JPH0949021A - Production of steel material for low temperature reinforcement - Google Patents

Production of steel material for low temperature reinforcement

Info

Publication number
JPH0949021A
JPH0949021A JP20412795A JP20412795A JPH0949021A JP H0949021 A JPH0949021 A JP H0949021A JP 20412795 A JP20412795 A JP 20412795A JP 20412795 A JP20412795 A JP 20412795A JP H0949021 A JPH0949021 A JP H0949021A
Authority
JP
Japan
Prior art keywords
rolling
temperature
steel material
cooling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20412795A
Other languages
Japanese (ja)
Other versions
JP3077568B2 (en
Inventor
Yasuo Kurokawa
八寿男 黒川
Yoshihiko Kamata
芳彦 鎌田
Yoshiaki Katayama
佳昭 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07204127A priority Critical patent/JP3077568B2/en
Publication of JPH0949021A publication Critical patent/JPH0949021A/en
Application granted granted Critical
Publication of JP3077568B2 publication Critical patent/JP3077568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a steel material for large-diameter low temp. reinforcement, excellent in strength and toughness at low temp., at a low cost by subjecting a steel stock, containing specific amounts of C, Si, Mn, Al, and B, to specific hot rolling including rapid cooling and then to specific cooling. SOLUTION: A steel stock, which has a composition consisting of, by weight, 0.10-0.40% C, 0.05-0.60% Si, 0.60-2.00% Mn, 0.005-0.080% Al, <=0.0050% B, and the balance Fe with inevitable impurities and further containing, if necessary, either or both of 0.01-0.20% V and 0.01-0.10% Nb, is heated to 950-1250 deg.C and roughed. Subsequently, this roughed steel stock is rolled while repeating, 1 to 5 times, a treatment consisting of application of rapid cooling by water down to 600-700 deg.C surface temp. between the passes in the course of intermediate rolling and/or finish rolling. Further, rolling finishing temp. is controlled to 750-950 deg.C, and, after rolling is finished, accelerated cooling is carried out down to 550-400 deg.C at (3 to 10) deg.C/S cooling rate. By this method, the steel material, having >=400MPa yield strength at orddinary temp., <=-60 deg.C Charpy fracture appearance transition temp., and >= about 750MPa tensile strength at -60 deg.C, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低温鉄筋用鋼材の
製造方法に関し、より詳しくはLNGタンクの構造部材
などに使用される低温での強度と靭性に優れた低温鉄筋
用鋼材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel material for a low-temperature rebar, and more particularly to a method for producing a steel material for a low-temperature rebar which is used for a structural member of an LNG tank and has excellent strength and toughness at low temperature. .

【0002】[0002]

【従来の技術】従来、コンクリート用鉄筋はJIS G 3112
に「鉄筋コンクリート用棒鋼」としてその化学成分と機
械的性質が規格化された鋼材が用いられてきた。現在、
この規格鋼材は通常の一般ビル建築構造用鉄筋としては
勿論のこと、例えばLNGタンク用鉄筋や寒冷地におけ
る鉄筋コンクリート構造物用鉄筋など低温環境用の鉄筋
としても用いられている。
[Prior Art] Conventionally, reinforcing bars for concrete are JIS G 3112.
Steel materials with standardized chemical composition and mechanical properties have been used as "steel bars for reinforced concrete". Current,
This standard steel material is used not only as an ordinary reinforcing bar for building construction, but also as a reinforcing bar for low temperature environment such as a reinforcing bar for LNG tank or a reinforcing bar for reinforced concrete structure in cold regions.

【0003】しかしながら、前記のJIS G 3112に「鉄筋
コンクリート用棒鋼」として規格化された鉄筋は、実使
用環境の温度として常温もしくはそれ以上の温度を想定
したものであって、必ずしも上記のような低温環境で使
用される場合を想定したものではない。
However, the reinforcing bars standardized as "steel bars for reinforced concrete" in JIS G 3112 described above assume normal temperatures or higher temperatures as the temperature of the actual use environment, and are not necessarily the low temperatures as described above. It is not intended for use in the environment.

【0004】そのため、特公平6−72260号公報に
はVノッチシャルピーの破面遷移温度が−80℃以下の
「低温用鉄筋棒の製造方法」が提案されている。また、
特公平2−24904号公報には「低温靭性及び耐海水
性のすぐれた鉄筋棒鋼」が開示されている。しかしこれ
らの公報に記載の低温用鉄筋は、いずれも低温における
衝撃特性を改善するためにNiを必須成分として添加す
るため、鉄筋として使用するにはコスト面で問題を有す
る。
Therefore, Japanese Patent Publication No. 6-72260 proposes a "method for manufacturing a low temperature reinforcing bar" having a fracture surface transition temperature of V notch Charpy of -80 ° C or lower. Also,
Japanese Patent Publication No. 2-24904 discloses "reinforcing bar steel having excellent low temperature toughness and seawater resistance". However, the low-temperature reinforcing bars described in these publications all have Ni as an essential component in order to improve impact properties at low temperatures, and therefore have a problem in cost when used as reinforcing bars.

【0005】特公平4−8486号公報には特定の化学
組成を有する鋼材を制御圧延冷却して、ベイナイト組織
を20%以上含有させたベイナイト+フェライト組織を
有する「低温靭性に優れた鉄筋棒鋼の製造方法」が提案
されている。しかしこの公報に提案された方法で用いる
鋼のC量は0.02〜0.10%であるため、太径の鉄
筋棒鋼にあっては、その中心部領域で所望の強度を達成
できない場合がある。
In Japanese Patent Publication No. 4-8486, a steel material having a specific chemical composition is subjected to controlled rolling and cooling to have a bainite + ferrite structure containing 20% or more of a bainite structure, "a steel bar having excellent low temperature toughness. Manufacturing method "has been proposed. However, since the C content of the steel used in the method proposed in this publication is 0.02 to 0.10%, in the case of a reinforced steel bar having a large diameter, the desired strength may not be achieved in the central region thereof. is there.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記現状に鑑
みなされたもので、その目的とするところは低コスト
で、且つ低温環境で使用するに充分な強度と低温靭性、
具体的には常温での降伏強度400MPa以上、シャル
ピー破面遷移温度−60℃以下と−60℃での切り欠き
引張強度750MPa以上を備え、特にJISのD32
〜51に相当する寸法の太径低温鉄筋用鋼材の製造方法
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is low cost and sufficient strength and low temperature toughness to be used in a low temperature environment.
Specifically, it has a yield strength at room temperature of 400 MPa or more, a Charpy fracture surface transition temperature of -60 ° C or less, and a notch tensile strength of 750 MPa or more at -60 ° C, and particularly JIS D32.
It is intended to provide a method for manufacturing a steel material for a large diameter low temperature rebar having a size corresponding to ~ 51.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の課題
を解決するために先ず現行のJIS G 3112規格鋼材の低温
における特性を調査して、これを低温環境下で使用した
場合の問題点を検討した。その結果、JIS規格鋼材は
使用環境温度が−10℃以下になると靭性(衝撃値)及
び切り欠き引張強度が著しく低下して、脆く破断し易く
なることが明らかとなった。これは鉄筋を低温で使用す
る場合には極めて致命的な欠陥となる。
In order to solve the above-mentioned problems, the present inventor first investigated the characteristics of the current JIS G 3112 standard steel material at low temperature, and the problems when this was used in a low-temperature environment. I examined the points. As a result, it has been clarified that the JIS standard steel material is fragile and easily broken when the use environment temperature becomes -10 ° C or less, the toughness (impact value) and the notch tensile strength are significantly reduced. This is a very fatal defect when the reinforcing bar is used at a low temperature.

【0008】従って、構造物の安全性を高めるためには
低温での靭性と切り欠き引張強度を高めることが必要で
あるとの結論に達した。
Therefore, it was concluded that it is necessary to enhance the toughness and notch tensile strength at low temperature in order to enhance the safety of the structure.

【0009】そこで本発明者は次に、高価な元素である
Niを含まない低合金鋼の場合にも低温での靭性と切り
欠き引張強度を高めることのできる組織に関して検討し
た。
Therefore, the present inventor next examined a structure capable of increasing the toughness and notch tensile strength at low temperature even in the case of a low alloy steel containing no expensive element Ni.

【0010】その結果、下記〜の知見を得た。As a result, the following findings were obtained.

【0011】鋼材の表面近傍を微細なフェライト・パ
ーライト組織とすれば低温靭性並びに低温での切り欠き
引張強度を高めることができる。
By forming a fine ferrite-pearlite structure in the vicinity of the surface of the steel material, the low temperature toughness and the notch tensile strength at low temperature can be enhanced.

【0012】上記の組織とするには、先ず中間圧延及
び/または仕上げ圧延のパス間で水冷して鋼材の表面を
600〜700℃の温度域に急冷すれば良い。
In order to obtain the above structure, first, the surface of the steel material may be rapidly cooled to a temperature range of 600 to 700 ° C. by water cooling between passes of intermediate rolling and / or finish rolling.

【0013】上記の処理に続いて圧延仕上げ温度を
750〜950℃の範囲に制御し、その後3℃/sを超
え10℃/sまでの冷却速度で550〜400℃の温度
域の温度まで加速冷却すれば効果が大きい。
Following the above treatment, the rolling finishing temperature is controlled in the range of 750 to 950 ° C., and then accelerated to a temperature in the range of 550 to 400 ° C. at a cooling rate of more than 3 ° C./s to 10 ° C./s. The effect is great if cooled.

【0014】常温での降伏強度400MPa以上、シ
ャルピー破面遷移温度−60℃以下と−60℃での切り
欠き引張強度750MPa以上を有する前記した微細な
フェライト・パーライト組織からなる鉄筋用鋼材は、L
NGタンク用鉄筋や寒冷地における鉄筋コンクリート構
造物用鉄筋など低温環境用の鉄筋として充分使用に耐え
得る。
The steel material for rebar having a fine ferrite-pearlite structure having a yield strength at room temperature of 400 MPa or more, a Charpy fracture surface transition temperature of -60 ° C or less and a notch tensile strength of 750 MPa or more at -60 ° C is L
Sufficiently usable as a reinforcing bar for low temperature environment such as reinforcing bar for NG tank and reinforcing bar for reinforced concrete structure in cold regions.

【0015】上記のとの処理を行えば、Niを添
加しない鋼を用いて降伏強度400MPa以上、シャル
ピー破面遷移温度−60℃以下及び−60℃での切り欠
き引張強度750MPa以上を有する低温鉄筋用鋼材が
得られる。
If the above treatment is carried out, a low temperature rebar having a yield strength of 400 MPa or more, a Charpy fracture surface transition temperature of -60 ° C. or less, and a notch tensile strength of 750 MPa or more at -60 ° C. using Ni-free steel. Steel for use is obtained.

【0016】上記知見に基づく本発明は、下記(1)と
(2)に示す低温鉄筋用鋼材の製造方法を要旨とする。
The gist of the present invention based on the above findings is the method for producing a steel material for low-temperature rebar shown in the following (1) and (2).

【0017】(1)圧延工程が粗圧延、中間圧延及び仕
上げ圧延の各工程からなる低温鉄筋用鋼材の製造方法で
あって、重量%で、C:0.10〜0.40%、Si:
0.05〜0.60%、Mn:0.60〜2.00%、
Al:0.005〜0.080%、B:0.0050%
以下を含有し、残部はFe及び不可避不純物からなる鋼
材を、950〜1250℃の温度域に加熱して粗圧延を
行い、次いで中間圧延及び/または仕上げ圧延のパス間
で水冷して鋼材の表面を600〜700℃の温度域に急
冷することを1〜5回繰り返しながら圧延し、更に、圧
延仕上げ温度を750〜950℃の範囲に制御して圧延
を終了し、その後3℃/sを超え10℃/sまでの冷却
速度で550〜400℃の温度域の温度まで加速冷却す
ることを特徴とする低温鉄筋用鋼材の製造方法。
(1) A method for producing a steel material for low-temperature rebar, which comprises a rolling step, a rough rolling step, an intermediate rolling step, and a finish rolling step, wherein C: 0.10 to 0.40% and Si:
0.05-0.60%, Mn: 0.60-2.00%,
Al: 0.005-0.080%, B: 0.0050%
A steel material containing the following, the balance being Fe and unavoidable impurities, is heated to a temperature range of 950 to 1250 ° C. to perform rough rolling, and then water-cooled between passes of intermediate rolling and / or finish rolling to obtain a steel surface. Is rapidly cooled to a temperature range of 600 to 700 ° C., which is repeated 1 to 5 times, and the rolling finish temperature is controlled to be in the range of 750 to 950 ° C. to finish the rolling, and then the temperature exceeds 3 ° C./s. A method for producing a steel material for low-temperature rebar, comprising accelerating cooling to a temperature in a temperature range of 550 to 400 ° C at a cooling rate of 10 ° C / s.

【0018】(2)圧延工程が粗圧延、中間圧延及び仕
上げ圧延の各工程からなる低温鉄筋用鋼材の製造方法で
あって、上記(1)に記載の成分に加えて更に、重量%
で、0.01〜0.20%のV及び0.01〜0.10
%のNbの1種以上を含有し、残部はFe及び不可避不
純物からなる鋼材を、950〜1250℃の温度域に加
熱して粗圧延を行い、次いで中間圧延及び/または仕上
げ圧延のパス間で水冷して鋼材の表面を600〜700
℃の温度域に急冷することを1〜5回繰り返しながら圧
延し、更に、圧延仕上げ温度を750〜950℃の範囲
に制御して圧延を終了し、その後3℃/sを超え10℃
/sまでの冷却速度で550〜400℃の温度域の温度
まで加速冷却することを特徴とする低温鉄筋用鋼材の製
造方法。
(2) A method for producing a steel material for low-temperature rebar, wherein the rolling step comprises rough rolling, intermediate rolling, and finish rolling, in addition to the components described in (1) above, a weight%
At 0.01 to 0.20% V and 0.01 to 0.10.
% Nb at least one kind, and the balance consisting of Fe and unavoidable impurities is heated to a temperature range of 950 to 1250 ° C. for rough rolling, and then between intermediate rolling and / or finish rolling passes. Water cooling the surface of steel to 600-700
Rolling is performed by repeating rapid cooling to a temperature range of ℃ 1 to 5 times, and further, the rolling finishing temperature is controlled within a range of 750 to 950 ° C. to finish the rolling, and then the temperature exceeds 3 ° C./s and 10 ° C.
A method for manufacturing a steel material for low-temperature rebar, which comprises accelerating cooling to a temperature in a temperature range of 550 to 400 ° C. at a cooling rate of / s.

【0019】[0019]

【発明の実施の形態】以下、本発明の各要件について詳
しく説明する。なお、成分含有量の「%」は「重量%」
を意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Each requirement of the present invention will be described in detail below. In addition, “%” of the component content is “% by weight”.
Means

【0020】(A)鋼材の化学組成 C:Cは強度を高めるのに有効な元素である。しかし、
その含有量が0.10%未満では添加効果に乏しく所望
の強度が得られない。一方、0.40%を超えると、本
発明の製造方法によっても製品鋼材の靭性及び切り欠き
引張強度が目標値に達しない。従って、Cの含有量を
0.10〜0.40%とした。
(A) Chemical Composition of Steel Material C: C is an element effective for increasing strength. But,
If its content is less than 0.10%, the effect of addition is poor and desired strength cannot be obtained. On the other hand, if it exceeds 0.40%, the toughness and notch tensile strength of the product steel material do not reach the target values even by the production method of the present invention. Therefore, the content of C is set to 0.10 to 0.40%.

【0021】Si:Siは焼入れ性を向上させるととも
に熱間での加熱・圧延時に高温での表面酸化を阻止する
作用がある。更に、強度を向上させる効果も有する。し
かし、その含有量が0.05%未満では所望の強度が確
保できないことに加えて高温での表面の耐酸化性が劣化
し、0.60%を超えると靭性と切り欠き引張強度の劣
化を招くことになるので、その含有量を0.05〜0.
60%とした。
Si: Si has the effects of improving hardenability and preventing surface oxidation at high temperatures during hot heating and rolling. Further, it also has the effect of improving strength. However, if the content is less than 0.05%, the desired strength cannot be ensured and the oxidation resistance of the surface at high temperature deteriorates, and if it exceeds 0.60%, the toughness and notch tensile strength deteriorate. Therefore, the content of 0.05 to 0.
It was set to 60%.

【0022】Mn:Mnは鋼の焼入れ性向上及び熱間延
性向上に有効な元素である。しかし、その含有量が0.
60%未満では充分な焼入れ性が得られず、2.00%
を超えて含有させると偏析を起こし、却って熱間延性が
低下するようになる。従って、Mnの含有量を0.60
〜2.00%とした。
Mn: Mn is an element effective for improving the hardenability and hot ductility of steel. However, when its content is 0.1.
If it is less than 60%, sufficient hardenability cannot be obtained, and 2.00%
If it is contained in excess of 1.0, segregation will occur, and conversely the hot ductility will decrease. Therefore, if the Mn content is 0.60
˜2.00%.

【0023】Al:Alは鋼の脱酸の安定化及び均質化
を図る作用がある。更に、Nと結合して微細なAlNを
形成し結晶粒を微細にして靭性と強度を向上させる効果
も有する。
Al: Al acts to stabilize and homogenize deoxidation of steel. Further, it also has the effect of forming fine AlN by combining with N to make the crystal grains fine and improve the toughness and strength.

【0024】しかし、その含有量が0.005%未満で
は所望の効果が得られず、0.080%を超えると前記
効果が飽和するばかりか、却って熱間圧延中に鋼材表面
に割れを生ずることとなるので、Alの含有量を0.0
05〜0.080%とした。
However, if the content is less than 0.005%, the desired effect cannot be obtained, and if it exceeds 0.080%, the above effect is not only saturated, but rather the surface of the steel product is cracked during hot rolling. Therefore, the content of Al is 0.0
It was set to 05 to 0.080%.

【0025】B:Bは添加しなくても良い。添加すれば
焼入れ性を高める作用がある。この効果を確実に得るに
はBは0.0003%以上の含有量とすることが望まし
い。しかし、その含有量が0.0050%を超えると前
記効果が飽和することに加えて、結晶粒の粗大化をきた
して靭性の劣化を招く場合がある。従って、Bの含有量
を0.0050%以下とした。
B: B may not be added. If added, it has the effect of enhancing hardenability. In order to surely obtain this effect, it is desirable that the content of B be 0.0003% or more. However, if the content exceeds 0.0050%, the above effect may be saturated, and in addition, coarsening of crystal grains may occur, resulting in deterioration of toughness. Therefore, the content of B is set to 0.0050% or less.

【0026】本発明で用いる鋼には、上記の成分に加え
て、更に、V及びNbのうちの1種以上を含んでいても
良い。これらの合金元素の作用効果と望ましい含有量は
下記のとおりである。
The steel used in the present invention may further contain at least one of V and Nb in addition to the above components. The effects and desirable contents of these alloy elements are as follows.

【0027】V、Nb:V及びNbは鋼の焼入れ性を向
上させるとともに、鋼中で炭化物を形成して結晶粒を微
細化して靭性と強度を向上させる効果を有する。従っ
て、V及びNbは必要に応じて一方または両方を添加し
ても良い。しかし、Vの場合には0.01%未満の含有
量では所望の効果が得られず、0.20%を超えて含有
すると前記効果が飽和するばかりか、却って脆化現象を
引き起こし靭性と切り欠き引張強度の低下を招く。一
方、Nbの場合にも、0.01%未満の含有量では所望
の効果が得られず、0.10%を超えて含有すると前記
効果が飽和するばかりか、却って脆化現象を引き起こし
靭性と切り欠き引張強度の低下を招く。従って、これら
の合金元素を1種以上添加する場合には、V:0.01
〜0.20%、Nb:0.01〜0.10%の含有量と
するのが良い。
V, Nb: V and Nb have the effects of improving the hardenability of the steel and forming carbides in the steel to refine the crystal grains to improve the toughness and strength. Therefore, one or both of V and Nb may be added if necessary. However, in the case of V, if the content is less than 0.01%, the desired effect cannot be obtained, and if it exceeds 0.20%, the above effect is not only saturated, but rather it causes an embrittlement phenomenon and rather causes toughness and cutting. Notch causes a decrease in tensile strength. On the other hand, also in the case of Nb, if the content is less than 0.01%, the desired effect cannot be obtained, and if it exceeds 0.10%, the above effect is not only saturated, but rather it causes embrittlement and rather causes toughness. Notch causes reduction in tensile strength. Therefore, when one or more of these alloy elements are added, V: 0.01
.About.0.20% and Nb: 0.01 to 0.10% are preferable.

【0028】ところで、本発明で用いる鋼は上記の成分
元素に加えて、Cu、Ni、Cr、Mo及びTiを通常
の不純物のレベルで含んでいても良い。すなわち、C
u、Ni、Crをそれぞれ0.3%以下、Moを0.1
%以下、Tiを0.01%以下含有していても良い。こ
れは、本発明によって得られる低温鉄筋用鋼材の特性に
対して何ら悪影響がないからである。
By the way, the steel used in the present invention may contain Cu, Ni, Cr, Mo, and Ti at usual impurity levels in addition to the above-mentioned constituent elements. That is, C
u, Ni and Cr are each 0.3% or less, and Mo is 0.1%.
% Or less and 0.01% or less of Ti may be contained. This is because there is no adverse effect on the characteristics of the steel material for low-temperature rebar obtained by the present invention.

【0029】(B)熱間圧延 (B−1)加熱 熱間での連続圧延に際しての加熱温度は、オーステナイ
ト結晶粒の粗大化を防ぐために低温であることが望まし
いが、950℃未満ではAlNが多数残存して圧延時に
割れを生ずる恐れがあり、また低温ほど圧延抵抗が高く
なって圧延機に過度の負荷がかかる。一方、加熱温度が
1250℃を超えると圧延素材の表面酸化が著しくなっ
て圧延時に表面割れを生ずる。従って、加熱温度を95
0〜1250℃とした。
(B) Hot Rolling (B-1) Heating It is desirable that the heating temperature in continuous hot rolling is low in order to prevent coarsening of austenite crystal grains. A large number of them may remain to cause cracking during rolling, and the rolling resistance becomes higher as the temperature lowers, resulting in excessive load on the rolling mill. On the other hand, when the heating temperature exceeds 1250 ° C., the surface of the rolled material is significantly oxidized and surface cracking occurs during rolling. Therefore, the heating temperature is 95
It was 0 to 1250 ° C.

【0030】(B−2)中間圧延及び/または仕上げ圧
延のパス間水冷 熱間連続圧延工程は、粗圧延、中間圧延及び仕上げ圧延
の3工程からなるが、このうち中間圧延及び/または仕
上げ圧延のパス間において水冷を行い、鋼材の表面を6
00〜700℃の温度域に急冷することを1〜5回繰り
返しながら圧延することが重要である。すなわち、中間
圧延及び/または仕上げ圧延のパス間で水冷して鋼材の
表面をAr1点を下回る700℃以下に急冷してオ−ステ
ナイトからフェライトとパーライトに変態させる処理
と、鋼材内部の保有熱により復熱させてフェライト・パ
ーライトからオ−ステナイトへ逆変態させる処理を繰り
返すことにより、最終的な鋼材の組織を微細なフェライ
ト・パーライト組織にすることが必要である。前記の処
理によって鋼材の表面を微細なフェライト・パーライト
組織にすることで始めて鋼材の低温靭性と強度及び切り
欠き引張強度を著しく改善することが可能となる。
(B-2) Interpass water cooling of intermediate rolling and / or finish rolling The hot continuous rolling step comprises three steps of rough rolling, intermediate rolling and finish rolling. Of these, intermediate rolling and / or finish rolling are performed. Water cooling between the passes of the
It is important to repeat the rapid cooling to the temperature range of 00 to 700 ° C. for 1 to 5 times and to perform rolling. That is, water cooling is performed between passes of intermediate rolling and / or finish rolling to rapidly cool the surface of the steel material to 700 ° C. or lower below the Ar 1 point to transform austenite into ferrite and pearlite, and heat retained inside the steel material. It is necessary to make the final structure of the steel material a fine ferrite-pearlite structure by repeating the process of re-heating the material to reverse-transform it from ferrite-pearlite to austenite. It becomes possible to remarkably improve the low temperature toughness and strength of the steel material and the notch tensile strength only by making the surface of the steel material a fine ferrite-pearlite structure by the above treatment.

【0031】パス間水冷した場合の鋼材表面温度が70
0℃を上回る場合はオ−ステナイトからフェライトとパ
ーライトへの変態が充分起こらないので所望の組織が得
られず、600℃を下回る場合は鋼材内部の保有熱によ
る復熱による再加熱が充分でないためフェライト・パー
ライトからオ−ステナイトへの逆変態が不十分となって
やはり所望の組織が得られない。従って、前記のパス間
水冷を行う場合に鋼材の表面を急冷する温度は600〜
700℃の温度域としなければならない。
The steel surface temperature when water-cooled between passes is 70
If the temperature exceeds 0 ° C, the desired structure cannot be obtained because the transformation from austenite to ferrite and pearlite does not occur sufficiently. If the temperature is lower than 600 ° C, reheating due to the recuperation due to the retained heat inside the steel is insufficient. The reverse transformation from ferrite / pearlite to austenite is insufficient and the desired structure cannot be obtained. Therefore, the temperature at which the surface of the steel material is rapidly cooled in the case of performing water cooling between passes is 600 to
The temperature range must be 700 ° C.

【0032】前記したパス間水冷を1回以上行うことに
より、鋼材表面を微細なフェライト・パーライト組織に
することが可能であるが、6回以上繰り返してもフェラ
イト・パーライト組織を微細化する効果が飽和する。従
って、パス間水冷は1〜5回繰り返すこととした。
It is possible to form a fine ferrite-pearlite structure on the surface of the steel material by performing water cooling between passes at least once, but the effect of refining the ferrite-pearlite structure at 6 times or more is also obtained. Saturate. Therefore, the water cooling between passes was repeated 1 to 5 times.

【0033】ところで、パス間水冷する「鋼材表面」は
単に鋼材の表面に留まらず、鋼材表面から半径比で0.
3の深さの部位までであっても良い。パス間水冷によっ
て600〜700℃の温度域に急冷される部位が前記深
さまでの場合には所謂「表面部」の組織が微細となり、
仕上げ圧延後に後述する条件で加速冷却することで、常
温での降伏強度400MPa以上、シャルピー破面遷移
温度−60℃以下と−60℃での切り欠き引張強度75
0MPa以上という低温環境用の鉄筋に必要な特性を付
与することができるためである。これに対して前記深さ
が鋼材表面から半径比で0.3の深さを超えると、内部
保有熱量が小さくなって復熱による再加熱が充分起こら
なくなって所望の組織が得られなくなるとともに、急冷
後の圧延時に変形抵抗が大きくなって圧延機に過度の負
荷がかかってしまう。
By the way, the "steel material surface" that is water-cooled between passes is not limited to the surface of the steel material, and the radius ratio of the steel material surface from the steel surface is 0.
It may be up to a depth of 3. When the portion rapidly cooled to a temperature range of 600 to 700 ° C. by water cooling between passes is up to the depth, the so-called “surface portion” has a fine structure,
By performing accelerated cooling under the conditions described below after finish rolling, the yield strength at room temperature is 400 MPa or more, the Charpy fracture surface transition temperature is -60 ° C or less, and the notch tensile strength at -60 ° C is 75.
This is because the necessary properties of 0 MPa or more can be imparted to the reinforcing bar for a low temperature environment. On the other hand, when the depth exceeds the depth of 0.3 from the surface of the steel material in terms of the radius ratio, the internal retained heat amount becomes small and reheating due to recuperation does not sufficiently occur and the desired structure cannot be obtained, Deformation resistance increases during rolling after quenching, resulting in excessive load on the rolling mill.

【0034】(B−3)圧延仕上げ温度 結晶粒微細化のためには圧延仕上げ温度を低くするほど
効果があるが、750℃を下回ると圧延機に対する負荷
が過大となることに加えて鋼材に表面割れが生じるよう
になり、一方、950℃を超えると結晶粒が粗大化して
所望の微細な組織が得られなくなるので、圧延仕上げ温
度を750〜950℃とした。なお、この圧延仕上げ温
度は、被圧延鋼材自身の復熱及び圧延時の加工発熱によ
って確保できる。
(B-3) Rolling Finishing Temperature A lower rolling finishing temperature is more effective for grain refinement, but if the rolling finishing temperature is lower than 750 ° C., the load on the rolling mill becomes excessive and the steel material is On the other hand, when surface cracking occurs, on the other hand, when the temperature exceeds 950 ° C., the crystal grains become coarse and a desired fine structure cannot be obtained, so the rolling finishing temperature was set to 750 to 950 ° C. This rolling finish temperature can be ensured by the recuperation of the rolled steel material itself and the heat generated during rolling.

【0035】(C)圧延後の加速冷却 圧延終了後は鋼材を3℃/sを超え10℃/sまでの冷
却速度で550〜400℃の温度域の温度まで加速冷却
する必要がある。10℃/sを超える冷却速度で加速冷
却した場合には、表層部は焼きが入った所謂「低温変態
組織」となり内部はフェライト・パーライト組織となっ
て、組織が不均一となるため靭性並びに切り欠き引張強
度の劣化を招く。一方、3℃/s以下の冷却速度では中
心部の組織が粗大なフェライト・パーライト組織となっ
て所望の機械的性質(降伏強度、靭性、切り欠き引張強
度)が得られない場合がある。従って、圧延後の加速冷
却速度は3℃/sを超え10℃/sまでとした。
(C) Accelerated Cooling After Rolling After the completion of rolling, it is necessary to accelerate cooling the steel material to a temperature in the range of 550 to 400 ° C. at a cooling rate of more than 3 ° C./s and 10 ° C./s. When accelerated cooling is performed at a cooling rate of more than 10 ° C./s, the surface layer portion becomes a so-called “low temperature transformation structure” with quenching, and the inside becomes a ferrite / pearlite structure, and the structure becomes nonuniform, resulting in toughness and cutting. Notch causes deterioration of tensile strength. On the other hand, at a cooling rate of 3 ° C./s or less, the structure in the central portion becomes a coarse ferrite / pearlite structure, and desired mechanical properties (yield strength, toughness, notch tensile strength) may not be obtained. Therefore, the accelerated cooling rate after rolling was set to more than 3 ° C / s and up to 10 ° C / s.

【0036】加速冷却する温度が550℃を超える場合
にはたとえ3℃/sを超え10℃/sまでの冷却速度で
加速冷却しても所望の組織とならず、そのため所望の機
械的性質が得られない。一方、加速冷却する温度が40
0℃を下回れば鋼材の内部まで焼きの入った組織となっ
て、やはり所望の機械的性質が得られなくなる場合があ
る。従って、3℃/sを超え10℃/sまでの冷却速度
で加速冷却する温度を550〜400℃の温度域の温度
とした。この加速冷却の後は放冷すれば良い。
When the temperature for accelerated cooling exceeds 550 ° C., even if accelerated cooling is performed at a cooling rate of more than 3 ° C./s and up to 10 ° C./s, a desired structure is not obtained, and therefore desired mechanical properties are not obtained. I can't get it. On the other hand, the temperature for accelerated cooling is 40
If the temperature is lower than 0 ° C, the inside of the steel material may be hardened and the desired mechanical properties may not be obtained. Therefore, the temperature for accelerated cooling at a cooling rate of more than 3 ° C./s to 10 ° C./s is set to a temperature in the temperature range of 550 to 400 ° C. After this accelerated cooling, it may be allowed to cool.

【0037】なお、ここでいう冷却速度とは鋼材表面に
おける冷却速度のことである。
The cooling rate referred to here is the cooling rate on the surface of the steel material.

【0038】上記の(A)に示した成分組成を有する鋼
材に、上記の(B)及び(C)に示した条件によって制
御圧延・加速冷却を行うことにより、常温での降伏強度
400MPa以上、シャルピー破面遷移温度−60℃以
下と−60℃での切り欠き引張強度750MPa以上と
いう低温環境用の鉄筋に必要な特性を有する低温鉄筋用
鋼材を製造することができる。
By subjecting the steel material having the component composition shown in (A) above to controlled rolling and accelerated cooling under the conditions shown in (B) and (C) above, a yield strength at room temperature of 400 MPa or more, It is possible to manufacture a steel material for low-temperature rebar having a Charpy fracture surface transition temperature of -60 ° C or lower and a notched tensile strength of 750 MPa or higher at -60 ° C, which is a characteristic required for a reinforcing bar for a low-temperature environment.

【0039】[0039]

【実施例】表1に示す化学組成の鋼を通常の方法により
70t転炉溶製した。表1において、鋼A〜Cは成分の
いずれかが本発明で規定する含有量の範囲から外れた比
較鋼であり、鋼D〜Gは本発明の対象鋼(以下、本発明
鋼という)である。
Example A steel having a chemical composition shown in Table 1 was smelted in a 70 t converter by a usual method. In Table 1, Steels A to C are comparative steels in which any of the components is out of the content range specified in the present invention, and Steels D to G are steels of the present invention (hereinafter referred to as steels of the present invention). is there.

【0040】次いで、これらの鋼を連続鋳造法により鋼
片となし、更に、通常の方法で3tビレットに分塊圧延
した。
Next, these steels were made into billets by a continuous casting method, and further slab-rolled into 3t billets by a usual method.

【0041】この後、前記の3tビレットに表2〜7に
示す条件で連続圧延と冷却を施し、直径が32、35、
38、41及び51mmの棒鋼を製造した。
Thereafter, the 3t billet was subjected to continuous rolling and cooling under the conditions shown in Tables 2 to 7, and the diameters were 32, 35, and
Steel bars of 38, 41 and 51 mm were produced.

【0042】こうして得られた棒鋼から制御圧延・冷却
したままの直径で長さが30mmの組織観察用試験片を
切り出し、表面から半径比で0.3の深さの部位の組織
を光学顕微鏡によって観察した。
From the steel bar thus obtained, a test piece for microstructure observation having a diameter of 30 mm in length with controlled rolling and cooling was cut out, and the microstructure of a portion having a depth of 0.3 in radius ratio from the surface was observed by an optical microscope. I observed.

【0043】また棒鋼の表面部からJIS4号引張試験
片、JIS4号シャルピー衝撃試験片及び切り欠き引張
試験片(平滑部径:7mm、切り欠き部径:5mm、切
り欠き底半径:0.05mm、切り欠き角度:60度)
を採取し、常温での引張特性、シャルピー破面遷移温度
及び−60℃での低温切り欠き引張強度を調査した。
From the surface of the steel bar, JIS No. 4 tensile test piece, JIS No. 4 Charpy impact test piece and notched tensile test piece (smooth portion diameter: 7 mm, notched portion diameter: 5 mm, notched bottom radius: 0.05 mm, Notch angle: 60 degrees)
Were collected, and the tensile properties at room temperature, the Charpy fracture surface transition temperature, and the low temperature notch tensile strength at -60 ° C were investigated.

【0044】試験結果の一例を表8〜13に示す。表8
〜13によれば、本発明で規定する化学組成を有する鋼
を、本発明で規定する条件で「熱間圧延−加速冷却」す
れば所望の降伏強度、靭性及び切り欠き引張強度が得ら
れることが明らかである。
Tables 8 to 13 show examples of test results. Table 8
According to Nos. 13 to 13, it is possible to obtain desired yield strength, toughness and notch tensile strength by "hot rolling-accelerated cooling" under the conditions specified in the present invention, for the steel having the chemical composition specified in the present invention. Is clear.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【表6】 [Table 6]

【0051】[0051]

【表7】 [Table 7]

【0052】[0052]

【表8】 [Table 8]

【0053】[0053]

【表9】 [Table 9]

【0054】[0054]

【表10】 [Table 10]

【0055】[0055]

【表11】 [Table 11]

【0056】[0056]

【表12】 [Table 12]

【0057】[0057]

【表13】 [Table 13]

【0058】[0058]

【発明の効果】以上説明したように、本発明の低温鉄筋
用鋼材の製造方法によれば、従来よりも低コストで低温
での靭性と切り欠き引張強度に優れ、且つ降伏強度が高
い低温鉄筋用鋼材を製造することが可能で、低温環境で
使用される場合にも安全性の高い構造用鉄筋を提供する
ことができるので産業上の効果は極めて大きい。
As described above, according to the method for producing a steel material for a low-temperature rebar of the present invention, the low-temperature rebar having a higher yield strength and toughness and notch tensile strength at a low temperature at a lower cost than before. Since it is possible to manufacture a steel material for use, and it is possible to provide a structural reinforcing bar having high safety even when used in a low temperature environment, the industrial effect is extremely large.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧延工程が粗圧延、中間圧延及び仕上げ圧
延の各工程からなる低温鉄筋用鋼材の製造方法であっ
て、重量%で、C:0.10〜0.40%、Si:0.
05〜0.60%、Mn:0.60〜2.00%、A
l:0.005〜0.080%、B:0.0050%以
下を含有し、残部はFe及び不可避不純物からなる鋼材
を、950〜1250℃の温度域に加熱して粗圧延を行
い、次いで中間圧延及び/または仕上げ圧延のパス間で
水冷して鋼材の表面を600〜700℃の温度域に急冷
することを1〜5回繰り返しながら圧延し、更に、圧延
仕上げ温度を750〜950℃の範囲に制御して圧延を
終了し、その後3℃/sを超え10℃/sまでの冷却速
度で550〜400℃の温度域の温度まで加速冷却する
ことを特徴とする低温鉄筋用鋼材の製造方法。
1. A method for producing a steel material for low-temperature rebar, comprising a rolling step of rough rolling, intermediate rolling, and finish rolling, wherein C: 0.10 to 0.40% and Si: 0 by weight. .
05-0.60%, Mn: 0.60-2.00%, A
1: 0.005 to 0.080%, B: 0.0050% or less, with the balance being steel consisting of Fe and unavoidable impurities, heated to a temperature range of 950 to 1250 ° C. to perform rough rolling, and then Rolling is performed by repeating water-cooling between the intermediate rolling and / or finish rolling to rapidly cool the surface of the steel material to a temperature range of 600 to 700 ° C. 1 to 5 times, and further rolling at a finishing temperature of 750 to 950 ° C. Manufacture of a steel material for low-temperature rebar characterized by accelerating cooling to a temperature range of 550 to 400 ° C. at a cooling rate of more than 3 ° C./s and 10 ° C./s after the rolling is controlled within a range. Method.
【請求項2】圧延工程が粗圧延、中間圧延及び仕上げ圧
延の各工程からなる低温鉄筋用鋼材の製造方法であっ
て、請求項1に記載の成分に加えて更に、重量%で、
0.01〜0.20%のV及び0.01〜0.10%の
Nbの1種以上を含有し、残部はFe及び不可避不純物
からなる鋼材を、950〜1250℃の温度域に加熱し
て粗圧延を行い、次いで中間圧延及び/または仕上げ圧
延のパス間で水冷して鋼材の表面を600〜700℃の
温度域に急冷することを1〜5回繰り返しながら圧延
し、更に、圧延仕上げ温度を750〜950℃の範囲に
制御して圧延を終了し、その後3℃/sを超え10℃/
sまでの冷却速度で550〜400℃の温度域の温度ま
で加速冷却することを特徴とする低温鉄筋用鋼材の製造
方法。
2. A method for producing a steel material for low-temperature reinforcing bars, wherein the rolling step comprises steps of rough rolling, intermediate rolling and finish rolling, and in addition to the components described in claim 1, in a weight percentage,
A steel material containing 0.01 to 0.20% of V and 0.01 to 0.10% of Nb, and the balance of Fe and inevitable impurities is heated to a temperature range of 950 to 1250 ° C. Rough rolling, then water cooling between passes of intermediate rolling and / or finish rolling to rapidly cool the surface of the steel material to a temperature range of 600 to 700 ° C. by repeating 1 to 5 times, and further rolling finishing. The temperature is controlled in the range of 750 to 950 ° C. to finish the rolling, and then the temperature exceeds 3 ° C./s and 10 ° C./s.
A method for manufacturing a steel material for low-temperature rebar, which comprises accelerating cooling to a temperature in a temperature range of 550 to 400 ° C. at a cooling rate of up to s.
JP07204127A 1995-08-10 1995-08-10 Method of manufacturing steel for low-temperature rebar Expired - Fee Related JP3077568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07204127A JP3077568B2 (en) 1995-08-10 1995-08-10 Method of manufacturing steel for low-temperature rebar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07204127A JP3077568B2 (en) 1995-08-10 1995-08-10 Method of manufacturing steel for low-temperature rebar

Publications (2)

Publication Number Publication Date
JPH0949021A true JPH0949021A (en) 1997-02-18
JP3077568B2 JP3077568B2 (en) 2000-08-14

Family

ID=16485282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07204127A Expired - Fee Related JP3077568B2 (en) 1995-08-10 1995-08-10 Method of manufacturing steel for low-temperature rebar

Country Status (1)

Country Link
JP (1) JP3077568B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747274A (en) * 2012-07-13 2012-10-24 江苏永钢集团有限公司 Vanadium-boron microalloyed waste heat treatment reinforced bar steel and production technique thereof
CN103667894A (en) * 2013-12-23 2014-03-26 钢铁研究总院 Low-temperature steel reinforcement for liquefied petroleum gas storage tank and production process thereof
CN106367680A (en) * 2016-08-31 2017-02-01 云南德胜钢铁有限公司 Earthquake-resistant steel bar
CN114182167A (en) * 2021-11-05 2022-03-15 柳州钢铁股份有限公司 Hot-rolled steel bar with stable aging performance and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102747274A (en) * 2012-07-13 2012-10-24 江苏永钢集团有限公司 Vanadium-boron microalloyed waste heat treatment reinforced bar steel and production technique thereof
CN103667894A (en) * 2013-12-23 2014-03-26 钢铁研究总院 Low-temperature steel reinforcement for liquefied petroleum gas storage tank and production process thereof
CN106367680A (en) * 2016-08-31 2017-02-01 云南德胜钢铁有限公司 Earthquake-resistant steel bar
CN114182167A (en) * 2021-11-05 2022-03-15 柳州钢铁股份有限公司 Hot-rolled steel bar with stable aging performance and production method thereof

Also Published As

Publication number Publication date
JP3077568B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
US4776900A (en) Process for producing nickel steels with high crack-arresting capability
JP4888277B2 (en) Hot rolled steel bar or wire rod
NO343350B1 (en) Seamless steel tube for oil wells with excellent resistance to sulphide stress cracking and method for producing seamless steel tubes for oil wells
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
CN112236539B (en) High-tensile thick steel plate for extremely low temperature and method for producing same
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JP2022510212A (en) High-strength steel with excellent ductility and low-temperature toughness and its manufacturing method
JPH10280088A (en) Steel product for building structural use and its production
JPH06128688A (en) Hot rolled steel plate excellent in fatigue characteristic and it production
JP2017122270A (en) Steel for cold-worked component
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JPH07188834A (en) High strength steel sheet having high ductility and its production
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP3022280B2 (en) Manufacturing method of steel for rebar with excellent earthquake resistance
JPH05105957A (en) Production of heat resistant high strength bolt
JP3077567B2 (en) Method of manufacturing steel for low-temperature rebar
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH0949021A (en) Production of steel material for low temperature reinforcement
JPH09111401A (en) Steel for machine structural use, excellent in machinability and quenching crack resistance, and its production
JPS61284554A (en) Alloy steel for unrefined bolt or the like having superior toughness and steel material for unrefined bolt or the like using same
JP3867471B2 (en) Strengthening method of steel
JPH1088231A (en) Production of thick high tensile strength steel plate excellent in toughness and weldability
JP3022279B2 (en) Manufacturing method of steel for rebar with excellent earthquake resistance
JPH07150244A (en) Production of ferritic stainless steel for cold working

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees