JPH0945966A - Light emitting element - Google Patents

Light emitting element

Info

Publication number
JPH0945966A
JPH0945966A JP7196560A JP19656095A JPH0945966A JP H0945966 A JPH0945966 A JP H0945966A JP 7196560 A JP7196560 A JP 7196560A JP 19656095 A JP19656095 A JP 19656095A JP H0945966 A JPH0945966 A JP H0945966A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitted
emitting diode
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7196560A
Other languages
Japanese (ja)
Other versions
JP3672628B2 (en
Inventor
Yukihisa Ichikawa
恭久 一川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Co Ltd
Original Assignee
Sokkia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Co Ltd filed Critical Sokkia Co Ltd
Priority to JP19656095A priority Critical patent/JP3672628B2/en
Priority to DE1996130751 priority patent/DE19630751A1/en
Priority to SE9602901A priority patent/SE520189C2/en
Publication of JPH0945966A publication Critical patent/JPH0945966A/en
Priority to SE0102071A priority patent/SE523213C2/en
Priority to SE0102070A priority patent/SE523212C2/en
Application granted granted Critical
Publication of JP3672628B2 publication Critical patent/JP3672628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0756Stacked arrangements of devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)
  • Measurement Of Optical Distance (AREA)
  • Semiconductor Lasers (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an element emitting light of a plurality of wave lengths. SOLUTION: A disc-like infrared light emitting diode 2 is arranged on a base 1 constituting a package. An infrared light emitting diode 3 having a smaller diameter than the diode 2 is stacked concentrically on the upper surface of the diode 2 and a blue light emitting diode 4, having a smaller diameter than the diode 3, is stacked concentrically on the upper surface of diode 3. Upper end faces thereof serve as light emitting surfaces for emitting the light concentrically in the same direction toward the light incident end 5a of an optical fiber 5 disposed above the package oppositely thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発光素子に関し、
特に、測量用の光波距離計などの光源として好適な発光
素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device,
In particular, the present invention relates to a light emitting element suitable as a light source for a light-wave distance meter for surveying.

【0002】[0002]

【従来の技術】距離の測定装置の一種として、高精度の
測定が可能な光波距離計が知られている。この種の光波
距離計は、従来、図9に示すように構成されていた。同
図に示す光波距離計は、変調器Aに接続された発光素子
Bと、演算器Cに接続された受光素子Dとを有してい
る。発光素子Bからは測定光が発せられ、この測定光の
光路中には、第1の対物レンズEが設けられ、この対物
レンズEを透過した測定光が目標点に設置された反射鏡
Fを照射するようになっている。
2. Description of the Related Art As one type of distance measuring device, a light wave distance meter capable of highly accurate measurement is known. Conventionally, this type of optical distance meter has been constructed as shown in FIG. The optical distance meter shown in the figure has a light emitting element B connected to a modulator A and a light receiving element D connected to a calculator C. A measurement light is emitted from the light emitting element B, a first objective lens E is provided in the optical path of the measurement light, and the measurement light transmitted through the objective lens E is reflected by a reflecting mirror F installed at a target point. It is designed to irradiate.

【0003】そして、反射鏡Fで反射した測定光は、第
2の対物レンズGを介して、受光素子Dに入射する。図
9において符号Hで示したものは、光路切換シャッタで
あって、その前面側には、プリズムIが配置されてい
る。この光路切換シャッタHは、制御部Jにより上下移
動され、上方に上昇した際には、発光素子Bから発せら
れる測定光の光路中に位置し、プリズムIで反射した参
照光がミラーKを介して、受光素子Dに入射するように
なっている。
Then, the measuring light reflected by the reflecting mirror F enters the light receiving element D through the second objective lens G. The reference numeral H in FIG. 9 is an optical path switching shutter, and a prism I is arranged on the front side thereof. The optical path switching shutter H is moved up and down by the control unit J, and when it is moved upward, it is positioned in the optical path of the measurement light emitted from the light emitting element B, and the reference light reflected by the prism I is passed through the mirror K. Then, the light is incident on the light receiving element D.

【0004】このように構成された光波距離計では、反
射鏡Fで反射した測定光を受光素子Dで電気信号に変換
した測定信号と、参照光を受光素子Dで電気信号に変換
した参照信号との位相差を演算器Cで演算することによ
り、反射鏡Fまでの距離が測定される。ところが、この
ような構成の光波距離計では、光路切換シャッタHに機
械的可動部分が必要になるので、その寿命や応答速度に
問題があった。
In the lightwave rangefinder constructed in this manner, the measurement signal reflected by the reflecting mirror F is converted into an electric signal by the light receiving element D, and the reference signal is converted by the light receiving element D into the electric signal. The distance to the reflecting mirror F can be measured by calculating the phase difference between and with the calculator C. However, in the light wave range finder having such a configuration, the optical path switching shutter H needs a mechanically movable part, and thus has a problem in its life and response speed.

【0005】そこで、本出願人は、このような問題が解
決できる発光素子を開発し、特開平6−230111号
公報で提案している。この公報に開示されている発光素
子は、位相を揃えた一対の発光ダイオードを有してい
て、一方の発光ダイオードを測定光とし、他方の発光ダ
イオードを参照光とし、これらを電気的に切り替えるよ
うにしている。
Therefore, the present applicant has developed a light emitting device capable of solving such a problem and proposed it in JP-A-6-230111. The light emitting element disclosed in this publication has a pair of light emitting diodes whose phases are aligned, and one of the light emitting diodes serves as a measurement light, and the other light emitting diode serves as a reference light, and these are electrically switched. I have to.

