JPH0949041A - Semiconductor circuit material - Google Patents

Semiconductor circuit material

Info

Publication number
JPH0949041A
JPH0949041A JP20467395A JP20467395A JPH0949041A JP H0949041 A JPH0949041 A JP H0949041A JP 20467395 A JP20467395 A JP 20467395A JP 20467395 A JP20467395 A JP 20467395A JP H0949041 A JPH0949041 A JP H0949041A
Authority
JP
Japan
Prior art keywords
wiring
resistance
alloy
semiconductor
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20467395A
Other languages
Japanese (ja)
Inventor
Takashi Onishi
隆 大西
Katsuhisa Takagi
勝寿 高木
Eiji Iwamura
栄治 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20467395A priority Critical patent/JPH0949041A/en
Publication of JPH0949041A publication Critical patent/JPH0949041A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a circuit material of a semiconductor integrated circuit excellent in electromigration resistance and having low electric resistance by alloying Al with a small amt. of Ta. SOLUTION: A thin Al-Ta alloy film of about 5,000Å thickness is formed on a thermally oxidized Si substrate by a sputtering method using a target made of an Al alloy contg. 0.003-0.1at.% Ta as a solid soln. strengthening element. The objective semiconductor circuit material excellent in electromigration resistance, having low electric resistivity, adaptable even to the narrowing of a circuit required by high integration of a semiconductor device and not causing breaking is produced with superior productivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体集積回路
(MOS型半導体デバイス等)の各電極、および各電極
間の接続配線などに好適に用いられる半導体配線材料に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor wiring material suitable for use in electrodes of a semiconductor integrated circuit (MOS semiconductor device, etc.) and connection wiring between the electrodes.

【0002】[0002]

【従来の技術】近年、半導体デバイス(Siウェハ上に
素子を形成する半導体装置)の急速な小型化・高密度化
に従って半導体集積回路も微細化されていく傾向にあ
る。上記半導体デバイスの集積回路に用いられる電極・
配線材料としては、薄膜状のAl系金属材料が主に使用
されており、該材料は大別して、純Alと、Siまたは
Cuを含有するAl基合金に分けられる。
2. Description of the Related Art In recent years, semiconductor integrated circuits have tended to be miniaturized as semiconductor devices (semiconductor devices in which elements are formed on a Si wafer) are rapidly miniaturized and highly densified. Electrodes used in the integrated circuit of the semiconductor device
As the wiring material, a thin film type Al-based metal material is mainly used, and the material is roughly classified into pure Al and an Al-based alloy containing Si or Cu.

【0003】この様にAl系金属材料が電極・配線材料
に繁用されている理由としては、安価で高純度の材料
が入手できる、電気抵抗率が低い、Siと良好なオ
ーミックコンタクトを形成できる、フォトレジストと
の選択比が高く微細加工が容易である、耐食性が良好
である、等の点が挙げられる。
The reason why the Al-based metal material is frequently used as the electrode / wiring material in this manner is that an inexpensive and high-purity material is available, the electrical resistivity is low, and a good ohmic contact with Si can be formed. , A high selection ratio to a photoresist, easy microfabrication, good corrosion resistance, and the like.

【0004】上記Al系金属配線材料における最大の課
題は、エレクトロマイグレーション(以下、EMと略記
する)の発生を如何に防止することができるか(即ち、
耐EM性を向上させる)ということである。ここでEM
とは、高電流密度下において、Al原子が電子との摩擦
により運動エネルギーを得て電子の移動方向に移動する
現象を意味し、その結果、配線間にボイド(原子空孔)
が発生して電気抵抗率の増加を招くと共に、このボイド
が成長して遂には断線に至らしめるものである。
The biggest problem with the Al-based metal wiring material is how to prevent the occurrence of electromigration (hereinafter abbreviated as EM) (that is,
It means that the EM resistance is improved). EM here
Is a phenomenon in which, under high current density, Al atoms obtain kinetic energy by friction with electrons and move in the electron moving direction, and as a result, voids (atomic vacancies) are formed between wirings.
Occurs, which causes an increase in electrical resistivity, and the voids eventually grow and eventually lead to disconnection.

【0005】一般にAl系金属配線の場合、Alは多結
晶組織を有しているので、実操業レベルでの温度(室温
〜150℃)におけるAl原子の移動は、Alの結晶粒
界を伝わる粒界拡散が支配的である。従って、Al原子
の主な拡散経路である粒界を析出物等によってふさぐ
(覆う)ことは、耐EM性を向上させるうえで有用な手
段であると考えられる。
Generally, in the case of Al-based metal wiring, since Al has a polycrystalline structure, the movement of Al atoms at the temperature (room temperature to 150 ° C.) at the actual operation level causes the grains to propagate through the grain boundaries of Al. World diffusion is dominant. Therefore, it is considered that blocking (covering) the grain boundary, which is the main diffusion path of Al atoms, with a precipitate or the like is a useful means for improving the EM resistance.

【0006】この様な観点に立って、EM現象によるボ
イドや断線等の問題を回避すべく開発されたのがSiや
Cuを含有するAl基合金配線材料である。即ち、Al
中に添加したSiやCuが粒界中に金属間化合物として
析出し、Al原子の粒界拡散経路をふさぐというもので
ある。
From this point of view, an Al-based alloy wiring material containing Si or Cu was developed to avoid problems such as voids and disconnection due to the EM phenomenon. That is, Al
Si and Cu added therein are precipitated as intermetallic compounds in the grain boundaries to block the grain boundary diffusion path of Al atoms.

【0007】しかしながら、上記の考え方によれば、E
M現象を完全に防止するには、母相である多結晶Alの
全ての粒界を析出物で覆う必要があるが、現実には、そ
の様な組織制御を厳格に行うことは極めて困難であっ
て、全ての粒界を析出物で覆うとなると多量の合金元素
の添加が必要になり、そうすると高Al合金配線では電
気抵抗率が上昇するという不具合を生じる様になる。即
ち、一般に金属は合金化によって抵抗値が増加する傾向
にあるが、一方、近年の半導体装置の高集積化に伴う配
線の微細化(配線幅の狭隘化)により電気抵抗率の許容
上限値は益々低くなってきており、配線抵抗としては約
3.5μΩ・cm以下にすることが望まれている。従っ
て、上述した多量の合金元素の添加は、この様な配線抵
抗値の低減化という半導体配線材料における最近の要求
特性に反するものである。
However, according to the above concept, E
In order to completely prevent the M phenomenon, it is necessary to cover all the grain boundaries of polycrystalline Al, which is the parent phase, with precipitates, but in reality, it is extremely difficult to strictly control such a structure. Therefore, if all the grain boundaries are covered with precipitates, it becomes necessary to add a large amount of alloying elements, which causes a problem that the electrical resistivity increases in high Al alloy wiring. That is, in general, a metal tends to have an increased resistance value due to alloying, but on the other hand, the allowable upper limit value of the electric resistivity is reduced due to the miniaturization of wiring (narrowing of wiring width) accompanying the recent high integration of semiconductor devices. It is becoming lower and lower, and it is desired that the wiring resistance be about 3.5 μΩ · cm or less. Therefore, the addition of a large amount of alloying elements as described above is contrary to the recent required characteristics of semiconductor wiring materials such as reduction of wiring resistance value.

【0008】そこで、母相であるAlへの溶解度が小さ
く且つAl合金の電気抵抗率をあまり高めることのない
合金元素を用いた半導体配線材料が特開昭62−235
451号に開示されている。具体的には、Al−Ti−
B−Me(Meは、Cu,Cr,Co,Mn,Ni,H
f,Sn,In,Ta,Au及びAgよりなる群から選
択される少なくとも1種の元素を意味する)からなる成
分組成を有する配線材料であり、上記Meで代表される
金属元素を0.0001〜0.02wt%含有するもの
である。即ち、これらの金属元素は、元々EMに起因す
るボイドや断線の防止に有効なものとして知られてお
り、TiおよびBの添加によって形成される金属間化合
物TiB2 粒子も同様に粒界拡散防止効果に優れること
から、両者を組合わせることにより粒界拡散防止効果を
一層高めようとするものである。しかしながら、この様
な材料によっても充分な耐EM性を得るには至っていな
い。
Therefore, a semiconductor wiring material using an alloy element which has a low solubility in Al as a matrix and which does not significantly increase the electrical resistivity of the Al alloy is disclosed in JP-A-62-235.
No. 451. Specifically, Al-Ti-
B-Me (Me is Cu, Cr, Co, Mn, Ni, H
(meaning at least one element selected from the group consisting of f, Sn, In, Ta, Au, and Ag)), and the metal element represented by Me is 0.0001. .About.0.02 wt%. That is, these metal elements are originally known to be effective in preventing voids and disconnection due to EM, and the intermetallic compound TiB 2 particles formed by adding Ti and B similarly prevent grain boundary diffusion. Since the effect is excellent, it is intended to further enhance the grain boundary diffusion preventing effect by combining the two. However, even with such a material, sufficient EM resistance has not yet been obtained.

【0009】その他、多層配線やイオン注入による配線
表面部の合金化(表面合金化配線)等も提案されてい
る。このうち多層配線は、中心部のAl系合金材料の両
側(下層および上層)にTiやW等の高融点金属や高融
点窒化物、高融点シリサイド等を配置した積層構造を有
するものであり、この様な構成とすることによって、中
心部のAl系合金配線が断線したとしても、下層や上層
の配線を通電させることにより断線故障を防止し、耐E
M性を向上させようとするものである。一方、表面合金
化配線とは、低抵抗配線材料に異種元素をイオン注入
し、該配線材料の表面部に耐EM性合金層を設けたもの
であり、これによって上記と同様の作用を発揮させるも
のである。
In addition, multi-layered wiring and alloying of the wiring surface portion by ion implantation (surface-alloyed wiring) have been proposed. Of these, the multilayer wiring has a laminated structure in which a refractory metal such as Ti or W, a refractory nitride, a refractory silicide, or the like is arranged on both sides (lower layer and upper layer) of the Al-based alloy material in the central portion, With such a configuration, even if the Al-based alloy wiring in the central portion is broken, the wiring failure in the lower layer and the upper layer is prevented by energizing the wiring in the lower layer and the upper layer to prevent the E-resistant wire.
It is intended to improve the M property. On the other hand, the surface-alloyed wiring is one in which a different element is ion-implanted into a low-resistance wiring material and an EM-resistant alloy layer is provided on the surface portion of the wiring material. It is a thing.

【0010】しかしながら、多層配線では、その製造に
際し成膜を複数回行う必要があり、また下層と上層の組
合せによっては配線パターン形成のためのエッチングを
別工程で行う必要が生じ、製造工程数の増加や生産効率
の低下といった問題を招く。一方、表面合金化配線の場
合は、イオン注入という複雑なプロセスが必要であり、
しかも表面合金層の制御が難しいので、製造工程数の増
加や生産歩留まりの低下を招く等の問題がある。
However, in the case of the multi-layer wiring, it is necessary to form the film a plurality of times during the manufacturing, and it is necessary to perform the etching for forming the wiring pattern in a separate step depending on the combination of the lower layer and the upper layer. It causes problems such as increase and decrease of production efficiency. On the other hand, in the case of surface alloyed wiring, a complicated process of ion implantation is required,
Moreover, since it is difficult to control the surface alloy layer, there are problems such as an increase in the number of manufacturing steps and a decrease in production yield.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記事情に鑑
みてなされたものであって、その目的は、耐EM性に優
れると共に電気抵抗率が低く、且つ生産性を阻害するこ
ともなく、近年における半導体デバイスの高集積化に伴
う配線幅の狭隘化等の情勢にも対応することのできる新
規な半導体配線材料を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to have excellent EM resistance, low electric resistivity, and without impairing productivity. It is an object of the present invention to provide a novel semiconductor wiring material capable of coping with the situation such as narrowing of the wiring width due to the high integration of semiconductor devices in recent years.

【0012】[0012]

【課題を解決するための手段】上記課題を解決すること
ができた本発明の半導体配線材料とは、Taを0.00
3at%以上0.1at%未満含有し、残部がAlおよ
び不可避不純物からなるところに要旨を有するものであ
る。この様な配線材料は、ターゲット材として上記成分
組成からなるAl基合金を用いたスパッタリング法によ
って作製することが好ましく、スパッタリング法を適用
することによって、後記する固溶強化によるAl原子の
粒界拡散を効率よく抑制することができ、耐EM性を一
層高めることができる。
The semiconductor wiring material of the present invention which can solve the above problems has a Ta value of 0.00
The gist is that the content is 3 at% or more and less than 0.1 at% and the balance is Al and inevitable impurities. Such a wiring material is preferably produced by a sputtering method using an Al-based alloy having the above-mentioned composition as a target material. By applying the sputtering method, grain boundary diffusion of Al atoms by solid solution strengthening described later is achieved. Can be efficiently suppressed, and the EM resistance can be further enhanced.

【0013】[0013]

【発明の実施の形態】EMに起因するボイドや断線等の
問題を回避する方法としては、上述したAl原子の主な
拡散経路である粒界を析出物等によってふさぐ方法の他
に、固溶強化等によりAl原子の粒界拡散を抑制する方
法が考えられる。即ち、Al合金中に固溶強化元素を添
加することによってAl原子の粒界拡散を抑制してやれ
ば各拡散経路におけるAlの自己拡散活性化エネルギー
が高められ、結果的にAl原子の拡散移動を抑えること
ができるというものである。
BEST MODE FOR CARRYING OUT THE INVENTION As a method for avoiding the problems such as voids and disconnection due to EM, in addition to the method of blocking the grain boundary, which is the main diffusion path of Al atoms, with a precipitate or the like, solid solution is also available. A method of suppressing grain boundary diffusion of Al atoms by strengthening or the like can be considered. That is, if the grain boundary diffusion of Al atoms is suppressed by adding a solid solution strengthening element to the Al alloy, the self-diffusion activation energy of Al in each diffusion path is increased, and as a result, the diffusion transfer of Al atoms is suppressed. You can do it.

【0014】この様な考えに基づいて本出願人は鋭意検
討を重ねた結果、上記固溶強化元素としてはTiおよび
Taが有効であり、これらの元素を総量で0.1〜5a
t%含有するAl基合金からなる半導体装置材料は耐E
M性および耐食性に優れると共に、電気抵抗が低いとい
う知見を得、先に出願を済ませている(特願平3−92
250号)。即ち、この公報では、上記諸特性を兼ね備
えた材料を得ることを目的として、Ti及び/又はTa
の濃度を0〜10at%の範囲内で変化させて実験を行
った結果、これら元素の濃度を決定したものであり、特
に0.1at%以上の領域において詳細な検討を加えた
ものである。然るに、上記出願後、本発明者らが更に検
討をすすめたところ、意外にもTa濃度が非常に低い領
域(即ち、上記公報では詳細な検討を行わなかった0.
1at%未満の領域)において、特に優れた耐EM性を
有することが分かり、0.1at%未満のTa濃度にお
ける耐EM性や電気抵抗率について検討を重ねた結果、
本発明を完成したのである。
Based on such an idea, the present applicant has conducted extensive studies, and as a result, Ti and Ta are effective as the solid solution strengthening elements, and the total amount of these elements is 0.1 to 5a.
A semiconductor device material made of an Al-based alloy containing t% is resistant to E
We obtained the knowledge that it has excellent M resistance and corrosion resistance, and low electrical resistance, and filed an application for it in advance (Japanese Patent Application No. 3-92).
250). That is, in this publication, Ti and / or Ta are used for the purpose of obtaining a material having the above various characteristics.
As a result of conducting an experiment by changing the concentration of the element within the range of 0 to 10 at%, the concentrations of these elements were determined, and detailed examination was added particularly in the region of 0.1 at% or more. However, as a result of further investigations conducted by the present inventors after the above-mentioned application, it was surprisingly found that the Ta concentration was extremely low (that is, the detailed study was not performed in the above publication.
In a region of less than 1 at%), it has been found that it has particularly excellent EM resistance, and as a result of repeated studies on EM resistance and electric resistivity at a Ta concentration of less than 0.1 at%,
The present invention has been completed.

【0015】即ち、本発明の半導体配線材料は、上述し
た様にTaを0.003at%以上0.1at%未満含
有し、残部がAlおよび不可避不純物からなる点に特徴
を有するものである。
That is, the semiconductor wiring material of the present invention is characterized in that it contains Ta in an amount of 0.003 at% or more and less than 0.1 at%, with the balance being Al and inevitable impurities, as described above.

【0016】本発明において、Ta含有量は0.003
at%以上にすることが必要である。0.003at%
未満では耐EM性が不十分になる。好ましい下限値は
0.01at%であり、より好ましくは0.02at%
である。Ta含有量の増加に伴って耐EM性は向上する
が、0.1at%以上になると、電気抵抗率が許容上限
値である3.5μΩ・cmより大きくなり、所期の目的
を達成できなくなる。従ってTaの含有量は0.1at
%未満にすることが必要である。上限値は0.1at%
に近ければ近いほど好ましく、より好ましいのは0.0
8at%である。
In the present invention, the Ta content is 0.003.
It is necessary to be at% or more. 0.003at%
When it is less than EM resistance, EM resistance is insufficient. A preferred lower limit value is 0.01 at%, more preferably 0.02 at%
It is. Although the EM resistance improves as the Ta content increases, if it becomes 0.1 at% or more, the electrical resistivity becomes larger than the allowable upper limit value of 3.5 μΩ · cm, and the intended purpose cannot be achieved. . Therefore, the Ta content is 0.1 at
It must be less than%. The upper limit is 0.1 at%
The closer to, the better, and the more preferred is 0.0
It is 8 at%.

【0017】本発明の配線材料を作製するに当たって
は、従来のSi,Cu等を含有するAl基合金材料と同
様、種々の方法(例えばスパッタリング法等)を適用す
ることができるが、なかでもスパッタリング法は、気相
急冷による非平衡固溶強化が得られるという点で最も推
奨される方法である。
In producing the wiring material of the present invention, various methods (for example, sputtering method) can be applied as in the case of the conventional Al-based alloy material containing Si, Cu, etc., among which sputtering is used. The method is the most recommended method in that nonequilibrium solid solution strengthening by vapor phase quenching can be obtained.

【0018】即ち、TaのAl中への固溶度は最大で
0.036at%であるが、スパッタリング法によって
形成されたTa添加Al基合金の場合は、気相急冷によ
って、より高濃度のTa添加領域においてもTaはAl
中に固溶することができる。また、最大固溶度以上にT
aを添加した場合においても固溶状態のTaはAlマト
リックス中で安定に存在し、加熱処理を施してもTaの
析出はほとんど認められない。そして、Al系金属配線
に通常施されるアロイ処理(配線パターン形成後のプロ
セス中で行われる400℃×30分程度の熱処理)後に
おいても、添加したTaの大部分は固溶状態のまま存在
し、固溶強化によるAl原子のEM防止に極めて有効な
手段となり得るのである。
That is, the solid solubility of Ta in Al is 0.036 at% at the maximum, but in the case of a Ta-added Al-based alloy formed by the sputtering method, a higher concentration of Ta is obtained by vapor-phase quenching. Ta is Al even in the added region
It can be solid-solved in. In addition, T is higher than the maximum solid solubility.
Even when a is added, Ta in a solid solution state is stably present in the Al matrix, and Ta precipitation is hardly observed even when heat treatment is performed. And, even after the alloying process usually performed on the Al-based metal wiring (heat treatment at 400 ° C. for about 30 minutes performed in the process after forming the wiring pattern), most of the added Ta remains in a solid solution state. However, it can be an extremely effective means for preventing EM of Al atoms by solid solution strengthening.

【0019】尚、スパッタリングターゲット材としては
溶解・鋳造法または粉末焼結法で作製したAl基合金
(以下、溶製Al合金ターゲット材と呼ぶ)を使用する
ことが望ましい。即ち、この様な溶製Al合金ターゲッ
ト材は組織学的に極めて均一であり、スパッタ率および
出射角度が均一であるので耐EM性等の点において一層
優れたAl基配線材料が得られ、その結果、より信頼性
の高い半導体デバイスを提供することができる様になる
のである。そのなかでも溶解・鋳造法で作製したターゲ
ット材は酸素含有量を100ppm以下に抑えることが
できるため、Al基合金材料における電気抵抗率の一層
の低下を図ることができる。
As the sputtering target material, it is desirable to use an Al-based alloy produced by a melting / casting method or a powder sintering method (hereinafter referred to as a molten Al alloy target material). That is, since such a molten Al alloy target material is histologically extremely uniform and the sputtering rate and the emission angle are uniform, an Al-based wiring material that is more excellent in terms of EM resistance and the like can be obtained. As a result, it becomes possible to provide a more reliable semiconductor device. Among them, the oxygen content of the target material manufactured by the melting / casting method can be suppressed to 100 ppm or less, so that the electrical resistivity of the Al-based alloy material can be further reduced.

【0020】この様に、本発明配線材料は、従来のS
i,Cu含有Al基合金材料と同様の方法によって作製
することができるので、複合配線やイオン注入による表
面合金化配線等の様に生産性の低下を招くものではな
い。
As described above, the wiring material of the present invention has the conventional S
Since it can be produced by a method similar to that of the i-based, Cu-containing, Al-based alloy material, it does not cause a decrease in productivity as in the case of composite wiring or surface alloyed wiring by ion implantation.

【0021】以下実施例に基づいて本発明を詳述する。
ただし、下記実施例は本発明を制限するものではなく、
前・後記の趣旨を逸脱しない範囲で変更実施することは
全て本発明の技術範囲に包含される。
Hereinafter, the present invention will be described in detail with reference to examples.
However, the following examples do not limit the present invention,
All modifications and alterations without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

【0022】[0022]

【実施例】【Example】

実施例1:電気抵抗率の測定 Taの含有量が種々異なる溶製Al合金ターゲット材を
用い、DCマグネトロンスパッタリング法により、熱酸
化Si基板上に膜厚5000オングストロームのAl−
Ta合金薄膜を形成した。次に、フォトリソグラフィー
およびウェットエッチングを施すことによって上記薄膜
を幅10μm、長さ10mmのストライプパターン(電
気抵抗率測定パターン)に加工し、これを供試材料とし
た。
Example 1: Measurement of electrical resistivity Using melted Al alloy target materials having different Ta contents, DC magnetron sputtering method was used to form a 5000 Å thick Al- film on a thermally oxidized Si substrate.
A Ta alloy thin film was formed. Next, the thin film was processed into a stripe pattern (electrical resistivity measurement pattern) having a width of 10 μm and a length of 10 mm by performing photolithography and wet etching, and this was used as a test material.

【0023】電気抵抗率を測定するに当たっては、上記
供試材料にアロイ処理(400℃で1時間保持する真空
熱処理)を施した後、Al−Ta合金薄膜の電気抵抗率
を測定した。尚、電気抵抗率は四探針法により、室温に
て測定した。
In measuring the electrical resistivity, the sample material was alloyed (vacuum heat treatment at 400 ° C. for 1 hour), and then the electrical resistivity of the Al—Ta alloy thin film was measured. The electrical resistivity was measured at room temperature by the four-point probe method.

【0024】その結果を図1に示す。図1に示す如く、
Ta添加量の増加に伴い、電気抵抗率は直線的に増加す
る傾向が認められるが、その濃度を0.1at%未満に
抑えれば、電気抵抗率の許容上限値である3.5μΩ・
cm以下を達成することができる。
The results are shown in FIG. As shown in FIG.
The electric resistivity tends to increase linearly with the increase of the Ta addition amount, but if the concentration is kept below 0.1 at%, the allowable upper limit of the electric resistivity is 3.5 μΩ.
cm or less can be achieved.

【0025】実施例2:耐EM性の評価(1) 本発明例としてAl−0.1at%Ta合金ターゲット
材、並びに比較例として純Al、Al−0.1at%S
c合金およびAl−0.2at%Cu−1.0at%S
i合金ターゲット材を用い、実施例1と同様のスパッタ
リング法によって、熱酸化Si基板上に膜厚5000オ
ングストロームのAl−Ta合金薄膜を形成した。次
に、フォトリソグラフィーおよびドライエッチングを施
すことによって上記薄膜を幅2μm,長さ1mmのスト
ライプ形状からなるEM評価用パターンに加工し、これ
を供試材料とした。
Example 2: Evaluation of EM resistance (1) Al-0.1 at% Ta alloy target material as an example of the present invention, and pure Al and Al-0.1 at% S as a comparative example.
c alloy and Al-0.2 at% Cu-1.0 at% S
Using the i alloy target material, an Al-Ta alloy thin film having a film thickness of 5000 angstrom was formed on the thermally oxidized Si substrate by the same sputtering method as in Example 1. Next, the thin film was processed into a EM evaluation pattern having a stripe shape with a width of 2 μm and a length of 1 mm by performing photolithography and dry etching, and this was used as a test material.

【0026】耐EM性を評価するに当たっては、上記供
試材に実施例1と同様のアロイ処理を施した後、Isothe
rmal Test 法を行った。尚、本実施例における耐EM性
の評価は、上記耐EM性評価用パターンに電流密度2×
106 A/cm2 の電流を流し、試料温度175℃換算
にて断線するまでの時間(故障時間)を測定することに
よって行った。
In evaluating the EM resistance, after the alloy treatment as in Example 1 was applied to the above-mentioned test material, Isothe
The rmal test method was performed. In addition, the evaluation of the EM resistance in the present example was carried out by applying the current density 2 ×
A current of 10 6 A / cm 2 was applied, and the time (breakdown time) until disconnection was measured at a sample temperature of 175 ° C. and the measurement was performed.

【0027】この様にして得られた各種配線材料の故障
時間と累積故障率の関係を図2に示す。同図から明らか
な如く、いずれの供試材についても、縦軸(累積故障
率)の正規確率対数目盛および横軸(故障時間)の対数
目盛に対して、ほぼ直線に近い分布を示し、きれいなガ
ウス分布を有することが分かった。ここで、累積故障率
が50%になる故障時間を平均故障時間と定義すると、
純Al、Al−0.1at%Sc合金、Al−0.2a
t%Cu−1.0at%Si合金、Al−0.1at%
Ta合金配線の故障時間は、夫々4380,2870
0,176000,841000秒となり、本発明例で
あるAl−0.1at%Ta合金配線が最も耐EM性に
優れていることが分かる。
FIG. 2 shows the relationship between the failure time of various wiring materials thus obtained and the cumulative failure rate. As is clear from the figure, for all the test materials, the distributions that are almost linear are shown on the vertical axis (cumulative failure rate) on the normal probability logarithmic scale and on the horizontal axis (failure time) on the logarithmic scale. It was found to have a Gaussian distribution. Here, when the failure time at which the cumulative failure rate becomes 50% is defined as the average failure time,
Pure Al, Al-0.1 at% Sc alloy, Al-0.2a
t% Cu-1.0 at% Si alloy, Al-0.1 at%
The failure time of Ta alloy wiring is 4380 and 2870, respectively.
It was 0,176000,841000 seconds, and it can be seen that the Al-0.1 at% Ta alloy wiring of the present invention example has the best EM resistance.

【0028】実施例3:耐EM性の評価(2) Taの含有量が種々異なる溶製Al基合金ターゲット材
を用い、実施例2と同様にして耐EM性評価用パターン
を作製し、耐EM性を評価した。その結果を図3に示
す。同図から明らかな様に、Al−Ta系合金配線の耐
EM性はTa添加量の増加に伴って高くなり、本発明に
おけるTaの添加範囲においては、いずれも実施例2で
用いた比較例(純Al,Al−0.1at%Sc合金、
Al−0.2at%Cu−1.0at%Si合金配線)
に比べて耐EM性に優れることが分かる。
Example 3: Evaluation of EM resistance (2) An EM resistance evaluation pattern was prepared in the same manner as in Example 2 using molten Al-based alloy target materials having different Ta contents. The EM property was evaluated. The result is shown in FIG. As is clear from the figure, the EM resistance of the Al—Ta alloy wiring increases with an increase in the Ta addition amount, and in the Ta addition range of the present invention, the EM resistance of each is the comparative example used in Example 2. (Pure Al, Al-0.1 at% Sc alloy,
Al-0.2at% Cu-1.0at% Si alloy wiring)
It can be seen that the EM resistance is superior to that of.

【0029】[0029]

【発明の効果】本発明の半導体配線材料は上記の様に構
成されているので、耐EM性に優れると共に電気抵抗率
が低く、生産性を低下させることもなく、しかも近年の
半導体デバイスの高集積化に伴う配線幅の狭隘化等の情
勢にも対応することができるものである。
Since the semiconductor wiring material of the present invention is constructed as described above, it is excellent in EM resistance and low in electrical resistivity, so that productivity is not lowered, and moreover, the semiconductor device of recent years has high performance. It is possible to cope with the situation such as narrowing of wiring width due to integration.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1におけるTa添加量と電気抵抗率の関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the Ta addition amount and electric resistivity in Example 1.

【図2】実施例2における故障時間と累積故障率の関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between failure time and cumulative failure rate in Example 2.

【図3】実施例3におけるTa添加量と平均故障時間の
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the amount of Ta added and the mean failure time in Example 3.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Taを0.003at%以上0.1at
%未満含有し、残部がAlおよび不可避不純物からなる
ことを特徴とする半導体配線材料。
1. Ta of 0.003 at% or more and 0.1 at
%, With the balance being Al and unavoidable impurities, a semiconductor wiring material.
JP20467395A 1995-08-10 1995-08-10 Semiconductor circuit material Withdrawn JPH0949041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20467395A JPH0949041A (en) 1995-08-10 1995-08-10 Semiconductor circuit material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20467395A JPH0949041A (en) 1995-08-10 1995-08-10 Semiconductor circuit material

Publications (1)

Publication Number Publication Date
JPH0949041A true JPH0949041A (en) 1997-02-18

Family

ID=16494405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20467395A Withdrawn JPH0949041A (en) 1995-08-10 1995-08-10 Semiconductor circuit material

Country Status (1)

Country Link
JP (1) JPH0949041A (en)

Similar Documents

Publication Publication Date Title
US6797079B2 (en) Physical vapor deposition target
US6235406B1 (en) Copper film including laminated impurities
KR101070185B1 (en) Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING
JP4794802B2 (en) Copper alloy sputtering target and semiconductor device wiring
US8729701B2 (en) Copper diffusion barrier
JP5068925B2 (en) Sputtering target
JP3296708B2 (en) Multilayer Al alloy structure for metal conductor
JP4790782B2 (en) Copper alloy sputtering target and semiconductor device wiring
JP2019102896A (en) Aluminum alloy film
JPH10308363A (en) Manufacture of metalization structure
JPS62240738A (en) N-and c-containing aluminum alloy for semiconductor wiring material
JPH0250432A (en) Semiconductor device
JP2534434B2 (en) Oxidation resistant compound and method for producing the same
JP5554364B2 (en) Copper alloy wiring for semiconductor, sputtering target, and method for forming copper alloy wiring for semiconductor
JPH0949041A (en) Semiconductor circuit material
JP2810076B2 (en) Semiconductor device and manufacturing method thereof
JP3588011B2 (en) Sputtering target and method for manufacturing the same
JPS62235454A (en) N-containing al alloy for semiconductor wiring material
JPS62240734A (en) C-containing aluminum alloy for semiconductor wiring material
JPS62240737A (en) B-and n-containing aluminum alloy for semiconductor wiring material
JPS62240733A (en) B-containing aluminum alloy for semiconductor wiring material
JPS62240735A (en) N-containing aluminum alloy for semiconductor wiring material
JP3368629B2 (en) Semiconductor device
US5565380A (en) Semiconductor device and process for production thereof
JPH0448854B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105