JPH0946975A - Motor for electric vehicle - Google Patents
Motor for electric vehicleInfo
- Publication number
- JPH0946975A JPH0946975A JP7198447A JP19844795A JPH0946975A JP H0946975 A JPH0946975 A JP H0946975A JP 7198447 A JP7198447 A JP 7198447A JP 19844795 A JP19844795 A JP 19844795A JP H0946975 A JPH0946975 A JP H0946975A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- end coil
- stator
- coil
- heat receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Motor Or Generator Frames (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷却性能を向上さ
せた電気自動車用モータに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle motor with improved cooling performance.
【0002】[0002]
【従来の技術】図5は従来から知られている電気自動車
用モータの一例であり、例えばステータ1に巻きつけら
れたコイル2に車載バッテリーから電流が供給され、ス
テータ1に発生する回転磁界によりロータ3が回転して
駆動力を得るものである。このモータは、自動車に搭載
されるという制約のため、大容量の冷却装置で冷却する
ことができず、従来は、図のようにステータ1内に銅の
冷却パイプ4を回転軸方向に貫通させ、エンドプレート
5に形成された冷却水路5aから冷却水を強制循環させ
てステータ1を冷却している。2. Description of the Related Art FIG. 5 shows an example of a conventionally known motor for an electric vehicle. For example, a coil 2 wound around a stator 1 is supplied with an electric current from an on-vehicle battery to generate a rotating magnetic field in the stator 1. The rotor 3 rotates to obtain a driving force. This motor cannot be cooled by a large-capacity cooling device because it is mounted on an automobile, and conventionally, as shown in the figure, a copper cooling pipe 4 is passed through the stator 1 in the rotation axis direction. The cooling water is forcedly circulated from the cooling water passage 5a formed in the end plate 5 to cool the stator 1.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、図5に
示すようにステータ1の図示左右部分に引き出されたコ
イル2の折曲げ部、すなわちエンドコイル部211は多
数の巻線が集中しているため発熱量が大きいにもかかわ
らず、従来の冷却方法では、コイル2のステータ1に巻
きつけられた部分がステータ1を介して冷却されている
ため、エンドコイル部211の冷却が十分できない。そ
のため、巻線の絶縁被膜の劣化や焼損を避けるために電
流をあまり大きくできず、モータの小型化を図る上で障
害となっている。However, as shown in FIG. 5, many windings are concentrated in the bent portion of the coil 2, which is drawn out to the left and right portions of the stator 1 in the figure, that is, the end coil portion 211. Although the amount of heat generated is large, in the conventional cooling method, the portion of the coil 2 wound around the stator 1 is cooled via the stator 1, so that the end coil portion 211 cannot be sufficiently cooled. Therefore, the current cannot be increased so much in order to avoid deterioration or burnout of the insulating coating of the winding, which is an obstacle to downsizing of the motor.
【0004】本発明の目的は、ステータに巻きつけられ
たコイルのエンドコイル部を冷却し、冷却効率を向上さ
せた電気自動車用モータを提供することにある。An object of the present invention is to provide a motor for an electric vehicle in which an end coil portion of a coil wound around a stator is cooled to improve cooling efficiency.
【0005】[0005]
【課題を解決するための手段】一発明の実施の形態を示
す図2に対応付けて説明すると、本発明は、ステータ1
と、ステータ1に巻きつけられた複数のコイル2a,2
bと、ステータ1に発生する回転磁界により回転するロ
ータと、ステータ1を冷却する冷却装置4とを備える電
気自動車用モータに適用され、受熱部11aと放熱部1
1bとを有し、ステータ1端面側に引き出されたコイル
2a,2bのエンドコイル部211a,211bに受熱
部11aが接し、放熱部11bが冷却装置4に接するヒ
ートパイプ11Aを備え、受熱部11aは少なくとも一
方のコイル2aまたは2bに接触するように隣接する二
つのコイル2aおよび2b間に挿入されて上述の目的を
達成する。A stator 1 according to the present invention will be described with reference to FIG. 2 showing an embodiment of the present invention.
And a plurality of coils 2a, 2 wound around the stator 1.
b, a rotor that is rotated by a rotating magnetic field generated in the stator 1, and a cooling device 4 that cools the stator 1.
1b, the heat receiving portion 11a is in contact with the end coil portions 211a and 211b of the coils 2a and 2b that are drawn out to the end face side of the stator 1, and the heat radiating portion 11b is provided with the heat pipe 11A that is in contact with the cooling device 4. Is inserted between two adjacent coils 2a and 2b so as to contact at least one coil 2a or 2b to achieve the above-mentioned object.
【0006】ヒートパイプ11の受熱部11aは、隣接
するエンドコイル部211aおよび211b間に挟まれ
て少なくとも一方と接触する。コイル2a,2bのエン
ドコイル部211a,211bで発生した熱は、エンド
コイル部211a,211bに接触するヒートパイプ1
1の受熱部11aから放熱部11bを介して冷却装置4
へ輸送される。The heat receiving portion 11a of the heat pipe 11 is sandwiched between the adjacent end coil portions 211a and 211b and is in contact with at least one of them. The heat generated in the end coil portions 211a and 211b of the coils 2a and 2b is in contact with the end coil portions 211a and 211b.
1 from the heat receiving portion 11a through the heat radiating portion 11b to the cooling device 4
Transported to
【0007】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が発明の実施の形態に限定されるものではない。[0007] In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used to make the present invention easy to understand. However, the present invention is not limited to the embodiment.
【0008】[0008]
【発明の実施の形態】以下、図1〜図4を参照して本発
明の実施の形態を説明する。図1は本発明の電気自動車
用モータのステータ部の概略構成を示す斜視図であり、
図2は図1に示すステータ部の一部分を詳細に示した図
である。なお、図5と同一部分には同一の符号を付し
た。図2において、2a,2bはそれぞれコイルを示し
ている。211aはコイル2aに関するエンドコイル部
であり、コイル2aをステータ1に設けられたスリット
1aaとスリット1abとの間に巻つけられたときにで
きる折曲げ部である。同様に、211bはコイル2bの
エンドコイル部であり、ステータの端面側には各コイル
2a,2b…のエンドコイル部211a,211b…が
一体となって露出する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view showing a schematic configuration of a stator portion of an electric vehicle motor of the present invention,
FIG. 2 is a diagram showing in detail a part of the stator portion shown in FIG. The same parts as those in FIG. 5 are designated by the same reference numerals. In FIG. 2, reference numerals 2a and 2b respectively denote coils. Reference numeral 211a denotes an end coil portion related to the coil 2a, which is a bent portion formed when the coil 2a is wound between the slit 1aa and the slit 1ab provided in the stator 1. Similarly, 211b is an end coil portion of the coil 2b, and the end coil portions 211a, 211b ... Of the coils 2a, 2b ... Are integrally exposed on the end face side of the stator.
【0009】11Aはループ型細管ヒートパイプ(Loop
ed Capillary Heat Pipe、 以下ではLCHPと記す)
であり、その受熱部11aはコイル2aのエンドコイル
部211aとコイル2bのエンドコイル部211bとの
間に挿入されて両部と接触し、一方、LCHP11Aの
放熱部11bはステータ1に設けられた冷却パイプ4に
ロー付け等によって接続されている。他のLCHP11
B〜11Fについても同様であり、各々の受熱部11a
は対応する2つのエンドコイル部の間に挿入されて両部
に接触し、放熱部11bが対応する冷却パイプ4に各々
ロー付け等によって接続されている。図示しない反対側
のエンドコイル部211も同様の構造になっている。11A is a loop type thin pipe heat pipe (Loop)
ed Capillary Heat Pipe, hereinafter referred to as LCHP)
The heat receiving part 11a is inserted between the end coil part 211a of the coil 2a and the end coil part 211b of the coil 2b and contacts both parts, while the heat radiating part 11b of the LCHP 11A is provided on the stator 1. It is connected to the cooling pipe 4 by brazing or the like. Other LCHP11
The same applies to B to 11F, and each heat receiving portion 11a
Are inserted between the corresponding two end coil portions to contact both portions, and the heat radiating portion 11b is connected to the corresponding cooling pipe 4 by brazing or the like. The opposite end coil portion 211 (not shown) has the same structure.
【0010】図3において、(a)はLCHP11の一
例を示す図であり、図3(b)はコイル2aおよび2b
のエンドコイル部211aおよび211bとLCHP1
1Aとの関係を、ステーター1の図2のA方向から見た
図であり、図3(c)は図3(b)のB−B線に沿って
見た図である。図3(a)において、11cはLCHP
11内に設けられ、受熱部11aと放熱部11bとの間
を蛇行するループ状の細管である。細管11c内には純
水やフレオン等の二相凝縮性作動流体が充填されてい
る。細管11cは、例えば、アルミニウムのような高熱
伝導率の金属材料からなるプレートに、図3(a)に示
す細管11cと同じ形状の溝をプレスやエッチング等に
より形成した後、別の金属プレートを接合することによ
り形成される。なお、LCHP11の厚さは0.5mm
程度である。LCHP11は、例えば特開平4−190
090号公報や特公平2−35239号公報に開示され
ているような細管ヒートパイプの原理を利用したヒート
パイプである。In FIG. 3, (a) is a diagram showing an example of LCHP11, and FIG. 3 (b) is a diagram showing coils 2a and 2b.
End coil units 211a and 211b and LCHP1
1A is a view of the stator 1 viewed from the direction A of FIG. 2, and FIG. 3C is a view taken along line BB of FIG. 3B. In FIG. 3 (a), 11c is LCHP.
It is a loop-shaped thin tube provided inside 11 and meandering between the heat receiving portion 11a and the heat radiating portion 11b. The thin tube 11c is filled with a two-phase condensable working fluid such as pure water or Freon. The thin tube 11c is formed by, for example, forming a groove having the same shape as that of the thin tube 11c shown in FIG. 3A on a plate made of a metal material having a high thermal conductivity such as aluminum by pressing or etching, and then another metal plate is formed. It is formed by joining. The thickness of LCHP11 is 0.5 mm
It is a degree. LCHP11 is disclosed in, for example, Japanese Patent Laid-Open No. 4-190.
The heat pipe uses the principle of the thin tube heat pipe as disclosed in Japanese Patent Publication No. 090 and Japanese Patent Publication No. 2-35239.
【0011】コイル2aおよび2bのエンドコイル部2
11aおよび211bで発生した熱はそれぞれに接触す
るLCHP11の受熱部11aに伝達され、受熱部11
aの細管11c内で作動流体の核沸騰が発生する。この
核沸騰により圧力波が発生し、同時に蒸気泡群が発生す
る。そして、受熱部11aの細管11cの複数の箇所で
発生する核沸騰の相互作用により作動流体が振動する。
細管11c内の管軸方向の作動流体の振動に際して、細
管11cの内壁表面に発生する流動境界層と内壁とを熱
媒体として流体内に激しい均熱化作用を発生する。した
がって、発熱した熱量を高温部である受熱部11aから
低温部である放熱部11bに向って効率よく輸送するこ
とができる。ここで述べた原理は、上記特開平4−19
0090号公報や特公平2−35239号公報に詳しく
開示されており、既知の原理であるので詳細説明は省略
する。このようにして受熱部11aから放熱部11bに
輸送された熱は、冷却パイプ4を介して冷却水へ伝達さ
れる。End coil portion 2 of coils 2a and 2b
The heat generated in 11a and 211b is transferred to the heat receiving portion 11a of the LCHP 11 which is in contact with the heat receiving portion 11a.
Nucleate boiling of the working fluid occurs in the thin tube 11c of a. A pressure wave is generated by this nucleate boiling, and at the same time, a vapor bubble group is generated. Then, the working fluid vibrates due to the interaction of nucleate boiling generated at a plurality of locations of the thin tube 11c of the heat receiving portion 11a.
When the working fluid in the tube 11c is vibrated in the axial direction, the fluid boundary layer and the inner wall generated on the surface of the inner wall of the tube 11c are used as a heat medium to generate a severe soaking action in the fluid. Therefore, the amount of heat generated can be efficiently transported from the heat receiving portion 11a, which is a high temperature portion, to the heat radiating portion 11b, which is a low temperature portion. The principle described here is based on the above-mentioned JP-A-4-19.
It is disclosed in detail in Japanese Patent Publication No. 0090 and Japanese Patent Publication No. 2-35239, and since it is a known principle, detailed description thereof will be omitted. The heat thus transported from the heat receiving portion 11a to the heat radiating portion 11b is transferred to the cooling water via the cooling pipe 4.
【0012】上述したように、本発明の実施の形態では
ステータ1から引出されたエンドコイル部211の隣り
合う2つのエンドコイル部間にLCHP11A〜11F
の受熱部11aを挿入して接触する両部の一方または両
方を冷却しているため、エンドコイル部211を効率良
く冷却することができる。その結果、より大きな電流を
コイル2に流すことができるため、モータの電流を大き
くしてモータ出力を大きくすることができる。すなわ
ち、同じ出力に対してモータを小型化することができ
る。As described above, in the embodiment of the present invention, the LCHPs 11A to 11F are provided between the two adjacent end coil portions of the end coil portion 211 pulled out from the stator 1.
Since one or both of the two parts that are in contact with each other by inserting the heat receiving part 11a are cooled, the end coil part 211 can be efficiently cooled. As a result, a larger current can be passed through the coil 2, so that the motor current can be increased and the motor output can be increased. That is, the motor can be downsized for the same output.
【0013】図4はLCHPの変形例であり、(a)お
よび(b)は第1の変形例、(c)は第2の変形例を示
す。図4(a)LCHP111の構造を示す図であり、
その内部には受熱部111aと放熱部111bとの間を
蛇行するループ状の細管111cが形成されている。放
熱部111bには、後述するように隣り合うLCHP1
11同士を接続するためのリベット用孔111d〜11
1gが設けられている。細管111cは、リベット用孔
111d〜111gを避けるように形成されている。FIG. 4 shows a modification of LCHP, where (a) and (b) show a first modification, and (c) shows a second modification. FIG. 4 (a) is a diagram showing a structure of LCHP111,
A loop-shaped thin tube 111c meandering between the heat receiving portion 111a and the heat radiating portion 111b is formed therein. As will be described later, the LCHPs 1 adjacent to each other are provided in the heat dissipation portion 111b.
Rivet holes 111d to 11 for connecting 11 to each other
1 g is provided. The thin tube 111c is formed so as to avoid the rivet holes 111d to 111g.
【0014】図4(b)はLCHP111Aおよび11
1Bをロー付け等によって冷却パイプ4に取り付けた図
であり、LCHP111C〜111Fおよびエンドコイ
ル部211を省略して示した。LCHP111Aの孔1
11fおよび111gとLCHP111Bの孔111d
および111eとにリベット20がそれぞれ挿入され、
LCHP111AとLCHP111Bとのリベット接続
が行われる。LCHP111C〜111Fも同様に接続
するが、LCHP111Aおよび111F間について
は、接続されて一体となったLCHP111A〜111
Fの各受熱部11aをエンドコイル部211に挿入した
後にリベット接続される。一体となったLCHP111
A〜111Fは、LCHPの各々の受熱部111aを対
応する2つのエンドコイル部の間に挿入されて両部に接
触する。その後、LCHP111A〜111Fの各放熱
部111bが対応する冷却パイプ4にそれぞれロー付け
等によって接続される。FIG. 4 (b) shows LCHP111A and 11
It is the figure which attached 1B to the cooling pipe 4 by brazing etc., and showed LCHP111C-111F and the end coil part 211 abbreviate | omitted. Hole 1 of LCHP111A
11f and 111g and hole 111d of LCHP111B
And rivets 20 are inserted into 111e and 111e, respectively,
Rivet connection is made between the LCHP 111A and the LCHP 111B. The LCHPs 111C to 111F are similarly connected, but the LCHPs 111A to 111F are connected and integrated into the LCHPs 111A to 111F.
After inserting each heat receiving part 11a of F into the end coil part 211, it is connected by rivets. LCHP111 integrated
A to 111F are inserted between the two end coil parts corresponding to each heat receiving part 111a of the LCHP and contact both parts. After that, the heat radiation portions 111b of the LCHPs 111A to 111F are connected to the corresponding cooling pipes 4 by brazing or the like.
【0015】図4(c)に示す第2の変形例のLCHP
112は、受熱部112aと放熱部112bとの間に幅
の小さな部分112hを有しているため、LCHP11
2を2つのエンドコイル部211の隙間に挿入したとき
に、その隙間に沿って幅の小さな部分112hが容易に
変形することができる。そのため、エンドコイル部21
1との接触面積が増してエンドコイル部211およびL
CHP111間の熱伝達性能が向上する。なお、112
cは細管であり、112d〜112gはそれぞれリベッ
ト用の孔である。The LCHP of the second modification shown in FIG. 4 (c).
Since the 112 has a narrow portion 112h between the heat receiving portion 112a and the heat radiating portion 112b, the LCHP11
When 2 is inserted into the gap between the two end coil portions 211, the narrow portion 112h can be easily deformed along the gap. Therefore, the end coil portion 21
The contact area with 1 increases and the end coil portions 211 and L
The heat transfer performance between the CHPs 111 is improved. Note that 112
c is a thin tube, and 112d to 112g are holes for rivets.
【0016】以上の発明の実施の形態では、ヒートパイ
プとしてパネル状のループ型細管ヒートパイプを用いて
エンドコイル部211を冷却したが、ヒートパイプであ
ればどのようなものでもよく、例えば、一般的な円筒形
ヒートパイプを用いてもよい。さらに、図1のようにエ
ンドコイル部211にLCHP11を配設した後に、樹
脂等によって一体に覆うようにしてもよく、そうするこ
とによってエンドコイル部211からLCHP11への
熱伝達が向上する。また、図4(a)では隣り合うLC
HP11をリベット20で結合したが、リベット以外の
締結具を用いてもよく、さらには、ロー付け等で結合し
てもよい。In the embodiment of the invention described above, the end coil portion 211 is cooled by using a panel-shaped loop type thin pipe heat pipe as the heat pipe, but any heat pipe may be used, for example, in general. A cylindrical heat pipe may be used. Further, as shown in FIG. 1, after the LCHP 11 is arranged in the end coil portion 211, it may be integrally covered with a resin or the like, which improves heat transfer from the end coil portion 211 to the LCHP 11. In addition, in FIG.
Although the HP 11 is connected by the rivet 20, a fastener other than the rivet may be used, and further, the HP 11 may be connected by brazing or the like.
【0017】上述した発明の実施の形態と特許請求の範
囲との対応において、LCHP11,LCHP11A〜
11F,111,111A〜111Fおよび112はヒ
ートパイプを、冷却パイプ4は冷却装置をそれぞれ構成
している。In the correspondence between the embodiment of the invention described above and the claims, LCHP11, LCHP11A to
11F, 111, 111A to 111F and 112 constitute a heat pipe, and the cooling pipe 4 constitutes a cooling device.
【0018】[0018]
【発明の効果】以上説明したように、本発明によれば、
隣接する一対のエンドコイル部の間に受熱部を挿入して
両エンドコイル部で発生する熱を冷却装置に伝達するヒ
ートパイプを設けたため、エンドコイル部をコンパクト
に維持したままで冷却効率の向上を図ることができる。
その結果、コイルにより大きな電流を流すことができる
ため、モータの小型化を図れる。As described above, according to the present invention,
A heat receiving part is inserted between a pair of adjacent end coil parts to provide a heat pipe that transfers the heat generated in both end coil parts to the cooling device, so the cooling efficiency is improved while keeping the end coil parts compact. Can be achieved.
As a result, a large current can be passed through the coil, so that the motor can be downsized.
【図1】本発明によるモータにおけるステータ部の斜視
図。FIG. 1 is a perspective view of a stator portion of a motor according to the present invention.
【図2】図1に示すステータ部の一部分を詳細に示す
図。FIG. 2 is a diagram showing in detail a part of a stator portion shown in FIG.
【図3】LCHPを説明する図であり、(a)はLCH
Pの詳細図、(b)は図2のA方向から見た図、(c)
は(b)のB−B断面図。FIG. 3 is a diagram illustrating LCHP, in which (a) is LCH.
Detailed view of P, (b) is a view seen from the direction A of FIG. 2, (c)
Is a BB cross-sectional view of (b).
【図4】LCHPの変形例を示す図であり、(a)およ
び(b)は第1の変形例、(c)は第2の変形例であ
る。FIG. 4 is a diagram showing a modification of LCHP, in which (a) and (b) are a first modification, and (c) is a second modification.
【図5】従来のモータの断面図。FIG. 5 is a sectional view of a conventional motor.
【符号の説明】 1 ステータ 1aa,1ab スリット 2,2a,2b コイル 4 冷却パイプ 11,11A〜11F,111,111A〜111F,
112 ループ型細管ヒートパイプ(LCHP) 11a,111a,112a 受熱部 11b,111b,112b 放熱部 11c,111c,112c 細管 211,211a,211b エンドコイル部[Description of Reference Signs] 1 stator 1aa, 1ab slit 2, 2a, 2b coil 4 cooling pipe 11, 11A to 11F, 111, 111A to 111F,
112 loop type thin tube heat pipe (LCHP) 11a, 111a, 112a heat receiving section 11b, 111b, 112b heat radiating section 11c, 111c, 112c thin tube 211, 211a, 211b end coil section
Claims (1)
れた複数のコイルと、前記ステータに発生する回転磁界
により回転するロータと、前記ステータを冷却する冷却
装置とを備える電気自動車用モータにおいて、 受熱部と放熱部とを有し、前記ステータ端面側に引き出
された前記コイルのエンドコイル部に前記受熱部が接
し、前記放熱部が前記冷却装置に接するヒートパイプを
備え、前記受熱部は少なくとも一方のコイルに接触する
ように隣接する二つのコイル間に挿入されていることを
特徴とする電気自動車用モータ。1. A motor for an electric vehicle, comprising: a stator; a plurality of coils wound around the stator; a rotor that is rotated by a rotating magnetic field generated in the stator; and a cooling device that cools the stator. Portion and a heat radiating portion, the heat receiving portion is in contact with the end coil portion of the coil pulled out to the stator end face side, and the heat radiating portion includes a heat pipe in contact with the cooling device, and the heat receiving portion is at least one. A motor for an electric vehicle, which is inserted between two adjacent coils so as to come into contact with the coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7198447A JPH0946975A (en) | 1995-08-03 | 1995-08-03 | Motor for electric vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7198447A JPH0946975A (en) | 1995-08-03 | 1995-08-03 | Motor for electric vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0946975A true JPH0946975A (en) | 1997-02-14 |
Family
ID=16391253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7198447A Pending JPH0946975A (en) | 1995-08-03 | 1995-08-03 | Motor for electric vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0946975A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1205020A1 (en) * | 1999-08-16 | 2002-05-15 | American Superconductor Corporation | Water cooled stator winding of an electric motor |
US7423356B2 (en) | 1999-08-16 | 2008-09-09 | American Superconductor Corporation | Thermally-conductive stator support structure |
US7619345B2 (en) | 2006-01-30 | 2009-11-17 | American Superconductor Corporation | Stator coil assembly |
CN103959606A (en) * | 2011-09-08 | 2014-07-30 | 西门子公司 | Stator for electric motor |
US20150303778A1 (en) * | 2012-11-22 | 2015-10-22 | Compact Dynamics Gmbh | Method for soldering a stator to a cooler, and stator comprising a solder connection to the stator support |
CN111049340A (en) * | 2020-01-10 | 2020-04-21 | 葛素琴 | Assembling method of water-cooled shell and stator |
JP2021083203A (en) * | 2019-11-18 | 2021-05-27 | 株式会社デンソー | Rotary electric machine |
US11848598B2 (en) | 2021-11-30 | 2023-12-19 | Hyundai Motor Company | End coil cooling structure for an induction motor |
-
1995
- 1995-08-03 JP JP7198447A patent/JPH0946975A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1205020A4 (en) * | 1999-08-16 | 2003-08-27 | American Superconductor Corp | Water cooled stator winding of an electric motor |
US7423356B2 (en) | 1999-08-16 | 2008-09-09 | American Superconductor Corporation | Thermally-conductive stator support structure |
US7589441B2 (en) | 1999-08-16 | 2009-09-15 | American Superconductor Corporation | Circumferentially wound cooling tube structure for cooling a stator |
EP1205020A1 (en) * | 1999-08-16 | 2002-05-15 | American Superconductor Corporation | Water cooled stator winding of an electric motor |
US7619345B2 (en) | 2006-01-30 | 2009-11-17 | American Superconductor Corporation | Stator coil assembly |
US9768666B2 (en) | 2011-09-08 | 2017-09-19 | Siemens Aktiengesellschaft | External cooling tube arrangement for a stator of an electric motor |
CN103959606A (en) * | 2011-09-08 | 2014-07-30 | 西门子公司 | Stator for electric motor |
US20150303778A1 (en) * | 2012-11-22 | 2015-10-22 | Compact Dynamics Gmbh | Method for soldering a stator to a cooler, and stator comprising a solder connection to the stator support |
US9356495B2 (en) * | 2012-11-22 | 2016-05-31 | Compact Dynamics Gmbh | Method for soldering a stator to a cooler, and stator comprising a solder connection to the stator support |
JP2021083203A (en) * | 2019-11-18 | 2021-05-27 | 株式会社デンソー | Rotary electric machine |
CN111049340A (en) * | 2020-01-10 | 2020-04-21 | 葛素琴 | Assembling method of water-cooled shell and stator |
CN111049340B (en) * | 2020-01-10 | 2020-09-25 | 葛素琴 | Assembling method of water-cooled shell and stator |
US11848598B2 (en) | 2021-11-30 | 2023-12-19 | Hyundai Motor Company | End coil cooling structure for an induction motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08126253A (en) | Electric motor for electric automobile | |
WO2002043228A1 (en) | Linear motor | |
JP2007104783A (en) | Dynamo-electric machine for vehicle | |
JPH07111759A (en) | Water-cooled motor housing | |
JP2001223490A (en) | Heat absorbing device | |
JPH0851743A (en) | Motor with built-in inverter | |
JPH0946975A (en) | Motor for electric vehicle | |
JP2001099592A (en) | Duplex type heat exchanger | |
JP2004028389A (en) | Acoustic cooling device, temperature gradient generating unit and manufacturing method | |
JP2010156533A (en) | Looped heat pipe | |
JP2022514727A (en) | A heat sink used for an electric motor, an electric motor, and a cooling method for this electric motor. | |
JP2001327152A (en) | Linear motor | |
JP4983561B2 (en) | Superconducting motor | |
JPH07170695A (en) | Alternator for vehicle | |
JPH08298752A (en) | Motor for electric vehicle | |
JPH11317482A (en) | Heat sink | |
JPH08278091A (en) | Manufacture of heat pipe type cooling unit | |
JPH10144831A (en) | Heat sink with heat pipe | |
JP2870618B2 (en) | Ion laser tube | |
JP4128935B2 (en) | Water-cooled heat sink | |
JP2010226918A (en) | Motor stator | |
JP2000018852A (en) | Heat sink with heat pipe and its manufacture | |
JPH08298751A (en) | Electrically-driven motor for electric vehicle | |
US20230006515A1 (en) | Rotor plate and rotor assembly including the same | |
JPH1189165A (en) | Heat-dissipating structure for sr motor |