【0006】しかしながら、このような発光素子におい
ても、特に、測定距離が長く、かつ、高精度の測距を行
う際に、以下に説明する技術的な課題があった。
However, even in such a light emitting element, there are technical problems described below, especially when the distance is long and the distance is measured with high accuracy.

【0007】[0007]

【発明が解決しようとする課題】すなわち、上述したよ
うな光波距離計においては、空気中を伝播する測定光の
速度が、気温や気圧などの環境条件によって影響を受
け、測定値に影響を与える。この場合、測定距離が短距
離であったり、高い測定精度を要求されなければ、この
種の問題は顕在化しない。
That is, in the above-described optical distance meter, the velocity of the measuring light propagating through the air is affected by environmental conditions such as temperature and atmospheric pressure, and affects the measured value. . In this case, this kind of problem does not become apparent unless the measurement distance is short or high measurement accuracy is required.

【0008】ところが、測定距離が長く、かつ高精度の
測距を行うためには、気温や気圧などの環境条件を同時
に測定し、環境条件の変化に基づいて測定値を補正しな
ければならない。このような補正を実施するための手段
としては、気圧計や温度計などの環境条件を測定するこ
と以外に、環境条件の変化が与える影響は、測定光の波
長によって異なるので、波長の異なる測定光で同一個所
を測距して、それぞれの測定結果から補正値を導くこと
もできる。
However, in order to measure a long distance with high accuracy, it is necessary to simultaneously measure environmental conditions such as air temperature and atmospheric pressure and correct the measured values based on changes in the environmental conditions. As a means for performing such a correction, in addition to measuring the environmental conditions such as a barometer and a thermometer, the influence of changes in the environmental conditions depends on the wavelength of the measuring light. It is also possible to measure the same location with light and derive a correction value from each measurement result.

【0009】しかしながら、上記公開公報に開示されて
いる発光素子を含めて、これまでに提供されている発光
素子には、個別に構成されて、異なった波長の光を発射
する素子はあるが、1つの発光素子で異なった波長の光
を発射するものはなく、後者のような補正手段を採用す
ることは、非常に困難な状況にあった。本発明は、この
ような従来の問題点を解決するために案出されたもので
あって、その目的とするところは、一つの発光素子から
複数の波長の光を出射することができる発光素子を提供
することにある。
However, among the light emitting elements provided so far, including the light emitting element disclosed in the above-mentioned publication, there are elements that are individually configured to emit light of different wavelengths. There is no one light emitting element that emits light of different wavelengths, and it has been very difficult to adopt the latter correction means. The present invention has been devised to solve such a conventional problem, and an object thereof is to provide a light emitting device capable of emitting light of a plurality of wavelengths from one light emitting device. To provide.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に本発明は、1つのパッケージ内に配置された発光波長
が異なる複数の発光ダイオードを有し、前記発光ダイオ
ードの各発光面が同一方向を指向するように配置したこ
とを特徴とする。上記構成の発光素子によれば、1つの
パッケージ内に配置された発光波長が異なる複数の発光
ダイオードを有し、発光ダイオードの各発光面が同一方
向を指向するように配置されているので、同一発光素子
から波長の異なる光を同一方向に出射させることができ
る。前記発光ダイオードは、各発光面が同心状となるよ
うに階段状に積層配置することができる。この構成によ
れば、発光ダイオードは、各発光面が同心状となるよう
に階段状に積層配置されているので、波長の異なる複数
の光を同心状に、かつ、平行に出射させることができ
る。前記発光面は、光ファイバーの入射端面に対向させ
ることができる。この構成によれば、発光面は、光ファ
イバーの入光面に対向させるので、各発光ダイオードか
ら出射した光を一つの光ファイバに集光させることがで
きる。この場合、前記発光面は、各発光ダイオードから
の出射光が光学的に同一の焦点を結ぶ反射鏡面状に形成
することができる。また、前記発光面は、各発光ダイオ
ードからの出射光が互いに交叉すべく内側に向けた傾斜
面に形成するとともに、前記出射光の交叉位置におい
て、前記光ファイバーの入射端面が先端側に向かって縮
径するくさび状とすることができる。さらに、第二の発
明として、1つのパッケージ内に配置された発光波長が
異なる複数の発光ダイオードを有し、前記発光ダイオー
ドの各発光面を、各発光ダイオードからの出射光が光学
的に同一の焦点を結ぶ反射鏡面状に形成したことを特徴
とする。この構成によれば、発光面は、各発光ダイオー
ドからの出射光が光学的に同一の焦点を結ぶ反射鏡面状
に形成しているので、波長の異なる光が同一焦点上に集
光して、出射光の強度を増加させることができる。ま
た、第三の発明として、同一パッケージ内に配置された
発光波長が異なる複数の発光ダイオードを有し、前記発
光ダイオードの各発光面を、各発光ダイオードからの出
射光が互いに交叉すべく内側に向けた傾斜面に形成する
とともに、前記出射光の交叉位置において、前記出射光
を受光する光ファイバーの入光端側面が先端側に向かっ
て縮径するくさび状としたことを特徴とする。この構成
によれば、発光面は、各発光ダイオードからの出射光が
互いに交叉すべく内側に向けた傾斜面に形成するととも
に、出射光の交叉位置において、光ファイバーの入光端
側面が先端側に向かって縮径するくさび状となっている
ので、光ファイバーの側面よりからも出射光を取り入れ
ることができる。
To achieve the above object, the present invention has a plurality of light emitting diodes arranged in one package and having different light emission wavelengths, and the light emitting surfaces of the light emitting diodes have the same direction. It is characterized in that it is arranged so as to point. According to the light emitting device having the above-described configuration, since the plurality of light emitting diodes having different emission wavelengths are arranged in one package, and the respective light emitting surfaces of the light emitting diodes are arranged so as to be directed in the same direction, they are the same. Light having different wavelengths can be emitted from the light emitting element in the same direction. The light emitting diodes may be stacked and arranged in a stepwise manner such that the light emitting surfaces are concentric. According to this structure, since the light emitting diodes are stacked and arranged in a stepwise manner so that the respective light emitting surfaces are concentric, it is possible to emit a plurality of lights having different wavelengths concentrically and in parallel. . The light emitting surface may be opposed to the incident end surface of the optical fiber. According to this structure, since the light emitting surface faces the light entering surface of the optical fiber, the light emitted from each light emitting diode can be condensed into one optical fiber. In this case, the light emitting surface can be formed into a reflecting mirror surface in which the light emitted from each light emitting diode has the same optical focus. In addition, the light emitting surface is formed as an inwardly inclined surface so that the light emitted from each light emitting diode intersects with each other, and the incident end face of the optical fiber contracts toward the tip side at the intersecting position of the emitted light. It can be wedge-shaped with a diameter. Further, as a second invention, a plurality of light emitting diodes having different emission wavelengths are arranged in one package, and the light emitting surfaces of the light emitting diodes have the same emission light from the respective light emitting diodes. It is characterized in that it is formed in the shape of a reflecting mirror that connects the focal points. According to this configuration, the light emitting surface is formed in the shape of a reflecting mirror in which the light emitted from each light emitting diode optically connects the same focal point, so that light of different wavelengths is condensed on the same focal point, The intensity of emitted light can be increased. Further, as a third invention, a plurality of light emitting diodes having different emission wavelengths arranged in the same package are provided, and each light emitting surface of the light emitting diode is placed inside so that light emitted from each light emitting diode may cross each other. The optical fiber for receiving the emitted light has a wedge shape in which the light incident end side surface is reduced in diameter toward the tip side while being formed on the inclined surface facing the emitted light. According to this configuration, the light emitting surface is formed as an inwardly inclined surface so that the light emitted from each light emitting diode intersects with each other, and at the crossing position of the emitted light, the light incident end side surface of the optical fiber is directed toward the tip side. Since it has a wedge shape whose diameter decreases toward the outside, it is possible to take in outgoing light from the side surface of the optical fiber.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳細に説明する。図1は、本発明にかか
る発光素子10の第一実施例を示している。同図におい
て、パッケージ(図示省略)内に収納されるベース1上
には、円盤状に形成された赤外線領域(例えば、波長:
960nm)の出射光を送出する赤外発光ダイオード2の
ペレットが配置されている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows a first embodiment of a light emitting device 10 according to the present invention. In the same figure, a disk-shaped infrared region (for example, wavelength:
The pellet of the infrared light emitting diode 2 which emits the emitted light of 960 nm) is arranged.

【0012】赤外発光ダイオード2の上面には、これよ
りも直径の小さい円盤状の赤色発光ダイオード3のペレ
ットが同心状に積層配置されている。この赤色発光ダイ
オード3からは、例えば、波長が630nmの赤色光を出
射する。また、赤色発光ダイオード3の上面には、これ
よりも直径の小さい円盤状の青色発光ダイオード4のペ
レットが同心状に積層配置されている。この青色発光ダ
イオード4からは、例えば、波長が440nmの青色光を
出射する。
On the upper surface of the infrared light emitting diode 2, pellets of a disk-shaped red light emitting diode 3 having a diameter smaller than that of the infrared light emitting diode 2 are concentrically stacked. The red light emitting diode 3 emits red light having a wavelength of 630 nm, for example. Further, on the upper surface of the red light emitting diode 3, pellets of disk-shaped blue light emitting diode 4 having a smaller diameter than that are concentrically stacked. The blue light emitting diode 4 emits blue light having a wavelength of 440 nm, for example.

【0013】このように構成された発光素子10の各発
光ダイオード2,3,4の配置は、それぞれの発光効率
および色収差を勘案してなされたもので、最も発光効率
が悪い青色発光ダイオード4を頂部に位置させること、
および短波長が焦点距離が短く、長波長が焦点距離が長
いという色収差による焦点距離の違いを、上述したよう
に物理的な積層形状とすることで補正している。
The arrangement of the light emitting diodes 2, 3 and 4 of the light emitting element 10 having the above-described structure is made in consideration of the respective light emitting efficiency and chromatic aberration, and the blue light emitting diode 4 having the lowest light emitting efficiency is used. Located on top,
Also, the difference in focal length due to chromatic aberration in which the short wavelength has a short focal length and the long wavelength has a long focal length is corrected by the physical laminated shape as described above.

【0014】そして、発光素子10の上面側には、赤外
発光ダイオード2の直径とほぼ同じ直径のコアを有する
光ファイバ5の入射端5aが対向するように配置されて
いる。発光素子10の上面側にこのようにして光ファイ
バ5を配置し、発光素子に通電すると、中心の青色発光
ダイオード4から青色光が発射され、その外側に赤色発
光ダイオード3から同心状に赤色光が発射されるととも
に、赤色光の外側に赤外発光ダイオード2から赤外光が
同心状に発射され、これらの各光が、共に上方を指向す
るように配置されているので、発射された光は、光ファ
イバ5の端面5aから入射して、光ファイバ5中を伝播
していく。
On the upper surface side of the light emitting element 10, an incident end 5a of an optical fiber 5 having a core having a diameter substantially the same as the diameter of the infrared light emitting diode 2 is arranged so as to face each other. When the optical fiber 5 is thus arranged on the upper surface side of the light emitting element 10 and the light emitting element is energized, blue light is emitted from the blue light emitting diode 4 in the center, and red light is emitted concentrically from the red light emitting diode 3 on the outside thereof. Is emitted, the infrared light is emitted concentrically from the infrared light emitting diode 2 to the outside of the red light, and each of these lights is arranged so as to be directed upward. Enters from the end face 5 a of the optical fiber 5 and propagates in the optical fiber 5.

【0015】なお、各発光ダイオード2,3,4の具体
的実装構造については省略するが、これらの正負極は、
図示しないリード線を介してベース1の下端に突出する
外部接続用のリード端子にそれぞれ接続される。また、
これらの発光を制御する回路としては、例えば、図2に
示すように、それぞれの発光ダイオード2,3,4をス
イッチSW1,SW2,SW3を介して駆動電源Aに接続
すれば、これらのオンオフ操作により、各発光ダイオー
ド2,3,4を個別あるいは同時に点灯することができ
る。
Although the specific mounting structure of each of the light emitting diodes 2, 3 and 4 is omitted, the positive and negative electrodes of these are
Via lead wires (not shown), they are respectively connected to lead terminals for external connection protruding to the lower end of the base 1. Also,
As a circuit for controlling these light emission, for example, as shown in FIG. 2, if the respective light emitting diodes 2, 3, 4 are connected to the drive power source A via the switches SW1, SW2, SW3, these on / off operations are performed. Thus, the light emitting diodes 2, 3 and 4 can be turned on individually or simultaneously.

【0016】図3は、上記構成の発光素子10の使用例
を示している。同図に示す使用例では、本発明の発光素
子10を光波距離計に使用した場合を示しており、光波
距離計は、上述した赤外,赤色,青色の異なった波長の
光を出射する発光素子10が内蔵された発光部51と、
演算器52に接続された受光部53とを有し、発光部5
1には、発光素子10と電気的に接続される変調器50
が接続されている。
FIG. 3 shows an example of use of the light emitting element 10 having the above structure. In the usage example shown in the figure, the light-emitting element 10 of the present invention is used in a light-wave distance meter, and the light-wave distance meter emits light having different wavelengths of infrared, red, and blue described above. A light emitting section 51 having the element 10 built-in,
And a light receiving section 53 connected to the computing unit 52, and the light emitting section 5
1 is a modulator 50 electrically connected to the light emitting element 10.
Is connected.

【0017】発光部51には、発光素子10に対向する
ように配置された光ファイバ5の一端側が支持されてい
て、光ファイバ5の他端側には、プリズム55が配置さ
れていて、発光素子10から出射した測定光は、光ファ
イバ5を介して、プリズム55および対物レンズ56を
透過して目標地点に設置された反射ターゲットプリズム
57で反射され、第二の対物レンズ58を透過して受光
部53に受光される一方、プリズム55で分光された発
光素子10からの出射光は、受光部53に参照光として
直接受光される。
The light emitting portion 51 supports one end of an optical fiber 5 arranged to face the light emitting element 10, and a prism 55 is arranged at the other end of the optical fiber 5 to emit light. The measurement light emitted from the element 10 passes through the prism 55 and the objective lens 56 through the optical fiber 5, is reflected by the reflection target prism 57 installed at the target point, and passes through the second objective lens 58. While being received by the light receiving section 53, the emitted light from the light emitting element 10 which is split by the prism 55 is directly received by the light receiving section 53 as reference light.

【0018】演算器52は、このような測定光および参
照光を電気信号に変換し、それぞれの測定信号の位相差
を比較演算することによって反射ターゲットプリズム5
7までの距離が測定される。ここで、同図に示す光波距
離計では、例えば、発光部51に内蔵されている複数の
波長の異なる発光ダイオード2,3,4を順次切り替え
て測定作業を行い、その結果により演算器52に内蔵さ
れたプログラムに従って測定値を補正するようにすれ
ば、測距地点における気温、気圧による測定誤差を解消
できることになる。
The calculator 52 converts the measurement light and the reference light into electric signals and compares and calculates the phase difference between the respective measurement signals to calculate the reflection target prism 5.
The distance to 7 is measured. Here, in the lightwave distance meter shown in the same figure, for example, a plurality of light emitting diodes 2, 3 and 4 having different wavelengths built in the light emitting unit 51 are sequentially switched to perform the measurement work, and the result is stored in the calculator 52. If the measured value is corrected according to the built-in program, the measurement error due to the temperature and atmospheric pressure at the distance measuring point can be eliminated.

【0019】図4は、本発明にかかる発光素子の第二実
施例を示している。なお、以下の説明では、前記第一実
施例と同一箇所には同一符号を付し、異なる部分につい
てのみ異なる符号を用いて説明する。同図に示す発光素
子10aでは、ベース1上に、円盤状に形成された赤外
発光ダイオード2aが配置されている。この赤外発光ダ
イオード2aの上面には、これと同一外径であって、リ
ング状の赤色発光ダイオード3aが同心状に積層配置さ
れ、更に赤色発光ダイオード3aの上面には、これと同
一外径であって、更に内径の大きな青色発光ダイオード
4aが同心状に積層配置されている。
FIG. 4 shows a second embodiment of the light emitting device according to the present invention. In the following description, the same parts as those in the first embodiment will be designated by the same reference numerals, and different parts will be described by using different reference numerals. In a light emitting device 10a shown in the figure, a disc-shaped infrared light emitting diode 2a is arranged on a base 1. On the upper surface of the infrared light emitting diode 2a, a ring-shaped red light emitting diode 3a having the same outer diameter as that of the infrared light emitting diode 2a is concentrically stacked and further, on the upper surface of the red light emitting diode 3a, the same outer diameter as the outer diameter thereof. The blue light emitting diodes 4a having a larger inner diameter are concentrically stacked.

【0020】これらの発光ダイオード2a,3a,4a
は、それぞれの上面側が出射面となっていて、ともに上
方に向けて同一方向に出射光が送出される。そして、こ
の出射方向の上方には、光ファイバー5の入光端5aが
対向配置されていて、発光素子10aから出射した光が
ファイバー5に入射するようになっている。この実施例
においても前記第一実施例と同様に、同一パッケージ内
に設けられた赤外発光ダイオード2a,赤色発光ダイオ
ード3a,青色発光ダイオード4aから波長の異なる光
を同心状に、かつ、同方向に出射させることができる。
These light emitting diodes 2a, 3a, 4a
In each of the above, the upper surface side serves as an emission surface, and the emitted light is sent upward in the same direction. The light-incident end 5a of the optical fiber 5 is disposed above the light-emitting direction so that the light emitted from the light emitting element 10a enters the fiber 5. Also in this embodiment, as in the first embodiment, the infrared light emitting diode 2a, the red light emitting diode 3a, and the blue light emitting diode 4a provided in the same package concentrically emit light of different wavelengths in the same direction. Can be emitted.

【0021】なお、前記第一、第二実施例において、必
ずしも 光ファイバー5をパッケージ内に配置する必要
はなく、パッケージのケース上面に透明窓を開口し、こ
こから外方に向けて直接出光させることもできる。図5
は、本発明にかかる発光素子の第三実施例を示してお
り、以下にその特徴部分についてのみ説明する。同図に
示す発光素子10bは、ベース1上に設けられた赤色発
光ダイオード3bと青色発光ダイオード4bとを有して
いる。これらのダイオード3b,4bは、ともにリング
状に形成されていて、赤色発光ダイオード3bの外周に
内周を接するようにして青色発光ダイオード4bが設け
られている。
In the first and second embodiments, it is not always necessary to dispose the optical fiber 5 in the package, but a transparent window is opened on the upper surface of the case of the package, and light is directly emitted outward from here. You can also FIG.
Shows a third embodiment of the light emitting device according to the present invention, and only the characteristic part will be described below. The light emitting element 10b shown in the figure has a red light emitting diode 3b and a blue light emitting diode 4b provided on the base 1. These diodes 3b and 4b are both formed in a ring shape, and the blue light emitting diode 4b is provided so that the inner circumference is in contact with the outer circumference of the red light emitting diode 3b.

【0022】各発光ダイオード3b,4bの発光面30
b,40bは、リング状断面の内部側上端角部に設けら
れていて、凹面状の反射鏡面になっていて、この反射鏡
面の焦点位置が、発光素子10bの上方に設置される光
ファイバ5のコア部の中心に設定されている。このよう
に構成された発光素子10bによれば、上記実施例と同
様に、異なった波長の出射光が、同心状かつ同一方向に
送出されるとともに、この出射光の全てを光ファイバ5
に導入することができ、しかも、同じ焦点上に光を集め
るので、発光素子10bの発光効率を高めることができ
るとともに、光ファイバ5中を伝播する光の強度も増強
することができる。
Light emitting surface 30 of each light emitting diode 3b, 4b
b and 40b are provided at the inner-side upper end corners of the ring-shaped cross section and are concave reflecting mirror surfaces, and the focal position of the reflecting mirror surfaces is the optical fiber 5 installed above the light emitting element 10b. It is set at the center of the core part of. According to the light emitting element 10b configured as described above, as in the above-described embodiment, the emitted lights of different wavelengths are sent in the concentric and the same direction, and all of the emitted light is transmitted through the optical fiber 5.
In addition, since the light is collected on the same focal point, the light emitting efficiency of the light emitting element 10b can be increased and the intensity of the light propagating in the optical fiber 5 can be increased.

【0023】図6は、本発明にかかる発光素子の第四実
施例を示しており、以下にその特徴部分についてのみ説
明する。同図に示す発光素子10cは、ベース1上に設
けられた赤色発光ダイオード3cと青色発光ダイオード
4cとを有している。これらのダイオード3c,4c
は、ともにリング状に形成されていて、赤色発光ダイオ
ード3cの外周に内周を接するようにして青色発光ダイ
オード4cが設けられている。
FIG. 6 shows a fourth embodiment of the light emitting device according to the present invention, and only the characteristic part will be described below. The light emitting element 10c shown in the figure has a red light emitting diode 3c and a blue light emitting diode 4c provided on the base 1. These diodes 3c, 4c
Are both formed in a ring shape, and the blue light emitting diode 4c is provided so that the inner circumference is in contact with the outer circumference of the red light emitting diode 3c.

【0024】各発光ダイオード3c,4cの発光面30
c,40cは、リング状断面の上端部に設けられてお
り、内側に向けて傾斜している。この発光面30c,4
0cの傾斜角度は、発光面30c,40cから出射した
光が、所定の角度で相互に交差するように設定されてい
る。一方、発光素子10cから出射した光を受光する光
ファイバー5は、そのコア部の中心が交差点上に位置
し、入射端5a側の側面が、下方に向けて所定の角度で
傾斜するくさび状に形成されている。
Light emitting surface 30 of each light emitting diode 3c, 4c
c and 40c are provided at the upper end of the ring-shaped cross section and are inclined inward. This light emitting surface 30c, 4
The inclination angle of 0c is set so that the lights emitted from the light emitting surfaces 30c and 40c intersect each other at a predetermined angle. On the other hand, in the optical fiber 5 that receives the light emitted from the light emitting element 10c, the center of the core portion is located on the intersection, and the side surface on the incident end 5a side is formed in a wedge shape that is inclined downward at a predetermined angle. Has been done.

【0025】このように構成した発光素子10cによれ
ば、光ファイバ5の側面からも光を導入することができ
るので、発光素子10cから出射した光を効率よく光フ
ァイバ5に導入することができる。図7は、本発明にか
かる発光素子の第五実施例を示しており、以下にその特
徴点についてのみ説明する。同図に示す発光素子10d
は、ベース1上に設けられた赤色発光ダイオード3dと
青色発光ダイオード4dとを有している。これらの発光
ダイオード3d,4dは、所定の間隔を隔てて対向する
ように配置されていいる。
According to the light emitting element 10c thus constructed, light can be introduced also from the side surface of the optical fiber 5, so that the light emitted from the light emitting element 10c can be efficiently introduced into the optical fiber 5. . FIG. 7 shows a fifth embodiment of the light emitting device according to the present invention, and only the characteristic points will be described below. Light emitting device 10d shown in the same figure
Has a red light emitting diode 3d and a blue light emitting diode 4d provided on the base 1. These light emitting diodes 3d and 4d are arranged so as to face each other with a predetermined gap.

【0026】また、各発光ダイオード3d,4dの発光
面30d,40dは、上端角部に設けられていて、凹面
状の反射鏡面になっていて、この反射鏡面の焦点位置
が、発光素子10bの上方に設置される光ファイバ5の
コア部の中心に設定されている。このように構成された
発光素子10dによれば、上述した第三実施例と同様な
作用効果が得られる。
Further, the light emitting surfaces 30d and 40d of the respective light emitting diodes 3d and 4d are provided at the upper end corners and are concave reflecting mirror surfaces, and the focal position of the reflecting mirror surface is that of the light emitting element 10b. It is set at the center of the core of the optical fiber 5 installed above. According to the light emitting device 10d configured in this manner, the same operational effects as those of the third embodiment described above can be obtained.

【0027】図8は、本発明にかかる発光素子の第六実
施例を示しており、以下にその特徴点についてのみ説明
する。同図に示す発光素子10eは、ベース1上に設け
られた赤色発光ダイオード3eと青色発光ダイオード4
eとを有している。これらの発光ダイオード3e,4e
は、所定の間隔を隔てて対向するように配置されていい
る。
FIG. 8 shows a sixth embodiment of the light emitting device according to the present invention, and only the characteristic points will be described below. The light emitting element 10e shown in the figure is a red light emitting diode 3e and a blue light emitting diode 4 provided on the base 1.
e and. These light emitting diodes 3e, 4e
Are arranged so as to face each other with a predetermined gap.

【0028】また、各発光ダイオード3e,4eの発光
面30e,40eは、上端角部に設けられていて、内側
に向けて傾斜している。この発光面30e,40eの傾
斜角度は、発光面30e,40eから出射した光が、相
互に交差するように設定されている。一方、発光素子1
0eから出射した光を受光する光ファイバー5は、その
コア部の中心が交差点上に位置し、入射端5a側の側面
が、下方に向けて傾斜するくさび状に形成されている。
The light emitting surfaces 30e and 40e of the light emitting diodes 3e and 4e are provided at the upper corners and are inclined inward. The inclination angles of the light emitting surfaces 30e and 40e are set so that the lights emitted from the light emitting surfaces 30e and 40e cross each other. On the other hand, the light emitting element 1
In the optical fiber 5 that receives the light emitted from the optical fiber 0e, the center of its core portion is located on the intersection, and the side surface on the incident end 5a side is formed in a wedge shape that is inclined downward.

【0029】このように構成された発光素子10eによ
れば、上述した第四実施例と同様な作用効果が得られ
る。なお、以上の発光素子の用途は、図3に示した光波
距離計のみに限定適用されるものでなく、波長の異なる
複数の発光素子を必要とする機器一般に適用することが
できる。
According to the light emitting device 10e having such a structure, the same operational effect as that of the above-described fourth embodiment can be obtained. Note that the above-described usage of the light emitting element is not limited to the optical distance meter shown in FIG. 3, but can be applied to general equipment that requires a plurality of light emitting elements having different wavelengths.

【0030】[0030]

【発明の効果】以上、各実施例で詳細に説明したよう
に、本発明にかかる発光素子によれば、同一発光素子か
ら波長の異なる複数の光を出射するため、例えば、この
発光素子を光波距離計などのように気温、気圧などによ
り速度が変動し、測定結果に影響を与える測定器に組み
込むことによって、測定値の自動補正を行うことがで
き、測定精度を向上できる。
As described above in detail in each embodiment, according to the light emitting device of the present invention, a plurality of lights having different wavelengths are emitted from the same light emitting device. By incorporating it into a measuring device such as a rangefinder that changes its speed due to temperature and atmospheric pressure and affects the measurement result, the measured value can be automatically corrected and the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例による発光素子の側面およ
び平面図である。
FIG. 1 is a side view and a plan view of a light emitting device according to a first embodiment of the present invention.

【図2】同発光素子を用いた駆動回路例を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing an example of a drive circuit using the same light emitting element.

【図3】同発光素子を組み込んだ光波距離計を示すブロ
ック説明図である。
FIG. 3 is a block diagram showing a lightwave distance meter incorporating the same light emitting element.

【図4】本発明の第二実施例による発光素子の側面およ
び平面図である。
FIG. 4 is a side view and a plan view of a light emitting device according to a second embodiment of the present invention.

【図5】本発明の第三実施例による示す発光素子の側面
図である。
FIG. 5 is a side view of a light emitting device according to a third embodiment of the present invention.

【図6】本発明の第四実施例による発光素子の側面図で
ある。
FIG. 6 is a side view of a light emitting device according to a fourth embodiment of the present invention.

【図7】本発明の第五実施例による発光素子の側面図で
ある。
FIG. 7 is a side view of a light emitting device according to a fifth embodiment of the present invention.

【図8】本発明の第六実施例による発光素子の側面図で
ある。
FIG. 8 is a side view of a light emitting device according to a sixth embodiment of the present invention.

【図9】従来の光波距離計の構成を示す説明図である。FIG. 9 is an explanatory diagram showing a configuration of a conventional lightwave distance meter.

【符号の説明】[Explanation of symbols]

1 ベース 2,2a 赤外発光ダイオード 3,3a〜3e 赤色発光ダイオード 4,4a〜4e 青色発光ダイオード 5 光ファイバ 5a 入光端 1 Base 2,2a Infrared light emitting diode 3,3a to 3e Red light emitting diode 4,4a to 4e Blue light emitting diode 5 Optical fiber 5a Light entrance end

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 1つのパッケージ内に配置された発光波
長が異なる複数の発光ダイオードを有し、前記発光ダイ
オードの各発光面が同一方向を指向するように配置した
ことを特徴とする発光素子。
1. A light emitting device comprising a plurality of light emitting diodes having different emission wavelengths arranged in one package, and the light emitting surfaces of the light emitting diodes are arranged so as to be oriented in the same direction.
【請求項2】 前記発光ダイオードは、各発光面が同心
状となるように階段状に積層配置したことを特徴とする
請求項1記載の発光素子。
2. The light emitting device according to claim 1, wherein the light emitting diodes are stacked and arranged in a stepwise manner such that respective light emitting surfaces are concentric.
【請求項3】 前記発光面は、光ファイバーの入射端面
に対向していることを特徴とする請求項1または2記載
の発光素子。
3. The light emitting device according to claim 1, wherein the light emitting surface faces an incident end surface of the optical fiber.
【請求項4】 前記発光面は、各発光ダイオードからの
出射光が光学的に同一の焦点を結ぶ反射鏡面状に形成し
たことを特徴とする請求項3記載の発光素子。
4. The light emitting device according to claim 3, wherein the light emitting surface is formed in a reflecting mirror surface shape in which light emitted from each light emitting diode has an optically same focal point.
【請求項5】 前記発光面は、各発光ダイオードからの
出射光が互いに交叉すべく内側に向けた傾斜面に形成す
るとともに、前記出射光の交叉位置において、前記光フ
ァイバーの入射端面が先端側に向かって縮径するくさび
状としたことを特徴とする請求項3記載の発光素子。
5. The light emitting surface is formed as an inclined surface directed inward so that light emitted from each light emitting diode intersects with each other, and an incident end face of the optical fiber is directed toward a tip side at a crossing position of the emitted light. The light emitting device according to claim 3, wherein the light emitting device has a wedge shape whose diameter decreases toward the bottom.
【請求項6】 1つのパッケージ内に配置された発光波
長が異なる複数の発光ダイオードを有し、 前記発光ダイオードの各発光面を、各発光ダイオードか
らの出射光が光学的に同一の焦点を結ぶ反射鏡面状に形
成したことを特徴とする発光素子。
6. A plurality of light emitting diodes having different light emission wavelengths are arranged in one package, and light emitted from each light emitting diode forms an optically identical focal point on each light emitting surface of the light emitting diode. A light-emitting element characterized by being formed into a reflecting mirror surface.
【請求項7】 1つのパッケージ内に配置された発光波
長が異なる複数の発光ダイオードを有し、 前記発光ダイオードの各発光面を、各発光ダイオードか
らの出射光が互いに交叉すべく内側に向けた傾斜面に形
成するとともに、前記出射光の交叉位置において、前記
出射光を受光する光ファイバーの入光端側面が先端側に
向かって縮径するくさび状としたことを特徴とする発光
素子。
7. A plurality of light emitting diodes having different light emission wavelengths arranged in one package, wherein each light emitting surface of the light emitting diode is directed inward so that light emitted from each light emitting diode intersects with each other. A light emitting device, characterized in that it is formed on an inclined surface, and at a crossing position of the emitted light, a side surface of a light receiving end of an optical fiber for receiving the emitted light has a wedge shape whose diameter decreases toward a tip side.
JP19656095A 1995-08-01 1995-08-01 Light emitting device and optical fiber Expired - Fee Related JP3672628B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19656095A JP3672628B2 (en) 1995-08-01 1995-08-01 Light emitting device and optical fiber
DE1996130751 DE19630751A1 (en) 1995-08-01 1996-07-30 Light emitting module with multiple LEDs - whose light emitting faces are so arranged as to be aligned in same direction
SE9602901A SE520189C2 (en) 1995-08-01 1996-07-31 Light emitting elements
SE0102071A SE523213C2 (en) 1995-08-01 2001-06-12 Light emitting elements
SE0102070A SE523212C2 (en) 1995-08-01 2001-06-12 Light emitting elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19656095A JP3672628B2 (en) 1995-08-01 1995-08-01 Light emitting device and optical fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004228173A Division JP3987844B2 (en) 2004-08-04 2004-08-04 Light emitting element

Publications (2)

Publication Number Publication Date
JPH0945966A true JPH0945966A (en) 1997-02-14
JP3672628B2 JP3672628B2 (en) 2005-07-20

Family

ID=16359771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19656095A Expired - Fee Related JP3672628B2 (en) 1995-08-01 1995-08-01 Light emitting device and optical fiber

Country Status (3)

Country Link
JP (1) JP3672628B2 (en)
DE (1) DE19630751A1 (en)
SE (3) SE520189C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536061A (en) * 2000-06-03 2003-12-02 ライカ ジオシステムズ アクチエンゲゼルシャフト Optical ranging device
JP2005214781A (en) * 2004-01-29 2005-08-11 Hosiden Corp Object detection system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1641043A1 (en) * 2004-09-23 2006-03-29 Arima Optoelectronics Corporation Full-color light-emitting diode (LED) formed by overlaying red, green and blue LED diode dies
CN103367383B (en) * 2012-03-30 2016-04-13 清华大学 Light-emitting diode
GB201908404D0 (en) * 2019-06-12 2019-07-24 Secr Defence Measuring device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536061A (en) * 2000-06-03 2003-12-02 ライカ ジオシステムズ アクチエンゲゼルシャフト Optical ranging device
JP4824253B2 (en) * 2000-06-03 2011-11-30 ライカ ジオシステムズ アクチエンゲゼルシャフト Optical distance measuring device
JP2005214781A (en) * 2004-01-29 2005-08-11 Hosiden Corp Object detection system

Also Published As

Publication number Publication date
SE0102071D0 (en) 2001-06-12
SE9602901L (en) 1997-02-02
SE0102070D0 (en) 2001-06-12
SE9602901D0 (en) 1996-07-31
SE0102071L (en) 2001-06-12
SE0102070L (en) 2001-06-12
SE523213C2 (en) 2004-04-06
JP3672628B2 (en) 2005-07-20
SE523212C2 (en) 2004-04-06
DE19630751A1 (en) 1997-02-06
SE520189C2 (en) 2003-06-10

Similar Documents

Publication Publication Date Title
US5130531A (en) Reflective photosensor and semiconductor light emitting apparatus each using micro Fresnel lens
JPS5852514A (en) Measuring device for distance between light source and surface of observation
KR950006734A (en) Optics
SE437579B (en) DEVICE FOR READING AN OPTICAL RECORDER WITH A RADIATOR-REFLECTING INFORMATION STRUCTURE
JPH11330939A (en) Optical device, photoelectric switch, fiber type photoelectric switch, and color discrimination sensor
JPS589013A (en) Distance measuring device
JP3672628B2 (en) Light emitting device and optical fiber
JPS6269111A (en) Reflection type inclination detecting element
JP3987844B2 (en) Light emitting element
JP2832604B2 (en) Lightwave rangefinder
JPH0391283A (en) Laser unit
JPH1151861A (en) Apparatus for measuring concentration of liquid
JPS6044806A (en) Device for detecting position of body
JPH04283683A (en) Optoelectronic distance meter
JPS5933641A (en) Information pickup device using semiconductor laser
JPS58158619A (en) Adjusting method of photosensor
JPH07105560B2 (en) Light emitting element module
JPS60235027A (en) Narrow wavelength band light emitting and receiving apparatus
JPH0315129A (en) Reflecting type optical sensor
JPH04259828A (en) Optical power meter
JPS60128330A (en) Refractive index measuring device of thin film
CN118129912A (en) Color Sensor
JPH11273138A (en) Optical semiconductor device and optical pickup
JP3110139B2 (en) Optical fiber temperature sensor
JPH01250778A (en) Optical apparatus for detection

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees