relationships. The cleaning procedure of the surface at the time of direct bonding, the bonding conditions, and the crystal growth method are not limited to those in this embodiment.

【0017】(実施例2)図5より図6を用いて本発明
に係る半導体層構造およびその製造方法の第2の実施例
を説明する。
(Embodiment 2) A second embodiment of a semiconductor layer structure and a method of manufacturing the same according to the present invention will be described with reference to FIGS.

【0018】まず図5(a)に示すように、(100)n-InP
基板12上にMOCVD法によりInPと格子定数の等し
いn-またはアンド−プInGaAs薄膜層221(厚さ0.05μ
m)とn-またはアンド−プInP表面保護層(厚さ0.1μ
m、不図示)を成長した後、InP表面保護層を塩酸希釈
液でエッチング除去し、InGaAs薄膜層221の表面とn-
InP基板11の表面を直接接着する。直接接着の手法は
実施例1に準ずる。n-InP基板12の面方位とn-InP基板
11の面方位は図5(a)に示す関係とする。InGaAs薄膜
層221の面方位はn-InP基板12の面方位と同一であ
るから、これにより、InGaAs薄膜層221とn-InP基板
11は、図2のごとく格子配列が互いに等価でない状態
となる。直接接着の後、n-InP基板11の裏面にSiO2
護膜(厚さ0.1μm、不図示)を蒸着し、n-InP基板12
を塩酸希釈液でエッチング除去し、SiO2保護膜をHF希釈
液でエッチング除去する(図5(b))。
First, as shown in FIG. 5A, (100) n-InP
An n- or AMP InGaAs thin film layer 221 (having a thickness of 0.05 μm) having a lattice constant equal to that of InP is formed on the substrate 12 by MOCVD.
m) and n- or undoped InP surface protection layer (thickness 0.1μ
m, not shown), the InP surface protective layer is removed by etching with a diluting solution of hydrochloric acid, and the surface of the InGaAs thin film layer 221 and the n-
The surface of the InP substrate 11 is directly bonded. The method of direct adhesion is in accordance with the first embodiment. The plane orientation of the n-InP substrate 12 and the plane orientation of the n-InP substrate 11 have the relationship shown in FIG. Since the plane orientation of the InGaAs thin film layer 221 is the same as the plane orientation of the n-InP substrate 12, this causes the InGaAs thin film layer 221 and the n-InP substrate 11 to be in a state where the lattice arrangements are not equivalent to each other as shown in FIG. . After direct bonding, a SiO 2 protective film (thickness 0.1 μm, not shown) is vapor-deposited on the back surface of the n-InP substrate 11, and the n-InP substrate 12 is formed.
Is removed by etching with a hydrochloric acid diluent, and the SiO 2 protective film is removed by etching with a HF diluent (FIG. 5 (b)).

【0019】次に図6(a)に示すように、InGaAs薄膜層
221上にSiO2ストライプ6をInGaAs薄膜層221の
[011]方向に平行に形成し、これをマスクとしてInGaA
s薄膜層221を硫酸と過酸化水素の混合液でエッチン
グして、ストライプ状のInGaAsパタ−ン状薄膜層222
を形成する。その後、SiO2ストライプ6をHF希釈液でエ
ッチング除去し、InGaAsパタ−ン状薄膜層222が形成
されたn-InP基板11表面全面に、n-またはアンド−プI
nGaAsP層32(厚さ5.0μm)をMOCVD法により成
長する(図6(b))。このとき、InGaAsP層32の面方位
は、InGaAsパタ−ン状薄膜層222の上の部分はInGaAs
パタ−ン状薄膜層222と同じ面方位に、それ以外の部
分はn-InP基板11と同じ面方位になる。従って、InGaA
sP層32の面方位が図2のごとく成長面内でストライプ
パタ−ン状に変化した周期構造が得られる。
Next, as shown in FIG. 6A, a SiO 2 stripe 6 is formed on the InGaAs thin film layer 221 in parallel with the [011] direction of the InGaAs thin film layer 221, and this is used as a mask for InGaA.
The thin film layer 221 is etched with a mixed solution of sulfuric acid and hydrogen peroxide to form a stripe-shaped InGaAs pattern thin film layer 222.
To form Then, the SiO 2 stripes 6 are removed by etching with a HF diluting solution, and n- or I-Pand I is formed on the entire surface of the n-InP substrate 11 on which the InGaAs pattern thin film layer 222 is formed.
The nGaAsP layer 32 (thickness 5.0 μm) is grown by the MOCVD method (FIG. 6B). At this time, the plane orientation of the InGaAsP layer 32 is such that the portion above the InGaAs pattern thin film layer 222 is InGaAs.
The plane orientation is the same as that of the pattern thin film layer 222, and the other portions have the same orientation as the n-InP substrate 11. Therefore, InGaA
A periodic structure in which the plane orientation of the sP layer 32 is changed into a stripe pattern in the growth plane as shown in FIG. 2 is obtained.

【0020】本実施例においては、実施例1のようにエ
ッチング膜厚を精密に制御する工程を無くした。また本
実施例においては、InGaAsパタ−ン状薄膜層222の上
の部分とそれ以外の部分との成長速度は等しく、InGaAs
パタ−ン状薄膜層222は厚さ0.05μmと薄いのでInGa
AsP層32の表面はほぼ平坦になる。尤も、InGaAsP層3
2の表面を平坦にする必要が無い場合は、InGaAs薄膜層
221の膜厚をより厚くしても構わない。本実施例にお
いても、実施例1と同様、用いる材料および面方位関
係、パタ−ンの次元、直接接着工程の細部や結晶成長方
法は本実施例に限らない。
In this example, the step of precisely controlling the etching film thickness as in Example 1 was eliminated. In the present embodiment, the growth rate of the portion above the InGaAs pattern thin film layer 222 is the same as that of the other portion, and
The pattern-shaped thin film layer 222 is as thin as 0.05 μm, so
The surface of the AsP layer 32 becomes almost flat. However, InGaAsP layer 3
When it is not necessary to make the surface of 2 flat, the InGaAs thin film layer 221 may be made thicker. Also in this embodiment, as in the case of the first embodiment, the materials to be used, the plane orientation relationship, the pattern dimension, the details of the direct bonding step and the crystal growth method are not limited to the present embodiment.

【0021】(実施例3)図7より図8を用いて本発明
に係る半導体層構造およびその製造方法の第3の実施例
を説明する。
(Embodiment 3) A third embodiment of the semiconductor layer structure and the manufacturing method thereof according to the present invention will be described with reference to FIGS.

【0022】まず図7(a)に示すように、n-InP基板12
上にMOCVD法によりn-またはアンド−プInGaAs薄膜
層221、n-またはアンド−プInP表面保護層81(厚
さ0.1μm)を成長し、InP表面保護層81上にSiO2スト
ライプ6を形成する。これをマスクとしてInP表面保護
層81を塩酸希釈液で、さらにInGaAs薄膜層221を硫
酸と過酸化水素の混合液でエッチングし、InGaAs薄膜層
221をストライプ状のInGaAsパタ−ン状薄膜層222
とする(図7(b))。この後、SiO2ストライプ6をHF希
釈液で、InP表面保護層81を塩酸希釈液で順次エッチ
ング除去し、InGaAsパタ−ン状薄膜層222の表面と
(111)n-InP基板14の表面を貼り合わせ、実施例1と
同様の手法で直接接着する(図8(a))。n-InP基板12
の面方位とn-InP基板14の面方位は図8(a)に示す関係
とする。これにより、InGaAsパタ−ン状薄膜層222と
n-InP基板14は、実施例1および実施例2と同じ原理
で格子配列が互いに等価でない状態となる。直接接着の
後、n-InP基板14の裏面にSiO2保護膜(厚さ0.1μm、
不図示)を蒸着し、n-InP基板12を塩酸希釈液でエッ
チング除去し、SiO2保護膜をHF希釈液でエッチング除去
する。この後、InGaAsパタ−ン状薄膜層222が形成さ
れたn-InP基板14表面全面に、n-またはアンド−プInG
aAsP層32をMOCVD法により成長し(図8(b))、
実施例1および2と同様に面方位がストライプパタ−ン
状に変化した周期構造を得た。
First, as shown in FIG. 7A, an n-InP substrate 12 is formed.
An n- or and-InP InGaAs thin film layer 221, an n- or and-InP InP surface protective layer 81 (thickness 0.1 μm) is grown thereon by the MOCVD method, and an SiO 2 stripe 6 is formed on the InP-surface protective layer 81. To do. Using this as a mask, the InP surface protective layer 81 is etched with a hydrochloric acid diluting solution, and the InGaAs thin film layer 221 is etched with a mixed solution of sulfuric acid and hydrogen peroxide, so that the InGaAs thin film layer 221 has a stripe-shaped InGaAs pattern thin film layer 222.
(FIG. 7 (b)). After that, the SiO 2 stripe 6 is sequentially removed by etching with the HF diluting solution and the InP surface protection layer 81 with the hydrochloric acid diluting solution to remove the surface of the InGaAs pattern thin film layer 222 and the surface of the (111) n-InP substrate 14. The pieces are stuck together and directly adhered in the same manner as in Example 1 (FIG. 8 (a)). n-InP substrate 12
8A and the surface orientation of the n-InP substrate 14 have the relationship shown in FIG. As a result, the InGaAs pattern thin film layer 222 and
The n-InP substrate 14 is in a state where the lattice arrangements are not equivalent to each other according to the same principle as the first and second embodiments. After direct bonding, a SiO 2 protective film (thickness 0.1 μm, on the back surface of the n-InP substrate 14
(Not shown) is vapor-deposited, the n-InP substrate 12 is removed by etching with a hydrochloric acid diluent, and the SiO 2 protective film is removed by etching with an HF diluent. After that, the n- or InP InG is formed on the entire surface of the n-InP substrate 14 on which the InGaAs pattern thin film layer 222 is formed.
The aAsP layer 32 is grown by the MOCVD method (FIG. 8 (b)),
In the same manner as in Examples 1 and 2, a periodic structure in which the plane orientation was changed into a stripe pattern was obtained.

【0023】本実施例では、直接接着工程を行う前にパ
タ−ン状薄膜層222を形成した。本実施例においては
n-InP基板12は全てエッチング除去することとした
が、n-InP基板12とInGaAsP薄膜層221の間に、InP
とInGaAsPの双方をエッチングすることなく除去するこ
とが可能で格子定数がInPと等しい材料、例えばII−VI
族化合物より成る膜厚1μm以下の薄い層を結晶成長し
ておき、直接接着工程の後この材料のみエッチング除去
すれば、n-InP基板12をエッチング除去してしまうこ
となく分離し、InGaAsパタ−ン状薄膜層222をn-InP
基板14上に残存せしめることができる。本実施例にお
いても、実施例1および2と同様、構造の詳細および製
造の諸条件は本実施例に限らない。
In this embodiment, the pattern-like thin film layer 222 was formed before the direct bonding process. In this embodiment,
Although it was decided that the n-InP substrate 12 was entirely removed by etching, the InP substrate 12 and the InGaAsP thin film layer 221 were covered with InP.
And InGaAsP can be removed without etching, and the material has a lattice constant equal to InP, such as II-VI.
If a thin layer of a group compound having a thickness of 1 μm or less is crystal-grown and only this material is removed by etching after the direct bonding step, the n-InP substrate 12 is separated without being removed by etching, and an InGaAs pattern is formed. The thin film layer 222 as n-InP
It can be left on the substrate 14. Also in this embodiment, the details of the structure and the conditions of manufacture are not limited to those in this embodiment, as in the first and second embodiments.

【0024】(実施例4)図5より図8を用いて本発明
に係る半導体層構造およびその製造方法の第4の実施例
を説明する。
(Embodiment 4) A fourth embodiment of a semiconductor layer structure and a method for manufacturing the same according to the present invention will be described with reference to FIGS.

【0025】基本的な層構造および作製方法は実施例2
および3と同じである。但し本実施例においては、n-ま
たはアンド−プInGaAsパタ−ン状薄膜層222の格子定
数をInPより0.6%小さくし、膜厚を結晶欠陥の発生する
臨界膜厚以内である100Åとした。また、n-またはアン
ド−プInGaAsP層32の結晶成長時の格子定数の設定値
をInPより0.3%小さくした。
The basic layer structure and manufacturing method are described in Example 2.
And the same as 3. However, in this embodiment, the lattice constant of the n- or undapped InGaAs pattern thin film layer 222 is set to 0.6% smaller than InP and the film thickness is set to 100 Å which is within the critical film thickness at which crystal defects occur. Further, the set value of the lattice constant at the time of crystal growth of the n- or undoped InGaAsP layer 32 is set to be 0.3% smaller than that of InP.

【0026】本実施例においては、InGaAsパタ−ン状薄
膜層222とn-InP基板11および14の格子定数が僅
かに異なるように、またInGaAsP層32の結晶成長時の
格子定数をそれらの平均値に設定した。その結果、InGa
AsP層32の成長面内で元素の偏析が起こり、格子定数
がInGaAsパタ−ン状薄膜層222の上の部分では設定値
より小さくなるように、それ以外の部分では設定値より
大きくなるようにInGaAsPの組成が変化した。よって、I
nGaAsP層32は面方位に加えて格子定数および光の屈折
率が成長面内でパタ−ン状に変化した周期構造となっ
た。この元素の偏析は、InGaAsP層32の結晶成長表
面、即ちInGaAsパタ−ン状薄膜層222の表面とそれ以
外のn-InP基板11あるいは14の表面で格子定数が異
なっており、かつInGaAsP層32が3種類以上の構成元
素より成る混晶であることによって起こる。つまり、格
子定数のより小さいInGaAsパタ−ン状薄膜層222の表
面では格子定数を小さくするGaおよびPが多く、格子定
数のより大きいn-InP基板11の表面では格子定数を大
きくするInおよびAsが多く、それぞれ偏ってInGaAsP層
32が成長することでこのような周期構造が得られる。
また、InGaAsパタ−ン状薄膜層222の格子定数をInP
より大きくし、InGaAsP層32の結晶成長時の格子定数
の設定値をInPとInGaAsパタ−ン状薄膜層222の格子
定数の中間値とすれば、InGaAsP層32の格子定数が、I
nGaAsパタ−ン状薄膜層222の上の部分で大きくそれ
以外の部分で小さくなるように、即ち元素の偏析が本実
施例とは逆の傾向で起こる構造が得られる。
In this embodiment, the lattice constants of the InGaAs patterned thin film layer 222 and the n-InP substrates 11 and 14 are slightly different, and the lattice constants of the InGaAsP layer 32 during crystal growth are averaged. Set to the value. As a result, InGa
Segregation of elements occurs in the growth surface of the AsP layer 32, so that the lattice constant is smaller than the set value in the upper portion of the InGaAs pattern thin film layer 222 and is larger than the set value in other portions. The composition of InGaAsP has changed. Therefore, I
The nGaAsP layer 32 has a periodic structure in which, in addition to the plane orientation, the lattice constant and the refractive index of light change like a pattern in the growth plane. The segregation of this element is such that the crystal growth surface of the InGaAsP layer 32, that is, the surface of the InGaAs pattern thin film layer 222 and the surface of the other n-InP substrate 11 or 14 have different lattice constants, and the InGaAsP layer 32 Occurs because it is a mixed crystal composed of three or more kinds of constituent elements. In other words, on the surface of the InGaAs patterned thin film layer 222 having a smaller lattice constant, there are many Ga and P that reduce the lattice constant, and on the surface of the n-InP substrate 11 having a larger lattice constant, In and As that increase the lattice constant. However, such a periodic structure is obtained by growing the InGaAsP layers 32 in a biased manner.
In addition, the lattice constant of the InGaAs pattern thin film layer 222 is set to InP.
If the lattice constant of the InGaAsP layer 32 is set to a value intermediate between the lattice constants of InP and the InGaAs pattern thin film layer 222, the lattice constant of the InGaAsP layer 32 becomes I.
It is possible to obtain a structure in which the upper part of the nGaAs pattern thin film layer 222 is large and the other parts are small, that is, the segregation of elements occurs in the opposite tendency to that of this embodiment.

【0027】本実施例のように、面方位に加えて格子定
数および光の屈折率がパタ−ン状に変化することによ
り、実施例1から3において作製される周期構造を用い
た半導体装置に比較してより高機能の半導体装置が得る
ことも可能になる。具体的には、実施例6から7に後述
するように、第2次高調波の発生効率の増加やレ−ザ特
性の向上が達せられる。
As in this example, the lattice constant and the refractive index of light change in a pattern in addition to the plane orientation, so that a semiconductor device using the periodic structure manufactured in Examples 1 to 3 is obtained. In comparison, it becomes possible to obtain a semiconductor device with higher functionality. Specifically, as will be described later in Examples 6 to 7, it is possible to achieve an increase in the generation efficiency of the second harmonic and an improvement in the laser characteristics.

【0028】InGaAsパタ−ン状薄膜層222とn-InP基
板11および14との格子定数差については本実施例に
限らないが、InGaAsP層32の結晶成長の際に臨界膜厚
を大きく越えると結晶性が劣化するので、格子定数差は
1%以内が望ましい。InGaAs薄膜層221をn-InP基板
12上に結晶成長する際には、InGaAs薄膜層221が臨
界膜厚を越えないよう注意する。また、同様の格子定数
の設定が可能であれば、実施例1における作製方法を用
いても良い。例えば、格子定数がInPより0.6%小さいCd
S基板を実施例1におけるn-InP基板13の替わりに用い
れば良い。InGaAsパタ−ン状薄膜層222およびInGaAs
P層32は本実施例の主旨を満たす材料であれば良く、
例えばGaAsSbやII−VI族化合物を用いても良い。n-InP
基板11および14の替わりにGaAs基板等の他の種類の
材料を用いる場合には、InGaAsパタ−ン状薄膜層222
およびInGaAsP層32も本実施例の主旨に則した材料に
替えることに注意する。その他、本実施例においても、
構造の詳細および製造の諸条件は本実施例に限らないの
はいうまでもない。
The difference in lattice constant between the InGaAs pattern thin film layer 222 and the n-InP substrates 11 and 14 is not limited to this embodiment, but if the critical film thickness is greatly exceeded during the crystal growth of the InGaAsP layer 32. Since the crystallinity deteriorates, it is desirable that the lattice constant difference be within 1%. When crystal-growing the InGaAs thin film layer 221 on the n-InP substrate 12, care should be taken so that the InGaAs thin film layer 221 does not exceed the critical film thickness. If the same lattice constant can be set, the manufacturing method of the first embodiment may be used. For example, Cd whose lattice constant is 0.6% smaller than InP
The S substrate may be used instead of the n-InP substrate 13 in the first embodiment. InGaAs pattern thin film layer 222 and InGaAs
The P layer 32 may be made of any material satisfying the purpose of this embodiment,
For example, GaAsSb or II-VI group compound may be used. n-InP
If another kind of material such as a GaAs substrate is used instead of the substrates 11 and 14, the InGaAs patterned thin film layer 222 is used.
Note that the materials for the InGaAsP layer 32 and the InGaAsP layer 32 are also changed according to the purpose of this embodiment. In addition, also in this embodiment,
It goes without saying that the details of the structure and the conditions of manufacture are not limited to those in this embodiment.

【0029】(実施例5)図9を用いて実施例1におい
て示した半導体層構造を第2次高調波の発生装置の作製
に適用した実施例を説明する。
(Embodiment 5) An embodiment in which the semiconductor layer structure shown in Embodiment 1 is applied to the production of a second harmonic generation device will be described with reference to FIG.

【0030】図9(a)に示すように、図4(b)に示した構
造における各層の設定を一部以下のように変更する。
(100)n-InP基板11を(100)n-GaAs基板111、(1
10)n-InP基板13を(110)n-GaAs基板(不図示)、In
Pパタ−ン状薄膜層212をGaAsパタ−ン状薄膜層21
21、n-InP層31をn-ZnSe層311とし、SiO2ストラ
イプ6の幅および間隔を0.7μmとする。n-ZnSe層31
1の表面を機械研磨して平坦にし、その上にアンド−プ
AlAs光導波層41(厚さ0.5μm)、n-ZnSe層51(厚
さ5.0μm)をMOCVD法により順次成長する。これ
を図9(b)に示すように500μm×200μmの大きさに劈
開する。この劈開した断面から、図9(b)に示すよう
に、AlAs層41に波長0.98μmの半導体レ−ザ光を入射
すると、反対側の断面からその半分の波長の0.49μmの
出射光が得られた。
As shown in FIG. 9A, the setting of each layer in the structure shown in FIG. 4B is partially changed as follows.
The (100) n-InP substrate 11 is replaced with the (100) n-GaAs substrate 111, (1
10) Replace the n-InP substrate 13 with a (110) n-GaAs substrate (not shown), In
The P pattern thin film layer 212 is replaced with the GaAs pattern thin film layer 21.
21, the n-InP layer 31 is the n-ZnSe layer 311, and the width and interval of the SiO 2 stripes 6 are 0.7 μm. n-ZnSe layer 31
The surface of No. 1 is mechanically polished to make it flat, and the
The AlAs optical waveguide layer 41 (thickness 0.5 μm) and the n-ZnSe layer 51 (thickness 5.0 μm) are sequentially grown by the MOCVD method. This is cleaved into a size of 500 μm × 200 μm as shown in FIG. 9 (b). From this cleaved cross section, as shown in FIG. 9 (b), when semiconductor laser light with a wavelength of 0.98 μm is incident on the AlAs layer 41, emitted light with a wavelength of 0.49 μm, which is half that wavelength, is obtained from the cross section on the opposite side. Was given.

【0031】本実施例のように第2次高調波を発生させ
る場合は、SiO2ストライプ6の幅と間隔は等しくする必
要がある。その値は本実施例に限らないが、入射する光
の波長、および光導波路層の材質によって決まる。具体
的には、 (SiO2ストライプ6の幅・間隔)=(入射光の波長)/
4×{(入射光の光導波路層中での屈折率)−(出射光の光
導波路層中での屈折率)} で表される。従って用途に応じて光導波路層の材質、Si
O2ストライプ6の幅と間隔を決定する。
When the second harmonic is generated as in this embodiment, the SiO 2 stripes 6 need to have the same width and interval. The value is not limited to this example, but depends on the wavelength of incident light and the material of the optical waveguide layer. Specifically, (width / interval of SiO 2 stripe 6) = (wavelength of incident light) /
4 × {(refractive index of incident light in the optical waveguide layer) − (refractive index of emitted light in the optical waveguide layer)}. Therefore, the material of the optical waveguide layer, Si
Determine the width and spacing of the O 2 stripes 6.

【0032】AlAsはZnSeより光の屈折率が大きいので、
入射した光はAlAs光導波層41中を通って反対側に出射
する。従って、光導波層には周囲の材料より光の屈折率
が大きい材料を用いればよく、本実施例におけるAlAs以
外の材料を用いてもよい。ZnSeのみでなく空気よりも屈
折率が大きい光導波層を用いる場合は、光導波層上に成
長層を設ける必要は無いが、本実施例ではAlAsは空気に
触れると変質しやすいためn-ZnSe層51は成長した方が
よい。AlAs層光導波層41の上側の成長面は成長速度の
違いにより凹凸が生じるが、本実施例では膜厚が0.5μ
mと薄いので凹凸は小さく、光の散乱は問題にならな
い。光導波層の膜厚は、薄過ぎると光が光導波層の外部
に漏れ易くなり、厚過ぎると出射光のビ−ム径が広がっ
てしまうので、一般的なレ−ザ光を入射する場合は0.5
〜1.0μm程度の膜厚が望ましい。従って、本実施例で
はAlAs層光導波層41の膜厚は表面の凹凸をできるだけ
低減するため薄めにしたが、凹凸の低減を考慮する必要
がない場合は本実施例の値に限らない。本半導体装置の
劈開する幅についても本実施例に限らない。
Since AlAs has a higher refractive index of light than ZnSe,
The incident light passes through the AlAs optical waveguide layer 41 and is emitted to the opposite side. Therefore, a material having a higher refractive index of light than the surrounding material may be used for the optical waveguide layer, and a material other than AlAs in this embodiment may be used. When using not only ZnSe but an optical waveguide layer having a refractive index larger than that of air, it is not necessary to provide a growth layer on the optical waveguide layer, but in this example, AlAs is likely to deteriorate when exposed to air. Layer 51 should be grown. The growth surface on the upper side of the AlAs layer optical waveguide layer 41 has irregularities due to the difference in growth rate. In this embodiment, the film thickness is 0.5 μm.
Since it is as thin as m, unevenness is small and light scattering does not matter. When the thickness of the optical waveguide layer is too thin, light easily leaks to the outside of the optical waveguide layer, and when it is too thick, the beam diameter of the emitted light is widened. Is 0.5
A film thickness of about 1.0 μm is desirable. Therefore, in the present embodiment, the thickness of the AlAs layer optical waveguide layer 41 is made thin in order to reduce the unevenness of the surface as much as possible, but it is not limited to the value of this embodiment when it is not necessary to consider the reduction of the unevenness. The cleaving width of this semiconductor device is not limited to this embodiment.

【0033】(実施例6)図10を用いて実施例2およ
び3において示した半導体層構造を第2次高調波の発生
装置の作製に適用した実施例を説明する。
(Embodiment 6) An embodiment in which the semiconductor layer structure shown in Embodiments 2 and 3 is applied to the production of a second harmonic generation device will be described with reference to FIG.

【0034】図10に示すように、図6(b)および図8
(b)に示した構造における各層の設定を一部以下のよう
に変更する。(100)n-InP基板11を(100)n-GaAs基
板111、(100)n-InP基板12を(100)n-GaAs基板
(不図示)、(111)n-InP基板14を(111)n-GaAs基
板141、n-またはアンド−プInGaAsパタ−ン状薄膜層
222をn-InGaPパタ−ン状薄膜層2221、n-または
アンド−プInGaAsP層32をn-InGaP層321とし、SiO2
ストライプ6の幅および間隔を0.4μmとする。n-InGaP
層321上にアンド−プAl0.8Ga0.2As光導波層42(厚
さ0.5μm)、n-InGaP層52(厚さ5.0μm)をMOC
VD法により順次成長する。このとき、図8(b)のごと
くn-InGaP層321の表面に凹凸が生じる場合は、機械
研磨して平坦にした後に成長を行う。これを実施例5と
同様に劈開して第2次高調波を発生させた。また、実施
例4に記載のごとく、n-InGaPパタ−ン状薄膜層222
1の格子定数を変化させ、n-InGaP層321ならびにAlG
aAs光導波層42において面方位に加えて格子定数およ
び屈折率が周期的に変化した構造とした場合には、屈折
率の周期的変化によって第2次高調波の発生効率が向上
した。
As shown in FIG. 10, FIG. 6 (b) and FIG.
Some settings of each layer in the structure shown in (b) are changed as follows. The (100) n-InP substrate 11 is a (100) n-GaAs substrate 111, the (100) n-InP substrate 12 is a (100) n-GaAs substrate (not shown), and the (111) n-InP substrate 14 is a (111) n-InP substrate 14. ) The n-GaAs substrate 141, the n- or undoped InGaAs pattern thin film layer 222 is the n-InGaP pattern thin film layer 2221 and the n- or undoped InGaAsP layer 32 is the n-InGaP layer 321. SiO 2
The width and interval of the stripes 6 are 0.4 μm. n-InGaP
An AND-type Al 0.8 Ga 0.2 As optical waveguide layer 42 (thickness 0.5 μm) and an n-InGaP layer 52 (thickness 5.0 μm) are formed on the layer 321 by MOC.
It grows sequentially by the VD method. At this time, if irregularities are formed on the surface of the n-InGaP layer 321, as shown in FIG. 8B, mechanical polishing is performed to make the surface flat, and then growth is performed. This was cleaved in the same manner as in Example 5 to generate the second harmonic. In addition, as described in Example 4, the n-InGaP pattern thin film layer 222 is formed.
By changing the lattice constant of the n-InGaP layer 321 and AlG
When the aAs optical waveguide layer 42 has a structure in which the lattice constant and the refractive index are periodically changed in addition to the plane orientation, the generation efficiency of the second harmonic is improved by the periodical change of the refractive index.

【0035】本実施例においても、第2次高調波発生装
置としての機能を失わない限り、材料や膜厚、劈開幅な
どの諸条件は本実施例のものに限らない。
Also in this embodiment, the conditions such as the material, the film thickness, and the cleavage width are not limited to those of this embodiment as long as the function as the second harmonic generation device is not lost.

【0036】(実施例7)図11から図13からを用い
て実施例1から4において示した半導体層構造を半導体
レ−ザの作製に適用した実施例を説明する。
(Embodiment 7) An embodiment in which the semiconductor layer structure shown in Embodiments 1 to 4 is applied to the manufacture of a semiconductor laser will be described with reference to FIGS.

【0037】図11(a)に示すように、図4(b)に示した
構造における各層の設定を一部変更し、(100)n-InP基
板11を(100)半絶縁性InP基板112に、n-InP薄膜
層211の厚さを0.05μmに、n-InP層31(厚さ7.0μ
m)をアンド−プInGaAsP層312(厚さ0.5μm)に、
SiO2ストライプ6の幅および間隔を0.01μmとする。ま
た図11(b)に示すように、図6(b)および図8(b)に示
した構造における各層の設定を一部変更し、(100)n-I
nP基板11を(100)半絶縁性InP基板112に、(11
1)n-InP基板14を(111)半絶縁性InP基板142に、
n-またはアンド−プInGaAsP層32(厚さ5.0μm)をア
ンド−プn-InGaAsP層322(厚さ1.0μm)に、SiO2
トライプ6の幅および間隔を0.01μmとする。アンド−
プInGaAsP層312および322はいずれも発光波長が
およそ1.3μmの組成とする。さらに、半絶縁性InP層5
3(厚さ7.0μm)をそれぞれの上に成長する。アンド
−プInGaAsP層312および322の膜厚はさほど厚く
ないので、表面はほぼ平坦である。但し、半絶縁性InP
層53の表面には場合によって凹凸が生じるが、レーザ
特性には影響しないので図面においても割愛する。
As shown in FIG. 11A, the setting of each layer in the structure shown in FIG. 4B is partially changed to change the (100) n-InP substrate 11 from the (100) semi-insulating InP substrate 112. The thickness of the n-InP thin film layer 211 is 0.05 μm, and the thickness of the n-InP layer 31 is 7.0 μm.
m) on the undoped InGaAsP layer 312 (thickness 0.5 μm),
The width and interval of the SiO 2 stripes 6 are 0.01 μm. Further, as shown in FIG. 11B, the setting of each layer in the structure shown in FIG. 6B and FIG.
nP substrate 11 to (100) semi-insulating InP substrate 112, (11
1) n-InP substrate 14 to (111) semi-insulating InP substrate 142,
The n- or undo InGaAsP layer 32 (thickness 5.0 μm) is used as the und n-InGaAsP layer 322 (thickness 1.0 μm), and the SiO 2 stripes 6 have a width and a spacing of 0.01 μm. And-
Each of the InGaAsP layers 312 and 322 has a composition having an emission wavelength of about 1.3 μm. Furthermore, semi-insulating InP layer 5
3 (thickness 7.0 μm) are grown on each. Since the thickness of the undope InGaAsP layers 312 and 322 is not so large, the surface is almost flat. However, semi-insulating InP
The surface of the layer 53 has irregularities depending on the case, but since it does not affect the laser characteristics, it is omitted in the drawing.

【0038】以上の構造を、図12(a)に示すように100
μmの長さに劈開し、片側の劈開面に(100)n+-InP基
板18を、他方の劈開面に(100)p+-InP基板19を直
接接着する。直接接着の手法は、実施例1に示したもの
と同様とする。n+-InP基板18およびp+-InP基板19を
研磨してそれぞれ約100μmの厚さにする。さらにn+-In
P基板18の一部を、図12(b)に示すように選択エッチ
ングにより5〜10μmに薄くする。これはレ−ザ光を取
り出しやすくするためで、アンド−プInGaAsP層312
およびアンド−プn-InGaAsP層322の横側に当たる部
分を薄くすることが目的である。この後、n+-InP基板1
8およびp+-InP基板19の研磨した面に、図13(a)に
示すようにn型電極71およびp型電極72をそれぞれ蒸
着する。これを200μmの幅に分割してレ−ザを作製し
た(図13(b))。
The above structure is constructed as shown in FIG.
Cleavage is performed to a length of μm, and the (100) n + -InP substrate 18 is directly bonded to one cleavage surface and the (100) p + -InP substrate 19 is directly bonded to the other cleavage surface. The method of direct bonding is similar to that shown in the first embodiment. The n + -InP substrate 18 and the p + -InP substrate 19 are polished to have a thickness of about 100 μm. Furthermore n + -In
A part of the P substrate 18 is thinned to 5 to 10 μm by selective etching as shown in FIG. This is for facilitating the extraction of laser light, and therefore the AND InP layer 312
The purpose is to reduce the thickness of the portion of the AND-nGaAsP layer 322 that is on the lateral side. After this, n + -InP substrate 1
The n-type electrode 71 and the p-type electrode 72 are vapor-deposited on the polished surface of the 8 and p + -InP substrate 19, respectively, as shown in FIG. This was divided into a width of 200 μm to prepare a laser (FIG. 13 (b)).

【0039】作製したレ−ザのp型電極からn型電極に電
流を流すと、アンド−プInGaAsP層312およびアンド
−プn-InGaAsP層322でレ−ザ発振が起こり、薄膜化
されたn+-InP基板18の方からレ−ザ光が出射される
(図13(b))。n+-InP基板18ではなくp+-InP基板1
9の一部を同様に薄くすれば、p+-InP基板19側からレ
−ザ光が出射される。レ−ザ活性層を本発明のような面
方位周期構造とすることにより、レ−ザ光の偏光を制御
することができる。また、実施例4に記載のごとく、In
GaAsパタ−ン状薄膜層222の格子定数を変化させ、ア
ンド−プn-InGaAsP層322において面方位に加えて格
子定数および屈折率が周期的に変化した構造とした場合
には、格子定数の周期的変化によってレ−ザの発光効率
が向上した。
When a current is passed from the p-type electrode of the produced laser to the n-type electrode, laser oscillation occurs in the AND-type InGaAsP layer 312 and the AND-type n-InGaAsP layer 322, and the thinned n + is formed. -Laser light is emitted from the InP substrate 18 (FIG. 13 (b)). p + -InP substrate 1 instead of n + -InP substrate 18
If a part of 9 is similarly thinned, laser light is emitted from the p + -InP substrate 19 side. The polarization of the laser light can be controlled by forming the laser active layer with the plane orientation periodic structure as in the present invention. In addition, as described in Example 4, In
In the case where the lattice constant of the GaAs pattern thin film layer 222 is changed so that the lattice constant and the refractive index of the AND-n-InGaAsP layer 322 are periodically changed in addition to the plane orientation, The luminous efficiency of the laser was improved by the periodic change.

【0040】SiO2ストライプ6は幅および間隔が等しい
ものとしたが、第2次高調波を発生させる場合と異なり
本実施例のような発光素子や受光素子等に用いる場合は
幅と間隔を異なる値としても良い。また、SiO2ストライ
プ6を2次元のパタ−ンとしても良く、例えば直径0.1
μmの円柱を0.2μm間隔で2次元に並べたパタ−ンと
した場合には、偏光の制御が2次元面内でなされる等の
レーザ機能の変化が見られ、異なるタイプのレーザを得
ることができた。
Although the SiO 2 stripes 6 have the same width and spacing, the width and the spacing are different when they are used in the light emitting element or the light receiving element as in this embodiment, unlike the case of generating the second harmonic. Good as a value. Further, the SiO 2 stripe 6 may be a two-dimensional pattern, for example, a diameter of 0.1
When using a pattern in which 2 μm cylinders are arranged two-dimensionally at 0.2 μm intervals, there are changes in the laser function, such as the control of polarization in the two-dimensional plane, and lasers of different types can be obtained. I was able to.

【0041】本実施例のように面方位周期構造は発光・
受光素子等の光デバイスにも用いることができる。本実
施例においても、半導体レ−ザとしての機能を失わない
限り、材料や膜厚、劈開幅などの諸条件は本実施例のも
のに限らない。
As in the present embodiment, the plane azimuth periodic structure emits light.
It can also be used in optical devices such as light receiving elements. Also in this embodiment, various conditions such as the material, the film thickness, and the cleavage width are not limited to those of this embodiment as long as the function as the semiconductor laser is not lost.

【0042】[0042]

【発明の効果】以上説明したように、本発明により多様
な面方位周期構造、あるいは面方位および格子定数の周
期構造という新しい構造を簡便に得ることができる。従
って、本発明の適用により、第2次高調波発生装置や新
しい機能が付加された発光・受光素子が簡便に作製され
る。
As described above, according to the present invention, it is possible to easily obtain various new plane orientation periodic structures or plane orientation and lattice constant periodic structures. Therefore, by applying the present invention, the second harmonic generation device and the light emitting / receiving element having a new function are easily manufactured.

【0043】[0043]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の手段により作製した半導体層構造を示
す図である。
FIG. 1 is a diagram showing a semiconductor layer structure produced by the means of the present invention.

【図2】本発明の手段により作製した他の半導体層構造
を示す図である。
FIG. 2 is a diagram showing another semiconductor layer structure manufactured by the means of the present invention.

【図3】本発明の一実施例を示す半導体層構造およびそ
の製造過程を示す図である。
FIG. 3 is a diagram showing a semiconductor layer structure and a manufacturing process thereof according to an embodiment of the present invention.

【図4】本発明の一実施例を示す半導体層構造およびそ
の製造過程を示す図である。
FIG. 4 is a diagram showing a semiconductor layer structure and a manufacturing process thereof according to an embodiment of the present invention.

【図5】本発明の他の一実施例を示す半導体層構造およ
びその製造過程を示す図である。
FIG. 5 is a diagram showing a semiconductor layer structure and a manufacturing process thereof according to another embodiment of the present invention.

【図6】本発明の他の一実施例を示す半導体層構造およ
びその製造過程を示す図である。
FIG. 6 is a diagram showing a semiconductor layer structure and a manufacturing process thereof according to another embodiment of the present invention.

【図7】本発明の他の一実施例を示す半導体層構造およ
びその製造過程を示す図である。
FIG. 7 is a diagram showing a semiconductor layer structure and a manufacturing process thereof according to another embodiment of the present invention.

【図8】本発明の他の一実施例を示す半導体層構造およ
びその製造過程を示す図である。
FIG. 8 is a diagram showing a semiconductor layer structure and a manufacturing process thereof according to another embodiment of the present invention.

【図9】本発明の手段により作製した第2次高調波発生
装置の製造過程および構造の一例を示す図である。
FIG. 9 is a diagram showing an example of a manufacturing process and a structure of a second harmonic generation device manufactured by the means of the present invention.

【図10】本発明の手段により作製した第2次高調波発
生装置の製造過程および構造の他の一例を示す図であ
る。
FIG. 10 is a diagram showing another example of the manufacturing process and structure of the second harmonic generation device manufactured by the means of the present invention.

【図11】本発明の手段により作製した第2次高調波発
生装置の製造過程および構造の一例を示す図である。
FIG. 11 is a diagram showing an example of a manufacturing process and a structure of a second harmonic generation device manufactured by the means of the present invention.

【図12】本発明の手段により作製した第2次高調波発
生装置の製造過程および構造の一例を示す図である。
FIG. 12 is a diagram showing an example of a manufacturing process and a structure of a second harmonic generation device manufactured by the means of the present invention.

【図13】本発明の手段により作製した第2次高調波発
生装置の製造過程および構造の一例を示す図である。
FIG. 13 is a diagram showing an example of a manufacturing process and a structure of a second harmonic generation device manufactured by the means of the present invention.

【図14】従来の手段により作製した半導体層構造を示
す図である。
FIG. 14 is a diagram showing a semiconductor layer structure manufactured by conventional means.

【図15】従来の手段により作製した他の半導体層構造
を示す図である。
FIG. 15 is a diagram showing another semiconductor layer structure manufactured by conventional means.

【符号の説明】[Explanation of symbols]

1…半導体基板、2…半導体パタ−ン状薄膜層、3…半
導体層、11,12…(100)n-InP基板、111…(10
0)n-GaAs基板、112…(100)半絶縁性InP基板、1
3…(110)n-InP基板、14…(111)n-InP基板、14
1…(111)n-GaAs基板、142…(111)半絶縁性InP
基板、18…n+-InP基板、19…p+-InP基板、211…
n-InP薄膜層、212…n-InPパタ−ン状薄膜層、212
1…n-GaAsパタ−ン状薄膜層、221…n-またはアンド
−プInGaAs薄膜層、222…n-またはアンド−プInGaAs
パタ−ン状薄膜層、2221…n-InGaPパタ−ン状薄膜
層、31…n-InP層、311,51…n-ZnSe層、312
…アンド−プInGaAsP層、32…n-またはアンド−プInG
aAsP層、321,52…n-InGaP層、322…アンド−
プn-InGaAsP層、41…アンド−プAlAs光導波層、42
…アンド−プAl0.8Ga0.2As光導波層、53…半絶縁性In
P層、6…SiO2ストライプ、71…n型電極、72…p型
電極、81…n-またはアンド−プInP表面保護層、91
…(100)GaAs基板、92…(100)ZnTeパタ−ン状薄膜
層、93…CdTe層、94,95…半導体膜。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Semiconductor pattern thin film layer, 3 ... Semiconductor layer, 11, 12 ... (100) n-InP substrate, 111 ... (10
0) n-GaAs substrate, 112 ... (100) semi-insulating InP substrate, 1
3 ... (110) n-InP substrate, 14 ... (111) n-InP substrate, 14
1 ... (111) n-GaAs substrate, 142 ... (111) semi-insulating InP
Substrate, 18 ... n + -InP substrate, 19 ... p + -InP substrate, 211 ...
n-InP thin film layer, 212 ... n-InP patterned thin film layer, 212
1 ... n-GaAs pattern thin film layer, 221 ... n- or undup InGaAs thin film layer, 222 ... n- or undup InGaAs
Pattern thin film layer, 2221 ... n-InGaP pattern thin film layer, 31 ... n-InP layer, 311,51 ... n-ZnSe layer, 312
... And-InP InGaAsP layer, 32 ... n- or And-InG
aAsP layer, 321, 52 ... n-InGaP layer, 322 ... AND-
N-InGaAsP layer, 41 ... And-AlAs optical waveguide layer, 42
… Andorp Al 0.8 Ga 0.2 As Optical waveguide layer, 53… Semi-insulating In
P layer, 6 ... SiO 2 stripe, 71 ... N-type electrode, 72 ... P-type electrode, 81 ... N- or Andp InP surface protective layer, 91
(100) GaAs substrate, 92 (100) ZnTe pattern thin film layer, 93 ... CdTe layer, 94, 95 ... Semiconductor film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 正彦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Kondo 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (28)

【特許請求の範囲】[Claims] 【請求項1】第一の格子定数を有する第一の半導体基板
上に、第二の格子定数を有する第二の半導体パタ−ン状
薄膜層が形成され、前記第二の半導体パタ−ン状薄膜層
が形成された前記第一の半導体基板の表面全面に第三の
格子定数を有する第三の半導体層が結晶成長されてなる
半導体層構造であり、前記第二の半導体パタ−ン状薄膜
層は前記第一の半導体基板上に直接接着されて形成され
ること、および前記第一の半導体基板の格子配列と前記
第二の半導体薄膜層の格子配列が直接接着界面に垂直な
一断面において等価でないことを特徴とする半導体層構
造。
1. A second semiconductor pattern thin film layer having a second lattice constant is formed on a first semiconductor substrate having a first lattice constant, and the second semiconductor pattern thin film layer is formed. A semiconductor layer structure in which a third semiconductor layer having a third lattice constant is crystal-grown on the entire surface of the first semiconductor substrate on which a thin film layer is formed, and the second semiconductor pattern-like thin film A layer is formed by directly adhering on the first semiconductor substrate, and in a cross section in which the lattice arrangement of the first semiconductor substrate and the lattice arrangement of the second semiconductor thin film layer are perpendicular to the direct adhesion interface. A semiconductor layer structure which is not equivalent.
【請求項2】請求項1に記載の半導体層構造において、
前記第二の半導体パタ−ン状薄膜層は前記第一の半導体
基板と同一のブラヴェ格子を単位格子とすることを特徴
とする半導体層構造。
2. The semiconductor layer structure according to claim 1, wherein
A semiconductor layer structure, wherein the second semiconductor pattern thin film layer has the same Brave lattice as the unit lattice as the first semiconductor substrate.
【請求項3】請求項2に記載の半導体層構造において、
前記第二の格子定数は前記第一の格子定数と等しいこと
を特徴とする半導体層構造。
3. The semiconductor layer structure according to claim 2, wherein
The semiconductor layer structure, wherein the second lattice constant is equal to the first lattice constant.
【請求項4】請求項3に記載の半導体層構造において、
前記第二の半導体パタ−ン状薄膜層は前記第一の半導体
基板と同一材料より成ることを特徴とする半導体層構
造。
4. The semiconductor layer structure according to claim 3,
A semiconductor layer structure, wherein the second semiconductor pattern thin film layer is made of the same material as the first semiconductor substrate.
【請求項5】請求項3または4に記載の半導体層構造に
おいて、前記第三の格子定数は前記第一の格子定数およ
び前記第二の格子定数と等しいことを特徴とする半導体
層構造。
5. The semiconductor layer structure according to claim 3 or 4, wherein the third lattice constant is equal to the first lattice constant and the second lattice constant.
【請求項6】請求項5に記載の半導体層構造において、
前記第三の半導体層は前記第一の半導体基板と同一材料
より成ることを特徴とする半導体層構造。
6. The semiconductor layer structure according to claim 5, wherein
The semiconductor layer structure, wherein the third semiconductor layer is made of the same material as the first semiconductor substrate.
【請求項7】請求項5に記載の半導体層構造において、
前記第三の半導体層は前記第二の半導体パタ−ン状薄膜
層と同一材料より成ることを特徴とする半導体層構造。
7. The semiconductor layer structure according to claim 5, wherein
The semiconductor layer structure, wherein the third semiconductor layer is made of the same material as the second semiconductor pattern thin film layer.
【請求項8】請求項5に記載の半導体層構造において、
前記第三の半導体層は前記第一の半導体基板および前記
第二の半導体パタ−ン状薄膜層と同一材料より成ること
を特徴とする半導体層構造。
8. The semiconductor layer structure according to claim 5, wherein
The semiconductor layer structure, wherein the third semiconductor layer is made of the same material as the first semiconductor substrate and the second semiconductor pattern thin film layer.
【請求項9】請求項2に記載の半導体層構造において、
前記第二の格子定数は前記第一の格子定数と異なること
を特徴とする半導体層構造。
9. The semiconductor layer structure according to claim 2, wherein
The semiconductor layer structure, wherein the second lattice constant is different from the first lattice constant.
【請求項10】請求項9に記載の半導体層構造におい
て、前記第二の格子定数と前記第一の格子定数の差は前
記第一の格子定数の1%以下であることを特徴とする半
導体層構造。
10. The semiconductor layer structure according to claim 9, wherein the difference between the second lattice constant and the first lattice constant is 1% or less of the first lattice constant. Layered structure.
【請求項11】請求項9または10に記載の半導体層構
造において、前記第三の半導体層は3種類以上の元素よ
り構成されることを特徴とする半導体層構造。
11. The semiconductor layer structure according to claim 9, wherein the third semiconductor layer is composed of three or more kinds of elements.
【請求項12】請求項9から11のいずれかに記載の半
導体層構造において、前記第三の格子定数は前記第一の
格子定数と前記第二の格子定数の平均値に等しいことを
特徴とする半導体層構造。
12. The semiconductor layer structure according to claim 9, wherein the third lattice constant is equal to an average value of the first lattice constant and the second lattice constant. Semiconductor layer structure.
【請求項13】請求項1から12のいずれかに記載の半
導体層構造において、前記第一の半導体基板および前記
第二の半導体パタ−ン状薄膜層および前記第三の半導体
層は化合物半導体より成ることを特徴とする半導体層構
造。
13. The semiconductor layer structure according to claim 1, wherein the first semiconductor substrate, the second semiconductor pattern thin film layer and the third semiconductor layer are made of a compound semiconductor. A semiconductor layer structure characterized by being formed.
【請求項14】請求項13に記載の半導体層構造におい
て、前記化合物半導体とはIII−V族またはII−VI族化
合物半導体を指すことを特徴とする半導体層構造。
14. The semiconductor layer structure according to claim 13, wherein the compound semiconductor refers to a III-V group or a II-VI group compound semiconductor.
【請求項15】請求項1から14のいずれかに記載の半
導体層構造において、前記第一の半導体基板と前記第二
の半導体パタ−ン状薄膜層は、前記第一の半導体基板の
(100)面と前記第二の半導体パタ−ン状薄膜層の(11
0)面を向かい合わせて直接接着されていることを特徴
とする半導体層構造。
15. The semiconductor layer structure according to claim 1, wherein the first semiconductor substrate and the second semiconductor pattern thin film layer are (100) of the first semiconductor substrate. ) Plane and (11) of the second semiconductor pattern thin film layer.
0) A semiconductor layer structure characterized by being bonded directly with their faces facing each other.
【請求項16】請求項1から14のいずれかに記載の半
導体層構造において、前記第一の半導体基板と前記第二
の半導体パタ−ン状薄膜層は、前記第一の半導体基板の
(110)面と前記第二の半導体パタ−ン状薄膜層の(10
0)面を向かい合わせて直接接着されていることを特徴
とする半導体層構造。
16. The semiconductor layer structure according to claim 1, wherein the first semiconductor substrate and the second semiconductor pattern thin film layer are (110) of the first semiconductor substrate. ) Plane and (10) of the second semiconductor pattern thin film layer.
0) A semiconductor layer structure characterized by being bonded directly with their faces facing each other.
【請求項17】請求項1から14のいずれかに記載の半
導体層構造において、前記第一の半導体基板と前記第二
の半導体パタ−ン状薄膜層は、前記第一の半導体基板の
(100)面と前記第二の半導体パタ−ン状薄膜層の(11
1)面を向かい合わせて直接接着されていることを特徴
とする半導体層構造。
17. The semiconductor layer structure according to claim 1, wherein the first semiconductor substrate and the second semiconductor pattern thin film layer are formed of (100) of the first semiconductor substrate. ) Plane and (11) of the second semiconductor pattern thin film layer.
1) A semiconductor layer structure characterized by being face-to-face and directly bonded.
【請求項18】請求項1から14のいずれかに記載の半
導体層構造において、前記第一の半導体基板と前記第二
の半導体パタ−ン状薄膜層は、前記第一の半導体基板の
(111)面と前記第二の半導体パタ−ン状薄膜層の(10
0)面を向かい合わせて直接接着されていることを特徴
とする半導体層構造。
18. The semiconductor layer structure according to claim 1, wherein the first semiconductor substrate and the second semiconductor pattern thin film layer are (111) of the first semiconductor substrate. ) Plane and (10) of the second semiconductor pattern thin film layer.
0) A semiconductor layer structure characterized by being bonded directly with their faces facing each other.
【請求項19】請求項1から14のいずれかに記載の半
導体層構造において、前記第一の半導体基板と前記第二
の半導体パタ−ン状薄膜層は、前記第一の半導体基板と
前記第二の半導体パタ−ン状薄膜層の(100)面同士を
向かい合わせ、前記第一の半導体基板の[0-11]方位と
前記第二の半導体パタ−ン状薄膜層の[0-11]方位が平
行、もしくは前記第一の半導体基板の[011]方位と前
記第二の半導体パタ−ン状薄膜層の[011]方位が平行
となるように配置して直接接着されていることを特徴と
する半導体層構造。
19. The semiconductor layer structure according to claim 1, wherein the first semiconductor substrate and the second semiconductor pattern thin film layer are the first semiconductor substrate and the second semiconductor pattern thin film layer. The (100) planes of the second semiconductor pattern thin film layer are made to face each other, and the [0-11] orientation of the first semiconductor substrate and the [0-11] direction of the second semiconductor pattern thin film layer. The orientation is parallel or the [011] orientation of the first semiconductor substrate and the [011] orientation of the second semiconductor pattern thin film layer are arranged in parallel and are directly bonded. And a semiconductor layer structure.
【請求項20】請求項1から19のいずれかに記載の半
導体層構造により構成されたことを特徴とする半導体装
置。
20. A semiconductor device comprising the semiconductor layer structure according to any one of claims 1 to 19.
【請求項21】第一の格子定数を有する第一の半導体基
板表面と第二の格子定数を有する第二0の半導体基板表
面を直接接着する工程と、前記第二0の半導体基板を裏
面からの研磨により薄膜化して第二一の半導体薄膜層に
加工する工程と、前記第二一の半導体薄膜層上に被覆膜
をパタ−ン状に形成する工程と、前記第二一の半導体薄
膜層の前記被覆膜に被覆されていない部分を除去して第
二の半導体パタ−ン状薄膜層に加工する工程と、前記被
覆膜を除去する工程と、前記第二の半導体パタ−ン状薄
膜層が残存した前記第一の半導体基板の表面全面に第三
の格子定数を有する第三の半導体層を結晶成長する工程
から成り、前記第一の半導体基板の格子配列と前記第二
の半導体パタ−ン状薄膜層の格子配列が直接接着界面に
垂直な一断面において等価でないことを特徴とする半導
体層構造の製造方法。
21. A step of directly adhering a surface of a first semiconductor substrate having a first lattice constant and a surface of a second semiconductor substrate having a second lattice constant, and the second semiconductor substrate from the back surface. Polishing to form a thin film into a second semiconductor thin film layer, a step of forming a coating film on the second semiconductor thin film layer in a pattern, and the second semiconductor thin film Removing a portion of the layer not covered by the coating film to form a second semiconductor pattern thin film layer, removing the coating film, and the second semiconductor pattern. -Like thin film layer is formed on the entire surface of the first semiconductor substrate where the third semiconductor layer having a third lattice constant is crystal-grown, and the lattice arrangement of the first semiconductor substrate and the second semiconductor layer The lattice arrangement of the semiconductor pattern thin film layer is directly on the cross section perpendicular to the bonding interface. The method of manufacturing a semiconductor layer structure, characterized in that not equivalent Te.
【請求項22】第二0の格子定数を有する第二0の半導
体基板上に第二の格子定数を有する第二一の半導体薄膜
層を結晶成長する工程と、第一の格子定数を有する第一
の半導体基板表面と前記第二一の半導体薄膜層の表面を
直接接着する工程と、前記第二0の半導体基板をエッチ
ング除去する工程と、前記第一の半導体基板上に残存せ
しめられた前記第二一の半導体薄膜層上に被覆膜をパタ
−ン状に形成する工程と、前記第二一の半導体薄膜層の
前記被覆膜に被覆されていない部分を除去して第二の半
導体パタ−ン状薄膜層に加工する工程と、前記被覆膜を
除去する工程と、前記第二の半導体パタ−ン状薄膜層が
残存した前記第一の半導体基板の表面全面に第三の格子
定数を有する第三の半導体層を結晶成長する工程から成
り、前記第一の半導体基板の格子配列と前記第二の半導
体パタ−ン状薄膜層の格子配列が直接接着界面に垂直な
一断面において等価でないことを特徴とする半導体層構
造の製造方法。
22. A step of crystal-growing a second semiconductor thin film layer having a second lattice constant on a 20th semiconductor substrate having a second lattice constant, the method having a first lattice constant. The step of directly adhering the surface of one semiconductor substrate and the surface of the second semiconductor thin film layer, the step of etching away the second semiconductor substrate, and the step of remaining on the first semiconductor substrate. Forming a coating film on the second semiconductor thin film layer in a pattern, and removing a portion of the second semiconductor thin film layer not covered by the coating film to form a second semiconductor A step of processing into a pattern-shaped thin film layer, a step of removing the coating film, and a third lattice on the entire surface of the first semiconductor substrate on which the second semiconductor pattern-shaped thin film layer remains. Comprising a step of crystallizing a third semiconductor layer having a constant, The method of manufacturing a semiconductor layer structure, wherein the lattice array of emission-shaped thin-film layer is not equivalent in perpendicular one cross section to the direct bonding interface - lattice array and the second semiconductor patterns of the body substrate.
【請求項23】第二0の格子定数を有する第二0の半導
体基板上に第二の格子定数を有する第二一の半導体薄膜
層と第二九の格子定数を有する第二九の半導体表面保護
層を順次結晶成長する工程と、前記第二九の半導体表面
保護層上に被覆膜をパタ−ン状に形成する工程と、前記
第二九の半導体表面保護層の前記被覆膜に被覆されてい
ない部分を除去する工程と、前記第二一の半導体薄膜層
の前記被覆膜に被覆されていない部分を除去して第二の
半導体パタ−ン状薄膜層に加工する工程と、前記被覆膜
を除去する工程と、前記第二九の半導体表面保護層を除
去する工程と、第一の格子定数を有する第一の半導体基
板表面と前記第二の半導体パタ−ン状薄膜層の表面を直
接接着する工程と、前記第二0の半導体基板をエッチン
グにより除去する工程と、前記第二の半導体パタ−ン状
薄膜層が残存した前記第一の半導体基板の表面全面に第
三の格子定数を有する第三の半導体層を結晶成長する工
程から成り、前記第一の半導体基板の格子配列と前記第
二の半導体パタ−ン状薄膜層の格子配列が直接接着界面
に垂直な一断面において等価でないことを特徴とする半
導体層構造の製造方法。
23. A second semiconductor thin film layer having a second lattice constant on a 20th semiconductor substrate having a 20th lattice constant and a 29th semiconductor surface having a 29th lattice constant. A step of successively crystallizing a protective layer, a step of forming a coating film on the semiconductor surface protective layer of the ninth ninth pattern, and a step of forming a coating film on the semiconductor surface protective layer of the ninth semiconductor layer. A step of removing an uncoated portion, a step of removing a portion not covered by the coating film of the second semiconductor thin film layer to form a second semiconductor pattern thin film layer, A step of removing the coating film, a step of removing the second semiconductor surface protection layer, a first semiconductor substrate surface having a first lattice constant, and a second semiconductor pattern thin film layer. The step of directly adhering the surface of the second semiconductor substrate and removing the second semiconductor substrate by etching And a step of crystal-growing a third semiconductor layer having a third lattice constant on the entire surface of the first semiconductor substrate on which the second semiconductor pattern thin film layer remains. 2. The method for manufacturing a semiconductor layer structure, wherein the lattice arrangement of the semiconductor substrate and the lattice arrangement of the second semiconductor pattern thin film layer are not equivalent in one section perpendicular to the direct bonding interface.
【請求項24】請求項22または23に記載の半導体層
構造の製造方法において、前記第二の格子定数と前記第
二0の格子定数と前記第二九の格子定数が等しいことを
特徴とする半導体層構造の製造方法。
24. The method of manufacturing a semiconductor layer structure according to claim 22 or 23, wherein the second lattice constant, the second 0 lattice constant and the 29th lattice constant are equal to each other. Manufacturing method of semiconductor layer structure.
【請求項25】請求項22または23に記載の半導体層
構造の製造方法において、前記第二の格子定数と前記第
二0の格子定数が異なっていること、および前記第二の
格子定数と前記第二0の格子定数の差は前記第二の格子
定数の1%以下であることを特徴とする半導体層構造の
製造方法。
25. The method of manufacturing a semiconductor layer structure according to claim 22 or 23, wherein the second lattice constant and the second 0 lattice constant are different from each other, and the second lattice constant and the second lattice constant are different from each other. The method for manufacturing a semiconductor layer structure, wherein the difference in the second zero lattice constant is 1% or less of the second lattice constant.
【請求項26】請求項25に記載の半導体層構造の製造
方法において、前記第一の格子定数と前記第二0の格子
定数が等しいことを特徴とする半導体層構造の製造方
法。
26. The method of manufacturing a semiconductor layer structure according to claim 25, wherein the first lattice constant is equal to the second 0 lattice constant.
【請求項27】請求項21から26のいずれかに記載の
半導体層構造の製造方法において、前記被覆膜は珪素の
酸化物または窒化物よりなることを特徴とする半導体層
構造の製造方法。
27. The method of manufacturing a semiconductor layer structure according to claim 21, wherein the coating film is made of an oxide or a nitride of silicon.
【請求項28】請求項21から26のいずれかに記載の
半導体層構造の製造方法において、前記被覆膜はホトレ
ジストであることを特徴とする半導体層構造の製造方
法。
28. The method of manufacturing a semiconductor layer structure according to claim 21, wherein the coating film is a photoresist.
JP20201095A 1995-08-08 1995-08-08 Semiconductor layer structure Expired - Fee Related JP3914584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20201095A JP3914584B2 (en) 1995-08-08 1995-08-08 Semiconductor layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20201095A JP3914584B2 (en) 1995-08-08 1995-08-08 Semiconductor layer structure

Publications (2)

Publication Number Publication Date
JPH0950058A true JPH0950058A (en) 1997-02-18
JP3914584B2 JP3914584B2 (en) 2007-05-16

Family

ID=16450435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20201095A Expired - Fee Related JP3914584B2 (en) 1995-08-08 1995-08-08 Semiconductor layer structure

Country Status (1)

Country Link
JP (1) JP3914584B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006235381A (en) * 2005-02-25 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave generator and method for manufacturing the same
WO2015064094A1 (en) * 2013-10-31 2015-05-07 国立大学法人北海道大学 Group iii-v compound semiconductor nanowire, field effect transistor, and switching element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006235381A (en) * 2005-02-25 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic wave generator and method for manufacturing the same
WO2015064094A1 (en) * 2013-10-31 2015-05-07 国立大学法人北海道大学 Group iii-v compound semiconductor nanowire, field effect transistor, and switching element
JPWO2015064094A1 (en) * 2013-10-31 2017-03-09 国立大学法人北海道大学 III-V compound semiconductor nanowire, field effect transistor and switch element
US10403498B2 (en) 2013-10-31 2019-09-03 National University Corporation Hakkaido University Group III-V compound semiconductor nanowire, field effect transistor, and switching element

Also Published As

Publication number Publication date
JP3914584B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
Nakamura et al. CW operation of distributed‐feedback GaAs‐GaAlAs diode lasers at temperatures up to 300 K
JP3153153B2 (en) Gallium nitride based semiconductor laser and method of manufacturing the same
JPH06334168A (en) Semiconductor element
JPS61179588A (en) Semiconductor element and manufacture thereof
US20220006264A1 (en) Semiconductor device and fabrication method
JP3863962B2 (en) Nitride III-V compound semiconductor light emitting device and method for manufacturing the same
ES2316680T3 (en) INGAAS / GAAS LASERS ON SILICON PRODUCED THROUGH LEPECVD AND MOCVD.
JPH10135140A (en) Hetero-epitaxial growing method, hetero-epitaxial layer and semiconductor light-emitting device
JP2969979B2 (en) Semiconductor structures for optoelectronic components
JP3474917B2 (en) Method for manufacturing semiconductor device
US9871341B2 (en) Laser on silicon made with 2D material gain medium
JP2000200946A (en) Semiconductor device and its manufacture
JP3406376B2 (en) Method for manufacturing compound semiconductor device
US5805629A (en) Semiconductor laser
JPH0950058A (en) Semiconductor layer structure and its production and semiconductor device using the method
Bellavance et al. Room‐temperature mesa lasers grown by selective liquid phase epitaxy
CN111463653A (en) Semiconductor laser and preparation method thereof
JPS58170069A (en) 3-5 group compound semiconductor device
JP3465349B2 (en) Semiconductor multilayer substrate and method of manufacturing semiconductor multilayer film
JP3062510B2 (en) Semiconductor optical device
JPH0690061A (en) Fabrication of semiconductor light emitting element
JPH03238813A (en) Epitaxial growth method
JP2003158074A (en) Semiconductor multilayer substrate and method for manufacturing semiconductor multilayer film
JP2694488B2 (en) Semiconductor substrate and semiconductor light receiving and emitting device
Lin et al. 1.3 μm InAs/GaAs quantum-dot lasers grown on planar on-axis Si (001) substrates with high slope-efficiency and low differential resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees