JPH0947429A - Electronic endoscope - Google Patents

Electronic endoscope

Info

Publication number
JPH0947429A
JPH0947429A JP7204233A JP20423395A JPH0947429A JP H0947429 A JPH0947429 A JP H0947429A JP 7204233 A JP7204233 A JP 7204233A JP 20423395 A JP20423395 A JP 20423395A JP H0947429 A JPH0947429 A JP H0947429A
Authority
JP
Japan
Prior art keywords
image pickup
ultraviolet light
photoconductive film
electronic endoscope
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7204233A
Other languages
Japanese (ja)
Inventor
Kazutaka Tsuji
和隆 辻
Yasutsugu Takeda
康嗣 武田
Keiji Umetani
啓二 梅谷
Kenji Samejima
賢二 鮫島
Tomoharu Kajiyama
智晴 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7204233A priority Critical patent/JPH0947429A/en
Publication of JPH0947429A publication Critical patent/JPH0947429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the fine irregularities, status change or the like of the surface of an object in sharp contract under the application of simple constitution by using an image pickup device having sensitivity to an ultraviolet ray as an image pickup device for converting the optical image of the object to an electric signal. SOLUTION: This endoscope has an ultraviolet source 101 to emit ultraviolet rays, and an image pickup element 102 having a photoconductor mainly composed of amorphous selenium. In this case, the image pickup element 102 uses a photoconductive film stacked type solid image pickup element with photoconductive thin films stacked on a scanning circuit. Also, each of the picture elements generates electrons with holes in a photoconductive film 204, due to a ultraviolet rays 202 transmitted through a transparent electrode 201, and the holes travel to a picture element electrode 206 through the photoconductive film, due to electric field applied across the transparent electrode 201 and the picture element electrode 206 for accumulation. Each picture element is provided with a MOS switch formed out of a source 207, a drain 208 and a gate 209, and the MOS switch is turned on and off, according to the prescribed timing, thereby sequentially sending accumulated signal charges to an output line 210.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被写体に紫外光を照射
し、被写体像を電気信号として検出する電子内視鏡に係
わるもので、特に、被写体の微細な構造や変質部を容易
に識別し得る電子内視鏡に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic endoscope for irradiating a subject with ultraviolet light and detecting an image of the subject as an electric signal, and particularly to easily identify a fine structure or an altered portion of the subject. The present invention relates to a possible electronic endoscope.

【0002】[0002]

【従来の技術】人体や機械等に挿入してその内部を観察
する内視鏡においては、光ファイバーによって外部光源
からの光を導入して被写体の照明を行ない、レンズで結
像された被写体の光学像を、数万本の光ファイバー束を
通して観察するものが良く知られている。この様な内視
鏡においては、通常一人の観察者がスコープを覗いて観
察を行なうものであり、多人数で同時観察することは困
難である。
2. Description of the Related Art In an endoscope which is inserted into a human body, a machine or the like to observe the inside thereof, the light from an external light source is introduced by an optical fiber to illuminate the object, and the optics of the object imaged by a lens. It is well known to observe an image through a bundle of tens of thousands of optical fibers. In such an endoscope, usually one observer looks through the scope, and it is difficult for a large number of people to observe simultaneously.

【0003】これに対して、近年急速に小型、高精細化
が進んでいるCCD等の固体撮像素子をスコープ先端部
に設けて、被写体像を映像信号に変換してから信号線を
介して外部のTVモニタで観察する電子内視鏡が多く用
いられるようになってきた(例えば東芝レビュー、第4
3巻、第7号、pp569ー572)。このような電子
内視鏡では、被写体外部に設けられた光源から発せられ
る白色光を光ファイバー束によって内視鏡先端部に導く
ことによって被写体を照明し、レンズを透して結像され
た被写体像を結晶シリコンのフォトダイオードを光電変
換に用いるCCD型固体撮像素子で撮影し、得られた電
気信号を信号線を介して被写体外部のテレビモニターで
観察するのが一般的である。
On the other hand, a solid-state image pickup device such as CCD, which has been rapidly reduced in size and high definition in recent years, is provided at the tip of a scope to convert a subject image into a video signal and then externally output through a signal line. Many electronic endoscopes have been used for observing on TV monitors (eg Toshiba Review, No. 4).
Volume 3, Issue 7, pp 569-572). In such an electronic endoscope, white light emitted from a light source provided outside the subject is guided to the tip of the endoscope by a bundle of optical fibers to illuminate the subject, and a subject image formed through a lens is formed. It is general to photograph the image with a CCD type solid-state image pickup device using a photodiode of crystalline silicon for photoelectric conversion, and observe the obtained electric signal on a television monitor outside the subject through a signal line.

【0004】ところで、上述の様な電子内視鏡では、主
に可視光域の光を照射、検出するものが一般的である
が、紫外光を被写体に照射して観察を行なうものもある
(例えば特開平6-347707号)。これらは、被写
体に蛍光物質を塗布し、紫外光を照射することによって
蛍光体を発光させ、その発光画像を可視光用の撮像デバ
イスで観察するものである。この様な内視鏡は、例えば
生体組織の観察や、被写体の傷や割れ目に浸透した蛍光
体の発光像を観察する工業検査等に使用される。
By the way, in the electronic endoscope as described above, it is general to mainly irradiate and detect light in the visible light range, but there is also one that irradiates the subject with ultraviolet light for observation. For example, JP-A-6-347707). In these devices, a subject is coated with a fluorescent substance, and the fluorescent substance is caused to emit light by irradiating with ultraviolet light, and the emission image is observed with an imaging device for visible light. Such an endoscope is used, for example, for observing a living tissue, an industrial inspection for observing a luminescent image of a fluorescent substance that has penetrated into a scratch or a crack of a subject.

【0005】[0005]

【発明が解決しようとする課題】上記従来の技術で説明
した電子内視鏡において、可視光域の光を照射、検出す
るものは、充分な照明を行うことが困難な場合が多い内
視鏡の被写体において、微小な凹凸や表面状態の変化な
どを高いコントラストで検出することが困難であった。
また、紫外光を照射して蛍光体による可視光像を観察す
る電子内視鏡では、被写体にあらかじめ蛍光体を塗布す
る必要が有り、内視鏡の導入用細管を通して蛍光剤や発
色剤、クリーニング剤等を導入、噴霧する必要があり、
装置が複雑であるという問題があった。また、蛍光体の
粒径や厚さが大きいと解像度が劣化し、逆に小さいと発
光効率が低下するため、被写体の微細な構造を高感度で
観察することが困難であるという問題があった。
Among the electronic endoscopes described in the above-mentioned prior art, those that irradiate and detect light in the visible light region are often difficult to perform sufficient illumination. It was difficult to detect minute unevenness or changes in the surface state of the subject with high contrast.
In addition, in an electronic endoscope that irradiates ultraviolet light to observe a visible light image with a fluorescent substance, it is necessary to apply the fluorescent substance to the subject in advance, and a fluorescent agent, a coloring agent, and a cleaning agent are passed through a thin tube for introducing the endoscope. It is necessary to introduce and spray agents,
There is a problem that the device is complicated. Further, if the particle size or thickness of the phosphor is large, the resolution is deteriorated, and conversely if the particle size or thickness is small, the luminous efficiency is reduced, and it is difficult to observe the fine structure of the subject with high sensitivity. .

【0006】本発明の目的は、上記課題を解決して、簡
単な構成で、被写体の微小な凹凸や表面状態の変化など
を高いコントラストで検出ことが可能な電子内視鏡を提
供することにある。
An object of the present invention is to solve the above problems and provide an electronic endoscope having a simple structure and capable of detecting minute unevenness of a subject and changes in the surface state with high contrast. is there.

【0007】[0007]

【課題を解決するための手段】上記目的は、少なくと
も、被写体に紫外光を照射する手段と、被写体の光学像
を電気信号に変換する撮像デバイスを有する電子内視鏡
において、撮像デバイスを紫外光に感度を有する撮像デ
バイスとすることによって達成される。
SUMMARY OF THE INVENTION The above-described object is to provide an electronic endoscope having at least a means for irradiating a subject with ultraviolet light and an image pickup device for converting an optical image of the subject into an electric signal. It is achieved by using an imaging device having sensitivity to.

【0008】また、紫外光に感度を有する撮像デバイス
としては、非晶質セレンを主体とする光導電膜を有する
ものがある。さらに、この非晶質セレンを主体とする光
導電膜内における電荷のアバランシェ増倍を利用するこ
とができる。
Further, as an image pickup device having sensitivity to ultraviolet light, there is one having a photoconductive film mainly composed of amorphous selenium. Further, the avalanche multiplication of charges in the photoconductive film mainly composed of amorphous selenium can be utilized.

【0009】[0009]

【作用】被写体に紫外光を照射して紫外光用撮像デバイ
スで観察する手法は、紫外線顕微鏡や、指紋検出、古美
術鑑定等に用いられていることからも判るように、被写
体の微小な凹凸や組織の変化を高いコントラストで観察
する用途に適している。本発明による電子内視鏡では、
スコープ先端部から紫外光を被写体に照射し、紫外光に
感度を有する撮像デバイスで直接観察するので、被写体
にあらかじめ蛍光体を塗布する必要がなく、また、蛍光
体の塗布が不可能な被写体においても観察が可能であ
る。
[Function] As is clear from the fact that the technique of irradiating a subject with ultraviolet light and observing it with an image pickup device for ultraviolet light is used for ultraviolet microscopes, fingerprint detection, antiquity appraisal, etc. It is suitable for use in observing changes in tissue and tissue with high contrast. In the electronic endoscope according to the present invention,
Ultraviolet light is radiated to the subject from the tip of the scope, and it is observed directly with an imaging device that is sensitive to ultraviolet light, so there is no need to apply phosphor to the subject in advance, and for subjects where it is not possible to apply phosphor Can also be observed.

【0010】本発明の電子内視鏡に用いる撮像デバイス
としては、非晶質セレン(a-Se)を主体とする光導
電膜を有するものが好適である。a-Seは、可視光か
ら紫外光に感度を有し、暗抵抗が高く均一膜が蒸着法に
よって比較的容易に形成できるのでこれを光導電膜に用
いることにより高い解像度が得られる。本発明の電子内
視鏡の最も大きな特徴は、蛍光体を介することなく紫外
光像を直接観察することであり、体内の微細な病変や組
織の変化、あるいは機械内部の微細な亀裂等を観察する
ためには、紫外光像を高い解像度で検出できることが重
要である。
As the image pickup device used in the electronic endoscope of the present invention, a device having a photoconductive film mainly composed of amorphous selenium (a-Se) is suitable. Since a-Se is sensitive to visible light to ultraviolet light and has a high dark resistance and a uniform film can be formed relatively easily by a vapor deposition method, a high resolution can be obtained by using it as a photoconductive film. The most important feature of the electronic endoscope of the present invention is to directly observe an ultraviolet light image without passing through a phosphor, and to observe minute lesions and tissue changes in the body, or minute cracks inside the machine. In order to do so, it is important to be able to detect the ultraviolet light image with high resolution.

【0011】また、a-Seでは、外部からの電荷の注
入を抑止した構造で強い電界を印加すると衝突電離によ
る電荷増倍現象すなわちアバランシェ現象が起こる。ア
バランシェ現象は結晶シリコンをはじめとする種々の結
晶材料で見られるが、a-Seにおけるアバランシェ現
象は、大面積一様な増倍が起こることや、例えばテレビ
ジョン学会技術報告、Vol.15、No.52、pp.
7-12に記載されているように、撮像管などの蓄積型
撮像デバイスに適用すると雑音軽減効果が得られること
から、蛍光体を用いない本発明の電子内視鏡に適用する
と高感度で被写体の微細構造を観察することができる。
特に、紫外光はa-Seでの吸収係数が大きいため、a-
Se膜に入射すると入射側界面の近傍で吸収され電子ー
正孔対を生成する。a-Seでは、正孔の衝突電離確率
の方が電子のそれよりも大きいので、光入射側が正にな
る向きにバイアスして動作させれば、入射側近傍で生成
された正孔がほぼ膜厚全体を走行するので最も効率よく
増倍効果が得られる。さらに、a-Seでは、緑色から
赤色にかけての比較的長波長の光で生成された電子ー正
孔対が互いのクーロン引力で再結合してしまうジェミネ
ート再結合現象が顕著であるが、紫外光は光子のエネル
ギーが大きいためこの現象が殆ど起こらず、生成された
電子ー正孔対が有効に分離され、高い一次量子効率が得
られる。すなわち、a-Seやそのアバランシェ現象を
紫外光撮像デバイスとして用いることは通常の可視光に
対して用いる場合よりさらに有利であり、本発明の電子
内視鏡に好適である。
Further, in a-Se, when a strong electric field is applied in a structure in which charge injection from the outside is suppressed, a charge multiplication phenomenon due to impact ionization, that is, an avalanche phenomenon occurs. The avalanche phenomenon is found in various crystalline materials including crystalline silicon, and the avalanche phenomenon in a-Se is such that a large area uniform multiplication occurs, for example, the Television Society Technical Report, Vol. 15, No. .52, pp.
As described in 7-12, when applied to a storage-type image pickup device such as an image pickup tube, a noise reduction effect is obtained. Therefore, when applied to an electronic endoscope of the present invention that does not use a phosphor, a subject with high sensitivity can be obtained. The fine structure of can be observed.
In particular, ultraviolet light has a large absorption coefficient at a-Se, so a-
When incident on the Se film, it is absorbed in the vicinity of the interface on the incident side to generate electron-hole pairs. In a-Se, the collision ionization probability of holes is higher than that of electrons, so if the device is biased to operate in the direction in which the light incident side becomes positive, holes generated in the vicinity of the incident side are almost the same. Since it travels through the entire thickness, the multiplication effect is most efficiently obtained. Furthermore, in a-Se, the gemnate recombination phenomenon, in which electron-hole pairs generated by light of a relatively long wavelength from green to red are recombined by Coulomb's attractive force, is remarkable. Since the photon energy is large, this phenomenon hardly occurs, the generated electron-hole pairs are effectively separated, and high first-order quantum efficiency is obtained. That is, the use of a-Se or its avalanche phenomenon as an ultraviolet light imaging device is more advantageous than the use of ordinary visible light, and is suitable for the electronic endoscope of the present invention.

【0012】[0012]

【実施例】以下、本発明による電子内視鏡の一実施例を
図面を用いて説明する。図1は、本実施例の基本構成図
である。図1において、101は紫外光を放出する紫外
光源、102は非晶質セレンを主体とする光導電体を有
する撮像素子である。103はライトガイド、104は
結像光学系、105は信号線、106は、カメラ制御ユ
ニット(CCU)、107はモニタである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electronic endoscope according to the present invention will be described below with reference to the drawings. FIG. 1 is a basic configuration diagram of this embodiment. In FIG. 1, 101 is an ultraviolet light source that emits ultraviolet light, and 102 is an image sensor having a photoconductor mainly composed of amorphous selenium. Reference numeral 103 is a light guide, 104 is an image forming optical system, 105 is a signal line, 106 is a camera control unit (CCU), and 107 is a monitor.

【0013】紫外光源101としては、水銀キセノンラ
ンプと紫外フィルターを組み合わせたが、キセノンラン
プや重水素ランプ、紫外線レーザなどを用いても良い。
また、ライトガイド102や照明用光学系、結像光学系
104には、石英や、LiF 2、MgF2等の紫外光透過率
が高い材質を用いる。図1では、モニタ107で被写体
の映像を直接観察するシステムを示してあるが、CCU
106からの映像信号出力をディジタル信号に変換し
て、例えば疑似カラー表示などの画像処理を施したりプ
リンターや各種記憶装置に出力することもできる。
As the ultraviolet light source 101, mercury xenon laser is used.
Pump and an ultraviolet filter were combined.
Alternatively, a lamp, a deuterium lamp, an ultraviolet laser, or the like may be used.
In addition, the light guide 102, the illumination optical system, and the imaging optical system
104 is quartz or LiF 2, MgF2UV transmittance of
Use a high-quality material. In FIG. 1, the subject is displayed on the monitor 107.
A system for directly observing images of CCU is shown.
Video signal output from 106 is converted to digital signal
Image processing such as pseudo-color display.
It can also be output to a linter or various storage devices.

【0014】次に、図2を用いて本実施例で用いた撮像
素子102の構成を示す。本実施例では、走査回路上に
光導電性薄膜を積層した光導電膜積層型固体撮像素子を
用いた。図2は、その1画素部分の基本構造を示す断面
図である。透明電極201を透過した紫外光202によ
って光導電膜204中で電子・正孔対(図示せず)が発
生し、透明電極201と画素電極206の間に印加した
電界によって正孔が画素電極まで光導電膜中を走行して
蓄積される。各画素には、ソース207、ドレイン20
8及びゲート209より成るMOSスイッチが設けられ
ており、これを所定のタイミングでON/OFFするこ
とによって蓄積された信号電荷が順次出力線210に読
み出される。なお、図2において211はSi基板、2
12及び213は絶縁層である。光導電膜204には、
真空蒸着法によって形成した厚さ1μmの非晶質Se
(a−Se)を用いた。また、透明電極201と光導電
膜204の間には、透明電極201から光導電膜204
への正孔注入を阻止するために、厚さ10nmのCeO
2よりなる正孔注入素子層203を、画素電極206と
光導電膜204の間には画素電極206から光導電膜2
04への電子注入を阻止するために、厚さ6nmのAs
2Se3よりなる電子注入阻止層205をそれぞれ真空蒸
着によって形成した。
Next, the structure of the image pickup device 102 used in this embodiment will be described with reference to FIG. In this embodiment, a photoconductive film laminated type solid-state imaging device in which a photoconductive thin film is laminated on a scanning circuit is used. FIG. 2 is a sectional view showing the basic structure of the one pixel portion. The ultraviolet light 202 transmitted through the transparent electrode 201 generates electron-hole pairs (not shown) in the photoconductive film 204, and the electric field applied between the transparent electrode 201 and the pixel electrode 206 causes holes to reach the pixel electrode. It travels in the photoconductive film and is accumulated. Each pixel has a source 207 and a drain 20.
8 and the gate 209 are provided with a MOS switch, and by turning on / off the switch at a predetermined timing, the accumulated signal charges are sequentially read out to the output line 210. In FIG. 2, 211 is a Si substrate, 2 is
12 and 213 are insulating layers. The photoconductive film 204 includes
1 μm thick amorphous Se formed by vacuum deposition method
(A-Se) was used. Further, between the transparent electrode 201 and the photoconductive film 204, the transparent electrode 201 and the photoconductive film 204 are provided.
10 nm thick CeO to prevent hole injection into the
The hole injection element layer 203 composed of 2 is provided between the pixel electrode 206 and the photoconductive film 204 from the pixel electrode 206 to the photoconductive film 2.
To prevent the injection of electrons into 04.
An electron injection blocking layer 205 made of 2 Se 3 was formed by vacuum vapor deposition.

【0015】本実施例の撮像素子では、透明電極201
が画素電極206に対して正になる向きに電圧を印加し
て動作する。この時、印加電圧が約90V以上になると
a-Se膜中でアバランシェ現象による電荷増倍が起こ
り、印加電圧140Vで約10倍に感度が増大する。ア
バランシェ増倍率は入射光の波長によって異なるが、紫
外光撮像に用いた場合、a-Se膜中での吸収係数が大
きいため、透明電極201側近傍で全て吸収され、発生
した正孔が画素電極206に向って膜厚方向の全体に渡
って走行する。従って、正孔の衝突電離確率が電子のそ
れよりも大きいa-Seで有効に増倍効果が得られる。
また、アバランシェ現象によって発生する過剰雑音もこ
のようにほぼ正孔のみによる増倍が起こる場合が最も小
さくなる。さらに、a-Seでは波長が400nm程度
以下の光による電荷生成効率(量子効率)はほぼ1であ
る。これらのことから、本実施例の電子内視鏡では、被
写体の微細構造を、高いコントラストで、高感度、高解
像度撮影することができる。
In the image pickup device of this embodiment, the transparent electrode 201
Operates by applying a voltage to the pixel electrode 206 in a positive direction. At this time, when the applied voltage is about 90 V or higher, charge multiplication due to the avalanche phenomenon occurs in the a-Se film, and the sensitivity is increased about 10 times at the applied voltage of 140 V. The avalanche multiplication factor varies depending on the wavelength of incident light, but when used for ultraviolet light imaging, since the absorption coefficient in the a-Se film is large, all the holes are absorbed in the vicinity of the transparent electrode 201 side and the generated holes are generated. It runs toward 206 over the entire film thickness direction. Therefore, the multiplication effect can be effectively obtained with a-Se having a higher collision ionization probability of holes than that of electrons.
In addition, the excess noise generated by the avalanche phenomenon is also the smallest in the case where multiplication by almost only holes occurs in this way. Further, in a-Se, the charge generation efficiency (quantum efficiency) by light having a wavelength of about 400 nm or less is almost 1. For these reasons, the electronic endoscope of the present embodiment can photograph a fine structure of a subject with high contrast, high sensitivity, and high resolution.

【0016】以上、外部からの紫外光をライトガイドで
内視鏡先端部に導き、被写体の紫外光像を、a-Se膜
積層型固体撮像素子で撮像する構造の電子内視鏡を実施
例に用いて説明したが、紫外光源は必ずしも外部に設け
る必要はなく、例えば内視鏡先端部に小型の紫外光源を
設けてもよい。また、紫外光用撮像デバイスとしても、
光導電膜積層型固体撮像素子を用いる必要はなく、例え
ばa-Seを光導電膜に用いた撮像管を外部に設け、被
写体像をファイバ束よりなるライトガイドで外部に導い
て撮影してもよい。
As described above, the electronic endoscope having the structure in which the ultraviolet light from the outside is guided to the tip of the endoscope by the light guide and the ultraviolet light image of the subject is picked up by the a-Se film laminated type solid-state image pickup device is embodied. However, the ultraviolet light source does not necessarily have to be provided outside, and a small ultraviolet light source may be provided at the tip of the endoscope, for example. Also, as an imaging device for ultraviolet light,
It is not necessary to use the photoconductive film laminated type solid-state image pickup element, and for example, even if an image pickup tube using a-Se as a photoconductive film is provided outside and a subject image is guided to the outside by a light guide composed of a fiber bundle Good.

【0017】[0017]

【発明の効果】本発明によれば、簡単な構成で、被写体
の微小な凹凸や表面状態の変化などを高いコントラスト
で検出することが可能な電子内視鏡を得ることができ
る。
As described above, according to the present invention, it is possible to obtain an electronic endoscope which has a simple structure and is capable of detecting minute unevenness of a subject and changes in the surface condition with high contrast.

【0018】[0018]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電子内視鏡の一実施例の基本構成
図である。
FIG. 1 is a basic configuration diagram of an embodiment of an electronic endoscope according to the present invention.

【図2】本発明の一実施例で用いた撮像素子の1画素部
分の構造を示す断面図である。
FIG. 2 is a cross-sectional view showing the structure of one pixel portion of the image sensor used in one embodiment of the present invention.

【符号の説明】 101……紫外光源、102……紫外光に感度を有する
撮像素子、103……ライトガイド、104……結像光
学系、105……信号線、106……カメラ制御ユニッ
ト(CCU)、107……モニタ、201……透明電
極、202……紫外光、203……正孔注入阻止層、2
04……光導電膜、205……電子注入阻止層、206
……画素電極、207……ソース、208……ドレイ
ン、209……ゲート、210……出力線、211……
Si基板、212……絶縁層、213……絶縁層。
[Explanation of Codes] 101 ... Ultraviolet light source, 102 ... Imaging device having sensitivity to ultraviolet light, 103 ... Light guide, 104 ... Imaging optical system, 105 ... Signal line, 106 ... Camera control unit ( CCU), 107 ... Monitor, 201 ... Transparent electrode, 202 ... UV light, 203 ... Hole injection blocking layer, 2
04 ... Photoconductive film, 205 ... Electron injection blocking layer, 206
...... Pixel electrode, 207 ...... Source, 208 ...... Drain, 209 ...... Gate, 210 ...... Output line, 211 ......
Si substrate, 212 ... Insulating layer, 213 ... Insulating layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鮫島 賢二 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 梶山 智晴 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Samejima 1-280, Higashi Koikeku, Kokubunji, Tokyo Metropolitan Research Laboratory, Hitachi, Ltd. (72) Inventor Tomoharu Kajiyama 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも、被写体に紫外光を照射する手
段と、前記被写体光学像を電気信号に変換する撮像デバ
イスを有する電子内視鏡において、前記撮像デバイスが
紫外光に感度を有する撮像デバイスであることを特徴と
する電子内視鏡。
1. An electronic endoscope having at least a means for irradiating a subject with ultraviolet light and an imaging device for converting the subject optical image into an electric signal, wherein the imaging device is sensitive to ultraviolet light. An electronic endoscope characterized by being present.
【請求項2】前記紫外光に感度を有する撮像デバイス
が、非晶質セレンを主体とする光導電膜を有することを
特徴とする請求項1記載の電子内視鏡。
2. The electronic endoscope according to claim 1, wherein the imaging device having sensitivity to ultraviolet light has a photoconductive film containing amorphous selenium as a main component.
【請求項3】前記紫外光に感度を有する撮像デバイス
が、前記光導電膜内における電荷のアバランシェ増倍を
利用したものであることを特徴とする請求項2記載の電
子内視鏡。
3. The electronic endoscope according to claim 2, wherein the image pickup device having sensitivity to ultraviolet light utilizes avalanche multiplication of charges in the photoconductive film.
JP7204233A 1995-08-10 1995-08-10 Electronic endoscope Pending JPH0947429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7204233A JPH0947429A (en) 1995-08-10 1995-08-10 Electronic endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7204233A JPH0947429A (en) 1995-08-10 1995-08-10 Electronic endoscope

Publications (1)

Publication Number Publication Date
JPH0947429A true JPH0947429A (en) 1997-02-18

Family

ID=16487058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7204233A Pending JPH0947429A (en) 1995-08-10 1995-08-10 Electronic endoscope

Country Status (1)

Country Link
JP (1) JPH0947429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517518A (en) * 1997-09-29 2001-10-09 ボストン サイエンティフィック コーポレイション Internal fluorescence imaging module for endoscope
JP2021141606A (en) * 2016-02-25 2021-09-16 株式会社半導体エネルギー研究所 Imaging system and manufacturing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517518A (en) * 1997-09-29 2001-10-09 ボストン サイエンティフィック コーポレイション Internal fluorescence imaging module for endoscope
JP4781528B2 (en) * 1997-09-29 2011-09-28 ボストン サイエンティフィック リミテッド Internal fluorescence imaging module for endoscope
JP2021141606A (en) * 2016-02-25 2021-09-16 株式会社半導体エネルギー研究所 Imaging system and manufacturing apparatus

Similar Documents

Publication Publication Date Title
US6657178B2 (en) Electron bombarded passive pixel sensor imaging
US5412705A (en) X-ray examination apparatus with an imaging arrangement having a plurality of image sensors
US6078643A (en) Photoconductor-photocathode imager
WO2012034401A1 (en) Radiation detector and its imaging device, electrode structure and image acquisition method
TWI227562B (en) Photoelectric conversion device, image scanning apparatus, and manufacturing method of the photoelectric conversion device
US20130048960A1 (en) Photoelectric conversion substrate, radiation detector, and radiographic image capture device
JPH11271457A (en) X-ray imaging system
JPH09135012A (en) Electromagnetic wave detector
JPH0947429A (en) Electronic endoscope
CN1844955A (en) Wide-spectrum short-wave infrared laser imaging detector
EP0583844B1 (en) X-ray examination apparatus with light concentration means and plural image sensors
FR2698184A1 (en) X-ray image sensing method and device using post-luminiscence of a scintillator
US10804085B2 (en) Photomultiplier and methods of making it
JPH04287580A (en) X-ray image pickup method and device, and fluorescent plate and cooling type ccd camera
Jung Image sensor technology for beam instrumentation
JPH1054878A (en) Fluorescent device and image pickup device and inspection device using the fluorescent device
JPH0980319A (en) Endoscope device
JPH063454A (en) Internal amplification type solid-state image sensor
JPH06290714A (en) X-ray image pick-up tube
WO2002063338A1 (en) X-ray detector
JP2003520345A (en) CCD array as multiple detector in optical imaging device
JPH05308149A (en) Soft x-ray detector
JP2003215255A (en) X-ray detector
Satoh et al. High-luminance fluorescent screen with interference filter
Aebi et al. Gallium-arsenide electron-bombarded CCD technology