JPH0946210A - Ecl-cmos level conversion circuit - Google Patents

Ecl-cmos level conversion circuit

Info

Publication number
JPH0946210A
JPH0946210A JP7193564A JP19356495A JPH0946210A JP H0946210 A JPH0946210 A JP H0946210A JP 7193564 A JP7193564 A JP 7193564A JP 19356495 A JP19356495 A JP 19356495A JP H0946210 A JPH0946210 A JP H0946210A
Authority
JP
Japan
Prior art keywords
potential
level
channel mosfet
output
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7193564A
Other languages
Japanese (ja)
Other versions
JP2728039B2 (en
Inventor
Yukio Tamegaya
幸夫 為ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7193564A priority Critical patent/JP2728039B2/en
Publication of JPH0946210A publication Critical patent/JPH0946210A/en
Application granted granted Critical
Publication of JP2728039B2 publication Critical patent/JP2728039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ECL-CMOS level conversion circuit provided with a logic function which is speeded up by the improvement of driving capacity and the reduction of the number of logic stages. SOLUTION: ECL input signals are amplified by differential amplifiers (101 and 104). The output signals are added to P-channel MOSFET (T11). The outputs of the differential amplifiers (101 and 104) are level-shifted by emitter follower circuits (102 and 105) and are added to N-channel MOSFET (T13 and T14) so as to constitute a logic circuit. The level conversion circuit and the logic circuit are collected into one and therefore effect that the number of the logic stages is smaller and operation is faster than a conventional circuit is given. Furthermore, there is an advantage that the circuit can easily be extended to multiple inputs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はECL−CMOSレ
ベル変換に関し、特に論理機能を有するECL−CMO
Sレベル変換回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ECL-CMOS level conversion, and more particularly to ECL-CMO having a logical function.
The present invention relates to an S level conversion circuit.

【0002】[0002]

【従来の技術】従来の論理機能を有するECL−CMO
Sレベル変換回路の構成を示す図5を参照すると、この
従来のECL−CMOSレベル変換回路は、入力端子A
とバイポーラトランジスタ(Q31,Q32)と負荷抵
抗(R31,R32)とで構成されるバイポーラ差動増
幅器51と、MOSFET(T31,T32,T41,
T42)で構成されるCMOS差動増幅器52と、入力
端子Bとバイポーラトランジスタ(Q33,Q34)と
負荷抵抗(R33,R34)とで構成されるバイポーラ
差動増幅器54と、MOSFET(T33,T34,T
43,T44)で構成されるCMOS増幅器55と、C
MOS増幅器52および53の出力のそれぞれを受けM
OSFET(T35,T36,T45,T46)からな
るCMOS論理回路を有する。
2. Description of the Related Art ECL-CMO having a conventional logic function
Referring to FIG. 5 showing the configuration of the S level conversion circuit, this conventional ECL-CMOS level conversion circuit has an input terminal A
A bipolar differential amplifier 51 composed of a bipolar transistor (Q31, Q32) and a load resistor (R31, R32), and a MOSFET (T31, T32, T41,
CMOS differential amplifier 52 composed of T42), a bipolar differential amplifier 54 composed of an input terminal B, bipolar transistors (Q33, Q34) and load resistors (R33, R34), and MOSFETs (T33, T34, T
43, T44) and a CMOS amplifier 55, and C
M of each of the outputs of the MOS amplifiers 52 and 53
It has a CMOS logic circuit composed of OSFETs (T35, T36, T45, T46).

【0003】すなわち、従来の論理機能を有するECL
−CMOSレベル変換回路は、図5に示すように、バイ
ポーラの差動増幅器と、CMOSの差動増幅器と、CM
OSの論理回路とを有してその論理段数が3段構成にな
っている。
That is, ECL having a conventional logical function
As shown in FIG. 5, the CMOS level conversion circuit includes a bipolar differential amplifier, a CMOS differential amplifier, and a CM.
It has an OS logic circuit and the number of logic stages is three.

【0004】次に図6の信号波形図を併せて参照して、
図5に示す従来例のECL−CMOSレベル変換回路の
回路動作について説明する。入力端子A,BにはECL
レベルの信号を入力し、基準電位Vrefより高いレベ
ルを高レベル、基準電位Vrefより低いレベルを低レ
ベルと呼ぶことにする。
Next, referring also to the signal waveform diagram of FIG. 6,
The circuit operation of the conventional ECL-CMOS level conversion circuit shown in FIG. 5 will be described. ECL for input terminals A and B
A level signal is input, and a level higher than the reference potential Vref is called a high level and a level lower than the reference potential Vref is called a low level.

【0005】時刻t1において、入力端子Aに低レベル
の信号を加えると、NPNトランジスタQ31はオフ,
NPNトランジスタQ32はオンするので、トランジス
タQ31のコレクタ電位は高電位Vccまで上がり、ト
ランジスタQ32のコレクタ電位は電流I31と抵抗R
32の積で決まる電圧分だけ高電位Vccから下がる。
従ってMOSトランジスタT31はオンし、MOSトラ
ンジスタT41に電流が流れ、MOSトランジスタT4
2がオンする。またMOSトランジスタT32はオフに
なるので接続点A′のレベルは低電位VEEになる。
At time t1, when a low level signal is applied to the input terminal A, the NPN transistor Q31 turns off.
Since the NPN transistor Q32 is turned on, the collector potential of the transistor Q31 rises to the high potential Vcc, and the collector potential of the transistor Q32 is the current I31 and the resistance R.
It falls from the high potential Vcc by a voltage determined by the product of 32.
Therefore, the MOS transistor T31 turns on, a current flows through the MOS transistor T41, and the MOS transistor T4
2 turns on. Further, since the MOS transistor T32 is turned off, the level of the connection point A'becomes the low potential VEE.

【0006】時刻t3において、入力端子Aに高レベル
の信号を加えると、トランジスタQ31はオン,トラン
ジスタQ32はオフするので、トランジスタQ31のコ
レクタ電位は電流I31と抵抗R31の積で決まる電圧
分だけ電位Vccから下がり、トランジスタQ32のコ
レクタ電位は高電位Vccまで上がる。従ってトランジ
スタT31はオンになるので接続点A′のレベルは高電
位Vccになる。
At time t3, when a high level signal is applied to the input terminal A, the transistor Q31 turns on and the transistor Q32 turns off. Therefore, the collector potential of the transistor Q31 is equal to the voltage determined by the product of the current I31 and the resistor R31. It falls from Vcc, and the collector potential of the transistor Q32 rises to the high potential Vcc. Therefore, the transistor T31 is turned on, and the level of the connection point A'becomes the high potential Vcc.

【0007】入力端子Bと接続点B′の関係は、前述し
た動作と全く同一なので説明を省略する。
The relationship between the input terminal B and the connection point B'is exactly the same as the above-mentioned operation, so that the description thereof will be omitted.

【0008】時刻t1において、接続点A′が低レベル
で接続点B′が低レベルのとき、トランジスタ(T3
5,T36)がオンして、トランジスタ(T45,T4
6)がオフするので、出力端子Cの電位は高電位Vcc
になる。時刻t2において、接続点A′が低レベルで接
続点B′が高レベルのとき、トランジスタ(T35,T
46)がオンして、トランジスタ(T36,T45)が
オフするので、出力端子Cの電位は低電位VEEにな
る。時刻t3において、接続点A′が高レベルで接続点
B′が低レベルのとき、トランジスタ(T36,T4
5)がオンして、トランジスタ(T35,T46)がオ
フするので、出力端子Cの電位は低電位VEEになる。
時刻t4において、接続点A′が高レベルで接続点B′
が高レベルの時、トランジスタ(T45,T46)がオ
ンして、トランジスタ(T35,T36)がオフするの
で、出力端子Cの電位は低電位VEEになる。
At time t1, when the connection point A'is low level and the connection point B'is low level, the transistor (T3
5, T36) is turned on and the transistors (T45, T4)
6) is turned off, the potential of the output terminal C is high potential Vcc.
become. At the time t2, when the connection point A'is at the low level and the connection point B'is at the high level, the transistors (T35, T
46) is turned on and the transistors (T36, T45) are turned off, so that the potential of the output terminal C becomes the low potential VEE. At time t3, when the connection point A ′ is at the high level and the connection point B ′ is at the low level, the transistors (T36, T4
Since 5) is turned on and the transistors (T35, T46) are turned off, the potential of the output terminal C becomes the low potential VEE.
At time t4, the connection point A ′ is at a high level and the connection point B ′ is
Is high, the transistors (T45, T46) are turned on and the transistors (T35, T36) are turned off, so that the potential of the output terminal C becomes the low potential VEE.

【0009】以上説明した様に、2つのECLレベル入
力信号に対して、CMOSレベルの信号を出力するNO
R回路として動作する。
As described above, NO for outputting a CMOS level signal to two ECL level input signals
It operates as an R circuit.

【0010】[0010]

【発明が解決しようとする課題】この従来のECL−C
MOSレベル変換回路は、差動増幅器、レベル変換回
路、論理回路の3段構成になっており論理段数が多く、
動作速度が遅いという問題点があった。
[Problems to be Solved by the Invention] This conventional ECL-C
The MOS level conversion circuit has a three-stage configuration including a differential amplifier, a level conversion circuit, and a logic circuit, and has a large number of logic stages.
There was a problem that the operation speed was slow.

【0011】[0011]

【課題を解決するための手段】本発明のECL−CMO
Sレベル変換回路は、ECLレベルの第1の入力信号を
非反転入力端子へ入力し基準電位を反転入力端子に入力
する第1の差動増幅器と、ECLレベルの第2の入力信
号を非反転入力端子へ入力し前記基準電位を反転入力端
子に入力する第2の差動増幅器と、前記第1の差動増幅
器の出力を受ける第1のエミッタフォロワ回路と、前記
第2の差動増幅器の出力を受ける第2のエミッタフォロ
ワ回路と、前記第1の差動増幅器の出力をゲートに受け
る第1のPチャネルMOSFETと、前記第2の差動増
幅器の出力をゲートに受ける第2のPチャネルMOSF
ETと、前記第1のエミッタフォロワ回路の出力を第1
の電位のレベルに分割する第1のエミッタフォロワ抵抗
と、前記第の電位のゲートに受ける第1のNチャネルM
OSFETと、前記第2のエミッタフォロワ回路の出力
を第2の電位のレベルに分割する第2のエミッタフォロ
ワ抵抗と、前記第2の電位をゲートに受ける第2のNチ
ャネルMOSFETとを備え、前記第1の電位のレベル
を前記第1のNチャネルのMOSFETのしきい値電圧
に対応した電位に前記第2の電位のレベルを前記第2の
NチャネルMOSFETのしきい値電圧に対応した電位
に設定した構成である。また、本発明のECL−CMO
Sレベル変換回路の前記第1のNチャネルMOSFET
と前記第2のNチャネルMOSFETとが直列接続され
前記第1のPチャネルMOSFETと前記第2のPチャ
ネルMOSFETとが並列接続される構成とすることも
できる。
ECL-CMO of the present invention
The S-level conversion circuit inputs a first input signal of ECL level to a non-inverting input terminal and a reference potential to an inverting input terminal, and a second input signal of ECL level to non-inverting. A second differential amplifier for inputting to the input terminal and inputting the reference potential to the inverting input terminal, a first emitter follower circuit for receiving the output of the first differential amplifier, and a second differential amplifier A second emitter follower circuit that receives an output, a first P-channel MOSFET that receives the output of the first differential amplifier at its gate, and a second P-channel that receives the output of the second differential amplifier at its gate. MOSF
ET and the output of the first emitter follower circuit
And a first N-channel M received by the gate of the first potential.
An OSFET, a second emitter follower resistor that divides the output of the second emitter follower circuit into a level of a second potential, and a second N-channel MOSFET that receives the second potential at its gate, The level of the first potential is a potential corresponding to the threshold voltage of the first N-channel MOSFET, and the level of the second potential is a potential corresponding to the threshold voltage of the second N-channel MOSFET. It is the set configuration. In addition, the ECL-CMO of the present invention
The first N-channel MOSFET of the S level conversion circuit
And the second N-channel MOSFET may be connected in series, and the first P-channel MOSFET and the second P-channel MOSFET may be connected in parallel.

【0012】さらにまた、本発明の他のECL−CMO
Sレベル変換回路は、ECLレベルの第1の入力信号を
非反転入力端子へ入力し基準電位を反転入力端子に入力
する第1の差動増幅器と、ECLレベルの第2の入力信
号を非反転入力端子へ入力し前記基準電圧を反転入力端
子に入力する第2の差動増幅器と、前記第1の差動増幅
器の出力を受ける第1のエミッタフロワ回路と、前記第
2の差動増幅器の出力を受ける第2のエミッタフォロワ
回路と、前記第1の差動増幅器の出力をゲートに受ける
第1のPチャネルMOSFETと、前記第2の差動増幅
器の出力をゲートに受ける第2のPチャネルMOSFE
Tと、前記第1のエミッタフォロワ回路の出力を第1の
電位のレベルに分割する第1のエミッタフォロワ抵抗
と、前記第1の電位をゲートに受ける第1のNチャネル
MOSFETと、前記第2のエミッタフォロワ回路の出
力を第2の電位のレベルに分割する第2のエミッタフォ
ロワ抵抗と、前記第2の電位をゲートに受ける第2のN
チャネルMOSFETとを備え、前記第1の差動増幅器
の出力の電位のレベルを前記第1のPチャネルのMOS
FETのしきい値電圧に対応した電位に前記第2の差動
増幅器の出力の電位のレベルを前記第2のPチャネルM
OSFETのしきい値電に対応した電位に設定した構成
とすることもできる。さらに、本発明の他のECL−C
MOSレベル変換回路の前記第1のNチャネルMOSF
ETと前記第2のNチャネルMOSFETとが並列接続
され前記第1のPチャネルMOSFETと前記第2のP
チャネルMOSFETとが直列接続される構成とするこ
ともできる。
Furthermore, another ECL-CMO of the present invention.
The S-level conversion circuit inputs a first input signal of ECL level to a non-inverting input terminal and a reference potential to an inverting input terminal, and a second input signal of ECL level to non-inverting. A second differential amplifier for inputting to the input terminal and inputting the reference voltage to the inverting input terminal; a first emitter-floor circuit for receiving the output of the first differential amplifier; and a second differential amplifier A second emitter follower circuit that receives an output, a first P-channel MOSFET that receives the output of the first differential amplifier at its gate, and a second P-channel that receives the output of the second differential amplifier at its gate. MOSFE
T, a first emitter follower resistor that divides the output of the first emitter follower circuit into a first potential level, a first N-channel MOSFET that receives the first potential at its gate, and the second A second emitter follower resistor for dividing the output of the emitter follower circuit into a second potential level, and a second N gate for receiving the second potential at the gate.
A channel MOSFET, and sets the potential level of the output of the first differential amplifier to the first P-channel MOS.
The potential level of the output of the second differential amplifier is set to the potential corresponding to the threshold voltage of the FET.
It is also possible to adopt a configuration in which the potential corresponding to the threshold voltage of the OSFET is set. Furthermore, another ECL-C of the present invention
The first N-channel MOSF of the MOS level conversion circuit
ET and the second N-channel MOSFET are connected in parallel, and the first P-channel MOSFET and the second P-channel MOSFET are connected.
The channel MOSFET and the channel MOSFET may be connected in series.

【0013】[0013]

【発明の実施の形態】次に本発明について、図面を参照
して説明する。図1は、本発明の第1の実施の形態を示
す回路図である。トランジスタ(Q11,Q12)とで
構成される差動増幅器101と、トランジスタ(Q1
4,Q15)とで構成される差動増幅器104と、トラ
ンジスタQ13と抵抗R12および抵抗R13で構成さ
れるエミッタフォロワ回路102と、トランジスタQ1
6と抵抗R15および抵抗R16で構成されるエミッタ
フォロワ回路105と、MOSFET(T11〜T1
4)で構成される論理回路103とを備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing a first embodiment of the present invention. A differential amplifier 101 composed of transistors (Q11, Q12) and a transistor (Q1
4, Q15), an emitter follower circuit 102 including a transistor Q13, a resistor R12 and a resistor R13, and a transistor Q1.
6 and a resistor R15 and a resistor R16, and an MOSFET (T11 to T1).
4) and the logic circuit 103.

【0014】さらに、抵抗R12と抵抗R13との接点
A2の電位はトランジスタT13のしきい値電圧に対応
した電位(例えば、1V)に設定し、抵抗R15と抵抗
R16の接点B2の電位はトランジスタT14のしきい
値に対応した電位に設定する。
Further, the potential of the contact A2 between the resistors R12 and R13 is set to a potential (for example, 1 V) corresponding to the threshold voltage of the transistor T13, and the potential of the contact B2 between the resistors R15 and R16 is set to the transistor T14. Set to a potential corresponding to the threshold of.

【0015】次に、各接点における信号波形図を示す図
2を参照して、本実施の形態の動作を説明する。時刻t
1において、入力端子Aに低レベル、入力端子Bに低レ
ベルの信号を加えると、トランジスタQ11がオフ、ト
ランジスタQ12がオンするので接点A1は高電位Vc
cまで上がり、接点A2は接点A1からトランジスタQ
13の順方向電圧VBEを引いて抵抗R12と抵抗R1
3とで分圧した電位になりトランジスタT13の閾値電
圧よりも高くなる。またトランジスタQ14がオフ、ト
ランジスタQ15がオンするので接点B1は高電位Vc
cまで上がり、接点B2は接点B1からトランジスタQ
16の順方向電圧VBEを引いて抵抗R15と抵抗R1
6とで分圧した電位になりトランジスタT14の閾値電
圧よりも高くなる。従って、トランジスタT11,T1
2はオフで、トランジスタT13,T14はオンになる
ので、出力端子Cの電位は低電位VEE近くまで下が
る。
Next, the operation of the present embodiment will be described with reference to FIG. 2 showing a signal waveform diagram at each contact. Time t
1, when a low level signal is applied to the input terminal A and a low level signal is applied to the input terminal B, the transistor Q11 is turned off and the transistor Q12 is turned on, so that the contact A1 is at the high potential Vc.
The contact A2 goes up from the contact A1 to the transistor Q.
The forward voltage VBE of 13 is subtracted from the resistors R12 and R1.
The potential is divided by 3 and becomes higher than the threshold voltage of the transistor T13. Further, since the transistor Q14 is off and the transistor Q15 is on, the contact B1 is at the high potential Vc.
up to c, the contact B2 goes from the contact B1 to the transistor Q
16 forward voltage VBE is subtracted to obtain resistors R15 and R1.
The potential is divided by 6 and becomes higher than the threshold voltage of the transistor T14. Therefore, the transistors T11 and T1
Since 2 is off and the transistors T13 and T14 are on, the potential of the output terminal C drops to near the low potential VEE.

【0016】時刻t2において、入力端子Aに低レベ
ル、入力端子Bに高レベルの信号を加えると、トランジ
スタQ11がオフ、トランジスタQ12がオンするので
接点A1は高電位Vccまで上がり、接点A2は接点A
1からトランジスタQ13の順方向電圧VBEを引いて
抵抗R12と抵抗R13とで分圧した電位になりトラン
ジスタT13の閾値電圧よりも高くなる。またトランジ
スタQ14がオン、トランジスタQ15がオフするので
接点B1はVccから電流I12と抵抗R14の積の電
圧分だけ下がり、接点B2は接点B1からトランジスタ
Q16のVBEを引いて抵抗R15と抵抗R16とで分
圧した電位になりトランジスタT14の閾値電圧よりも
低くなる。従って、トランジスタT12,T13はオン
でトランジスタT14の閾値電圧よりも低くなる。従っ
て、トランジスタT12,T13はオンでトランジスタ
T11,T14がオフになるため、出力端子Cの電位は
高電位Vcc近くまで上がる。
At time t2, when a low level signal is applied to the input terminal A and a high level signal is applied to the input terminal B, the transistor Q11 is turned off and the transistor Q12 is turned on, so that the contact A1 rises to the high potential Vcc and the contact A2 contacts. A
The potential becomes a potential obtained by subtracting the forward voltage VBE of the transistor Q13 from 1 and divided by the resistors R12 and R13, and becomes higher than the threshold voltage of the transistor T13. Further, since the transistor Q14 is turned on and the transistor Q15 is turned off, the contact B1 is lowered from Vcc by the voltage of the product of the current I12 and the resistance R14. The potential is divided and becomes lower than the threshold voltage of the transistor T14. Therefore, the transistors T12 and T13 are turned on and become lower than the threshold voltage of the transistor T14. Therefore, since the transistors T12 and T13 are on and the transistors T11 and T14 are off, the potential of the output terminal C rises to near the high potential Vcc.

【0017】同様に、時刻t3において、入力端子Aに
高レベル、入力端子Bに低レベルの信号を加えると、ト
ランジスタQ11がオン、トランジスタQ12がオフす
るので接点A1はVccから(I11×R11)の電圧
分だけ下がり、接点A2は接点A1からトランジスタQ
13のVBEを引いて抵抗R12と抵抗R13で分圧し
た電位になりトランジスタT13の閾値電圧よりも低く
なる。またトランジスタQ14がオフ、トランジスタQ
15がオンするので接点B1はVccまで上がり、接点
B2は接点B1からトランジスタQ16のVBEを引い
て抵抗R15と抵抗R16で分圧した電位になりトラン
ジスタT14の閾値よりも高くなる。従って、トランジ
スタT11,T14はオンでトランジスタT12,T1
3がオフになるため、出力端子の電位はVcc近くまで
上がる。
Similarly, at time t3, when a high level signal is applied to the input terminal A and a low level signal is applied to the input terminal B, the transistor Q11 is turned on and the transistor Q12 is turned off, so that the contact A1 changes from Vcc to (I11 × R11). The voltage of the contact Q2 drops from the contact A1 to the transistor Q.
VBE of 13 is subtracted to obtain a potential divided by the resistors R12 and R13, which is lower than the threshold voltage of the transistor T13. Also, the transistor Q14 is turned off, and the transistor Q
Since 15 turns on, the contact B1 rises to Vcc, and the contact B2 becomes a potential obtained by subtracting VBE of the transistor Q16 from the contact B1 and dividing it by the resistors R15 and R16, and becomes higher than the threshold value of the transistor T14. Therefore, the transistors T11 and T14 are turned on and the transistors T12 and T1 are turned on.
Since 3 is turned off, the potential of the output terminal rises to near Vcc.

【0018】時刻t4において、入力端子Aに高レベ
ル、入力端子Bに高レベルの信号を加えると、トランジ
スタQ11がオン、トランジスタQ12がオフするので
接点A1はVccから(I11×R11)の電圧分だけ
下がり、接点A2は接点A1からトランジスタQ13の
VBEを引いて抵抗R12と抵抗R13で分圧した電位
になりトランジスタT13の閾値電圧よりも低くなる。
またトランジスタQ14がオン、トランジスタQ15が
オフするので接点B1の電位はVccから(I12×R
14)の電圧分だけ下がり、接点B2は接点B1からト
ランジスタQ16のVBEを引いて抵抗R15と抵抗R
16で分圧した電位になりトランジスタT14の閾値電
圧よりも低くなる。従って、トランジスタT11,T1
2はオンでトランジスタT13,T14がオフになるた
め、出力端子Cの出力電位はVcc近くまで上がる。
At time t4, when a high level signal is applied to the input terminal A and a high level signal is applied to the input terminal B, the transistor Q11 is turned on and the transistor Q12 is turned off, so that the contact A1 is equal to the voltage of (I11 × R11) from Vcc. Then, the contact A2 becomes a potential obtained by subtracting VBE of the transistor Q13 from the contact A1 and dividing the voltage by the resistors R12 and R13, and becomes lower than the threshold voltage of the transistor T13.
Further, since the transistor Q14 is turned on and the transistor Q15 is turned off, the potential of the contact B1 changes from Vcc to (I12 × R
14), the contact B2 is pulled down from the contact B1 by subtracting VBE of the transistor Q16 from the contact B1 to the resistance R15 and the resistance R.
The potential is divided by 16 and becomes lower than the threshold voltage of the transistor T14. Therefore, the transistors T11 and T1
Since 2 is on and the transistors T13 and T14 are off, the output potential of the output terminal C rises to near Vcc.

【0019】また、レベル変換回路であるエミッタフォ
ロワ回路の接点A2の電位および接点B2の電位をCM
OS論理回路のトランジスタのしきい値に対応させてレ
ベルを設定しているのでレベル変換の際の電圧のずれが
なく動作する。
Further, the potential of the contact A2 and the potential of the contact B2 of the emitter follower circuit which is a level conversion circuit are CM.
Since the level is set in correspondence with the threshold value of the transistor of the OS logic circuit, there is no voltage shift at the time of level conversion and the operation is performed.

【0020】以上説明したように、2つのECLレベル
の入力信号に対して、CMOSレベルの信号を出力する
OR回路として動作する。また、3つ以上の多入力のO
R回路も容易に構成することができる。抵抗R12,R
15の代わりにダイオードを使用することも可能であ
る。
As described above, the circuit operates as an OR circuit which outputs a CMOS level signal to two ECL level input signals. Also, three or more multi-input O
The R circuit can also be easily configured. Resistors R12, R
It is also possible to use a diode instead of 15.

【0021】次に、本発明の第2の実施の形態について
説明する。
Next, a second embodiment of the present invention will be described.

【0022】図3は、本発明の第2の実施の形態の回路
図である。図1のトランジスタT11とT12を並列か
ら直列へ接続し、トランジスタT13とT14を直列か
ら並列へ接続して、それぞれ変更したものである。
FIG. 3 is a circuit diagram of the second embodiment of the present invention. The transistors T11 and T12 in FIG. 1 are connected in parallel to series, and the transistors T13 and T14 are connected in series to parallel, which are modified respectively.

【0023】次に図4に示す信号波形図を参照して動作
を説明する。入力端子A,Bから接点A1,A2,B1
およびB2のそれぞれについての動作は、図1の回路動
作と同一なので説明を省略する。
Next, the operation will be described with reference to the signal waveform diagram shown in FIG. Input terminals A, B to contacts A1, A2, B1
Since the operation of each of B and B2 is the same as the circuit operation of FIG. 1, the description thereof will be omitted.

【0024】時刻t1において、入力端子Aに低レベ
ル、入力端子Bに低レベルの信号を加えると、接点A1
はVccまで上がり、接点A2はトランジスタT23の
閾値電圧より高くなる。また接点はVccまで上がり、
接点B2はトランジスタT24の閾値電圧より高くな
る。従って、トランジスタT21,T22はオフでトラ
ンジスタT23,T24がオンになるため、出力端子C
の電位は低電位VEE近くまで下がる。
At time t1, when a low level signal is applied to input terminal A and a low level signal is applied to input terminal B, contact A1
Rises to Vcc, and the contact A2 becomes higher than the threshold voltage of the transistor T23. Also, the contact point goes up to Vcc,
The contact B2 becomes higher than the threshold voltage of the transistor T24. Therefore, since the transistors T21 and T22 are off and the transistors T23 and T24 are on, the output terminal C
Potential drops to near the low potential VEE.

【0025】時刻t2において、入力端子Aに低レベ
ル、入力端子Bに高レベルの信号を加えると、接点A1
はVccまで上がり、接点A2はトランジスタT23の
閾値電圧より高くなる。また点B1はVccから(I2
2×R24)の電圧分だけ下がり、接点B2はトランジ
スタT24の閾値電圧より低くなる。従って、トランジ
スタT21,T23はオンでトランジスタT22,T2
4がオフになるため、出力端子Cの電位はVEE近くま
で下がる。
At time t2, when a low level signal is applied to input terminal A and a high level signal is applied to input terminal B, contact A1
Rises to Vcc, and the contact A2 becomes higher than the threshold voltage of the transistor T23. The point B1 is changed from Vcc to (I2
2 × R24) and the contact B2 becomes lower than the threshold voltage of the transistor T24. Therefore, the transistors T21 and T23 are turned on and the transistors T22 and T2 are turned on.
Since 4 is turned off, the potential of the output terminal C drops to near VEE.

【0026】時刻t3において、入力端子Aに高レベ
ル、入力端子Bに低レベルの信号を加えると、接点A1
はVccから(I21×R21)の電圧分だけ下がり、
接点A2はトランジスタT23の閾値電圧より低くな
る。また接点B1はVccまで上がり、接点B2はT2
4の閾値電圧より高くなる。従って、トランジスタT2
2,T24はオンでトランジスタT21,T23がオフ
になるため、出力端子Cの電位はVEE近くまで下が
る。
At time t3, when a high level signal is applied to the input terminal A and a low level signal is applied to the input terminal B, the contact A1
Is reduced from Vcc by the voltage of (I21 × R21),
The contact A2 becomes lower than the threshold voltage of the transistor T23. The contact B1 goes up to Vcc, and the contact B2 goes to T2.
4 threshold voltage. Therefore, the transistor T2
Since the transistors T2 and T24 are turned on and the transistors T21 and T23 are turned off, the potential of the output terminal C drops to near VEE.

【0027】時刻t4においては、入力端子Aに高レベ
ル、入力端子Bに高レベルの信号を加えると、接点A1
はVccから(I21×R21)の電圧分だけ下がり、
接点A2はトランジスアT23の閾値電圧より下がる。
また接点B1はVccから(I22×R24)の電圧分
だけ下がり、接点B2はトランジスタT24の閾値電圧
より下がる。従って、トランジスタT21,T22はオ
ンでトランジスタT23,T24がオフになるため、出
力端子Cの電位はVcc近くまで上がる。
At time t4, when a high level signal is applied to the input terminal A and a high level signal is applied to the input terminal B, the contact A1
Is reduced from Vcc by the voltage of (I21 × R21),
Contact A2 falls below the threshold voltage of transistor T23.
The contact B1 drops from Vcc by a voltage of (I22 × R24), and the contact B2 drops below the threshold voltage of the transistor T24. Therefore, since the transistors T21 and T22 are turned on and the transistors T23 and T24 are turned off, the potential of the output terminal C rises to near Vcc.

【0028】以上説明したように、2つのECLレベル
の入力信号に対して、CMOSレベルの信号を出力する
AND回路として動作する。また、3つ以上の多入力の
AND回路も容易に構成することができる。
As described above, the circuit operates as an AND circuit that outputs a CMOS level signal to two ECL level input signals. Also, an AND circuit having three or more inputs can be easily configured.

【0029】[0029]

【発明の効果】以上説明したように本発明は、レベル変
換回路と論理回路のしきい値を対応させて構成したので
従来のものより論理段数が少なく、動作速度が速いとい
う効果を有する。
As described above, the present invention has the effect that the number of logic stages is smaller and the operation speed is faster than the conventional one because the threshold value of the level conversion circuit and the threshold value of the logic circuit are made to correspond to each other.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

【図2】図1に示す第1の実施の形態の各部における信
号波形図である。
FIG. 2 is a signal waveform diagram in each part of the first embodiment shown in FIG.

【図3】本発明の第2の実施の形態の回路図である。FIG. 3 is a circuit diagram of a second embodiment of the present invention.

【図4】図3に示す第2の実施の形態の各部における信
号波形図である。
FIG. 4 is a signal waveform diagram in each part of the second embodiment shown in FIG.

【図5】従来例の回路図である。FIG. 5 is a circuit diagram of a conventional example.

【図6】従来例の各部における信号波形図である。FIG. 6 is a signal waveform diagram in each part of a conventional example.

【符号の説明】[Explanation of symbols]

A,B 入力端子 C 出力端子 Vref 基準電位 Vcc 高電位 VEE 低電位 A1,A2,B1,B2,A′,B′ 接点 R11〜R16,R21〜R26,R31〜R34
抵抗 I11,I12,I21,I22,I31,I32
定電流源 Q11〜Q16,Q21〜Q26,Q31〜Q34
NPNトランジスタ T11,T12,T21,T22,T31〜T36
PチャネルMOSFET T13,T14,T23,T24,T41〜T46
NチャネルMOSFET
A, B input terminal C output terminal Vref reference potential Vcc high potential VEE low potential A1, A2, B1, B2, A ', B' contacts R11-R16, R21-R26, R31-R34
Resistors I11, I12, I21, I22, I31, I32
Constant current sources Q11 to Q16, Q21 to Q26, Q31 to Q34
NPN transistors T11, T12, T21, T22, T31 to T36
P-channel MOSFET T13, T14, T23, T24, T41 to T46
N-channel MOSFET

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ECLレベルの第1の入力信号を非反転
入力端子へ入力し基準電位を反転入力端子に入力する第
1の差動増幅器と、ECLレベルの第2の入力信号を非
反転入力端子へ入力し前記基準電位を反転入力端子に入
力する第2の差動増幅器と、前記第1の差動増幅器の出
力を受ける第1のエミッタフォロワ回路と、前記第2の
差動増幅器の出力を受ける第2のエミッタフォロワ回路
と、前記第1の差動増幅器の出力をゲートに受ける第1
のPチャネルMOSFETと、前記第2の差動増幅器の
出力をゲートに受ける第2のPチャネルMOSFET
と、前記第1のエミッタフォロワ回路の出力を第1の電
位のレベルに分割する第1のエミッタフォロワ抵抗と、
前記第1の電位をゲートに受ける第1のNチャネルMO
SFETと、前記第2のエミッタフォロワ回路の出力を
第2の電位のレベルに分割する第2のエミッタフォロワ
抵抗と、前記第2の電位をゲートに受ける第2のNチャ
ネルMOSFETとを備え、前記第1の電位のレベルを
前記第1のNチャネルのMOSFETのしきい値電圧に
対応した電位に前記第2の電位のレベルを前記第2のN
チャネルのMOSFETのしきい値電圧に対応した電位
に設定したことを特徴とするECL−CMOSレベル変
換回路。
1. A first differential amplifier for inputting a first input signal of ECL level to a non-inverting input terminal and a reference potential to an inverting input terminal, and a non-inverting input of a second input signal of ECL level. A second differential amplifier that inputs to the terminal and inputs the reference potential to the inverting input terminal, a first emitter follower circuit that receives the output of the first differential amplifier, and an output of the second differential amplifier A second emitter follower circuit for receiving and a first gate for receiving the output of the first differential amplifier.
P-channel MOSFET and a second P-channel MOSFET whose gate receives the output of the second differential amplifier
And a first emitter follower resistor that divides the output of the first emitter follower circuit into a first potential level,
A first N channel MO receiving the first potential at its gate
An SFET, a second emitter follower resistor that divides the output of the second emitter follower circuit into a second potential level, and a second N-channel MOSFET that receives the second potential at its gate, The first potential level is set to a potential corresponding to the threshold voltage of the first N-channel MOSFET, and the second potential level is set to the second N level.
An ECL-CMOS level conversion circuit characterized by being set to a potential corresponding to a threshold voltage of a channel MOSFET.
【請求項2】 前記第1のNチャネルMOSFETと前
記第2のNチャネルMOSFETとが直列接続され前記
第1のPチャネルMOSFETと前記第2のPチャネル
MOSFETとが並列接続される請求項1記載のECL
−CMOSレベル変換回路。
2. The first N-channel MOSFET and the second N-channel MOSFET are connected in series, and the first P-channel MOSFET and the second P-channel MOSFET are connected in parallel. ECL
-CMOS level conversion circuit.
【請求項3】 ECLレベルの第1の入力信号を非反転
入力端子へ入力し基準電位を反転入力端子に入力する第
1の差動増幅器と、ECLレベルの第2の入力信号を非
反転入力端子へ入力し前記基準電位を反転入力端子に入
力する第2の差動増幅器と、前記第1の差動増幅器の出
力を受ける第1のエミッタフォロワ回路と、前記第2の
差動増幅器の出力を受ける第2のエミッタフォロワ回路
と、前記第1の差動増幅器の出力をゲートに受ける第1
のPチャネルMOSFETと、前記第2の差動増幅器の
出力をゲートに受ける第2のPチャネルMOSFET
と、前記第1のエミッタフォロワ回路の出力を第1の電
位のレベルに分割する第1のエミッタフォロワ抵抗と、
前記第1の電位をゲートに受ける第1のNチャネルMO
SFETと、前記第2のエミッタフォロワ回路の出力を
第2の電位のレベルに分割する第2のエミッタフォロワ
抵抗と、前記第2の電位をゲートに受ける第2のNチャ
ネルMOSFETとを備え、前記第1の差動増幅器の出
力の電位のレベルを前記第1のPチャネルのMOSFE
Tのしきい値電圧に対応した電位に前記第2の差動増幅
器の出力の電位のレベルを前記第2のPチャネルのMO
SFETのしきい値電圧に対応した電位に設定したこと
を特徴とするECL−CMOSレベル変換回路。
3. A first differential amplifier for inputting an ECL level first input signal to a non-inverting input terminal and a reference potential to an inverting input terminal, and a non-inverting input for an ECL level second input signal. A second differential amplifier that inputs to the terminal and inputs the reference potential to the inverting input terminal, a first emitter follower circuit that receives the output of the first differential amplifier, and an output of the second differential amplifier A second emitter follower circuit for receiving and a first gate for receiving the output of the first differential amplifier.
P-channel MOSFET and a second P-channel MOSFET whose gate receives the output of the second differential amplifier
And a first emitter follower resistor that divides the output of the first emitter follower circuit into a first potential level,
A first N channel MO receiving the first potential at its gate
An SFET, a second emitter follower resistor that divides the output of the second emitter follower circuit into a second potential level, and a second N-channel MOSFET that receives the second potential at its gate, The potential level of the output of the first differential amplifier is set to the first P-channel MOSFE
The potential level of the output of the second differential amplifier is set to the potential corresponding to the threshold voltage of T by the MO of the second P channel.
An ECL-CMOS level conversion circuit characterized by being set to a potential corresponding to a threshold voltage of an SFET.
【請求項4】 前記第1のNチャネルMOSFETと前
記第2のNチャネルMOSFETとが並列接続され前記
第1のPチャネルMOSFETと前記第2のPチャネル
MOSFETとが直列接続される請求項2記載のECL
−CMOSレベル変換回路。
4. The first N-channel MOSFET and the second N-channel MOSFET are connected in parallel, and the first P-channel MOSFET and the second P-channel MOSFET are connected in series. ECL
-CMOS level conversion circuit.
JP7193564A 1995-07-28 1995-07-28 ECL-CMOS level conversion circuit Expired - Lifetime JP2728039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7193564A JP2728039B2 (en) 1995-07-28 1995-07-28 ECL-CMOS level conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7193564A JP2728039B2 (en) 1995-07-28 1995-07-28 ECL-CMOS level conversion circuit

Publications (2)

Publication Number Publication Date
JPH0946210A true JPH0946210A (en) 1997-02-14
JP2728039B2 JP2728039B2 (en) 1998-03-18

Family

ID=16310128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7193564A Expired - Lifetime JP2728039B2 (en) 1995-07-28 1995-07-28 ECL-CMOS level conversion circuit

Country Status (1)

Country Link
JP (1) JP2728039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320413B1 (en) 1999-05-28 2001-11-20 Nec Corporation Level conversion circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320413B1 (en) 1999-05-28 2001-11-20 Nec Corporation Level conversion circuit

Also Published As

Publication number Publication date
JP2728039B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
EP0827272B1 (en) Operational amplifier
US5148061A (en) ECL to CMOS translation and latch logic circuit
EP0232969A1 (en) Level conversion circuit
JPH07118642B2 (en) Level conversion circuit
US4725982A (en) Tri-state buffer circuit
US5602498A (en) Current switching logic type circuit with small current consumption
US4958094A (en) Emitter follower circuit with MOSFET
US5216298A (en) ECL input buffer for BiCMOS
KR930004351B1 (en) Level shift circuit
US5485110A (en) ECL differential multiplexing circuit
US5331225A (en) BiCMOS logic circuit with bipolar transistor and MOS transistor formed on the same semiconductor substrate
EP0320582A2 (en) Bicmos driver circuit including submicron on-chip voltage source
US5075578A (en) Input buffer regenerative latch
US5631580A (en) BICMOS ECL-CMOS level converter
JP2728039B2 (en) ECL-CMOS level conversion circuit
JPH0457513A (en) Level conversion circuit
JP3082336B2 (en) ECL-CMOS level conversion circuit
US5066874A (en) Signal output circuit having bipolar transistor in output stage and arranged in cmos semiconductor integrated circuit
JP2737502B2 (en) ECL-CMOS level conversion circuit
KR930015344A (en) Bipolar-complementary metal oxide semiconductor (BICMOS) output buffer circuit with complementary metal oxide semiconductor (CMOS) data path and bipolar current amplification
US5038057A (en) ECL to CMOS logic translator
US5627483A (en) Emitter coupled logic circuit with MOS differential stage
US5218244A (en) Logic level converter circuit
US5148060A (en) Ecl input buffer for bicmos
US5162673A (en) Bi-CMOS logic circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971111