JPH0943068A - Signal processing circuit for sensor utilizing change in capacitance - Google Patents

Signal processing circuit for sensor utilizing change in capacitance

Info

Publication number
JPH0943068A
JPH0943068A JP7212617A JP21261795A JPH0943068A JP H0943068 A JPH0943068 A JP H0943068A JP 7212617 A JP7212617 A JP 7212617A JP 21261795 A JP21261795 A JP 21261795A JP H0943068 A JPH0943068 A JP H0943068A
Authority
JP
Japan
Prior art keywords
external force
capacitance
electrode
electrodes
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7212617A
Other languages
Japanese (ja)
Other versions
JP3124710B2 (en
Inventor
Kyoji Shimoda
亨志 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP07212617A priority Critical patent/JP3124710B2/en
Publication of JPH0943068A publication Critical patent/JPH0943068A/en
Application granted granted Critical
Publication of JP3124710B2 publication Critical patent/JP3124710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain approximately constant detection sensitivity for external force of an electrode plane irrespective of a distance between electrodes in a signal processing circuit for a sensor where a change in capacitance is utilized. SOLUTION: A CV-conversion circuit 2 for converting capacitance to voltage is connected to a capacitance element 1 for detecting external force in a direction between electrodes, an output of this circuit is an output detected in a direction between electrodes, capacitance elements 3, 4 for detecting external force in a direction of electrode plane operate differentially and respectively connected to CV-conversion circuits 5, 6 for converting capacitance to voltage, an output of the CV-conversion circuits is made through an operational amplifier 7 to be an output for detecting external force in the direction of electrode plane, the output for detecting the external force in the direction between electrodes is connected to sensitivity adjusting circuits 8, 9, and the respective sensitivity adjusting circuits 8, 9 are connected to capacitances 3, 4 for detecting external force in the direction of electrode plane. The sensitivity adjusting circuits 8, 9 control amplitude of voltage appearing across the capacitance for detecting in the direction of electrode plane according to the external force in the direction between electrodes, thereby making the detection output in the direction of electrode plane correct irrespective of a distance between the electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、一対の電極距離
の変化に基づき他軸の力・加速度・磁気などの検出を行
う静電容量の変化を利用したセンサ用の信号処理回路の
改良に係り、電極平面方向の力の検出感度を電極間距離
方向の検出電圧で制御することより、電極間距離に関係
なく電極平面方向の検出出力を正確にした静電容量の変
化を利用したセンサ用信号処理回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a signal processing circuit for a sensor that utilizes a change in electrostatic capacitance that detects force, acceleration, magnetism, etc. of another axis based on a change in a distance between a pair of electrodes. By controlling the detection sensitivity of the force in the direction of the electrode plane with the detection voltage in the direction of the distance between the electrodes, a sensor signal that utilizes the change in capacitance that makes the detection output in the direction of the electrode plane accurate regardless of the distance between the electrodes It relates to a processing circuit.

【0002】[0002]

【従来の技術】従来、容量式多軸力センサが、例えば特
願平4−181679号等により知られている。これ
は、電極間距離が力により動くことにより、電極間距離
の平均値に相当する容量で電極間方向の力を検出し、電
極の傾きで電極平面方向の力を検出するものである。詳
述すると、静電容量型加速度センサとして使用する場合
には、固定基板と可撓基板との各対向面に電極を着設し
て対向配置される静電容量素子を複数対設け、該基板面
に平行なXY平面を設定しこれと直交するZ軸のX,
Y,Z軸3次元方向の加速度の変化を、複数対の静電容
量素子間の静電容量変化に基づき各X,Y,Z軸方向成
分の検出を行う。
2. Description of the Related Art Conventionally, a capacitive multi-axis force sensor is known from, for example, Japanese Patent Application No. 4-181679. This is to detect the force in the inter-electrode direction by the capacitance corresponding to the average value of the inter-electrode distance and to detect the force in the electrode plane direction by the inclination of the electrode as the inter-electrode distance moves due to the force. More specifically, when used as a capacitance type acceleration sensor, a plurality of pairs of capacitance elements are provided, each of which is provided with an electrode on each opposing surface of a fixed substrate and a flexible substrate. Set the XY plane parallel to the plane and the X of the Z axis orthogonal to this
The change in acceleration in the three-dimensional directions of the Y and Z axes is detected for each component in the X, Y, and Z axis directions based on the change in capacitance between a plurality of pairs of capacitance elements.

【0003】例えば、図3の縦断面に示すごとく、枠体
10内に配置された固定基板11と、これに所定の間隔
を設けて可撓基板12を平行に配置し、固定基板11の
下面を示す図2に示すごとく、この固定基板11と可撓
基板12との各対向面にそれぞれ電極21〜25を着設
して静電容量素子C21〜C25を形成する構成からなる。
可撓基板12の下面には適当な質量を有する作動子13
を設けてある。
For example, as shown in the vertical cross section of FIG. 3, a fixed substrate 11 arranged in a frame body 10 and a flexible substrate 12 arranged in parallel with a predetermined space therebetween, and the lower surface of the fixed substrate 11 is arranged. As shown in FIG. 2, the electrodes 21 to 25 are attached to the facing surfaces of the fixed substrate 11 and the flexible substrate 12, respectively, to form the capacitance elements C 21 to C 25 .
The lower surface of the flexible substrate 12 has an actuator 13 having an appropriate mass.
Is provided.

【0004】詳述するとここでは、該対向面間の外周部
に4個、中央部に1個の電極21〜25を設けて、固定
基板11の電極26と対をなして静電容量素子C21〜C
25を形成した構成、すなわち、電極面にて直交するX,
Yの2軸上に配置された各々2つの静電容量素子C21
24と、前2軸の中央に静電容量素子C25を配置した構
成からなる。上記の構成において、X軸方向に加速度が
加わった場合、作動子13を有する可撓基板12が変形
することにより、固定基板11と可撓基板12との対向
面間の各電極1〜5間距離が変化することから、各静電
容量素子C21〜C24の静電容量が変化する。また、Z軸
方向に加速度が加わった場合も同様に各静電容量素子C
21〜C25の静電容量が変化する。
More specifically, here, four electrodes 21 to 25 are provided in the outer peripheral portion between the facing surfaces, and one electrode 21 to 25 is provided in the central portion to form a pair with the electrode 26 of the fixed substrate 11 to form the capacitance element C. 21 ~ C
25 , that is, X, which is orthogonal to the electrode surface,
Each of the two capacitive elements C 21 arranged on two axes of Y
C 24 and a capacitive element C 25 arranged in the center of the front two axes. In the above structure, when acceleration is applied in the X-axis direction, the flexible substrate 12 having the actuator 13 is deformed, so that the electrodes 1 to 5 between the facing surfaces of the fixed substrate 11 and the flexible substrate 12 are deformed. since the distance changes, the capacitance of the capacitive element C 21 -C 24 is changed. Similarly, when acceleration is applied in the Z-axis direction, each capacitance element C
The capacitance of 21 to C 25 changes.

【0005】静電容量の変化より加速度の各成分の検出
は、例えば、X軸方向の加速度に対する出力として、静
電容量素子C21とC23の静電容量差(C21−C23)、Y
軸方向の加速度に対する出力として、静電容量素子C22
とC24の静電容量差(C22−C24)、Z軸方向の加速度
に対する出力として、静電容量素子C25の静電容量(C
25)あるいはC21+C22+C23+C24として検出する。
The detection of each component of the acceleration from the change of the electrostatic capacitance is performed, for example, as an output with respect to the acceleration in the X-axis direction, the electrostatic capacitance difference between the electrostatic capacitance elements C 21 and C 23 (C 21 -C 23 ), Y
As an output for the acceleration in the axial direction, the capacitance element C 22
And C 24 (C 22 −C 24 ), the capacitance of the capacitance element C 25 (C 22
25 ) or C 21 + C 22 + C 23 + C 24 .

【0006】[0006]

【発明が解決しようとする課題】かかる構成からなる静
電容量型加速度センサなどのセンサにおいて、平面方向
の外力に対する出力感度は、電極間距離に応じ変化する
という問題がある。従来、この電極平面の外力の検出感
度の変動については、何ら補正を行っていなかっため、
従来の補正回路では、電極間距離による感度の変化が無
視できないほど大きい問題があった。
In a sensor such as a capacitance type acceleration sensor having such a structure, there is a problem that the output sensitivity to an external force in the plane direction changes according to the distance between the electrodes. Conventionally, no change was made to the fluctuation of the detection sensitivity of the external force on the electrode plane,
The conventional correction circuit has a problem that the change in sensitivity due to the distance between the electrodes is so large that it cannot be ignored.

【0007】この発明は、静電容量の変化を利用したセ
ンサ用信号処理回路における上記の問題を解消し、電極
間距離に関係なく電極平面の外力の検出感度をほぼ一定
にすることが可能な信号処理回路の提供を目的とし、さ
らに、簡単な回路でコストを大幅に上げることなく、電
極平面の外力の検出感度をほぼ一定にできる構成の提供
を目的としている。
The present invention can solve the above-mentioned problems in the signal processing circuit for the sensor utilizing the change of the electrostatic capacitance, and can make the detection sensitivity of the external force of the electrode plane substantially constant regardless of the distance between the electrodes. It is an object of the present invention to provide a signal processing circuit, and further to provide a configuration in which the detection sensitivity of the external force on the electrode plane can be made substantially constant with a simple circuit without significantly increasing the cost.

【0008】[0008]

【課題を解決するための手段】発明者は、電極平面の外
力の検出感度をほぼ一定にできる構成を目的に信号回路
について種々検討した結果、電極平面方向の力の検出感
度を電極間距離方向の検出電圧で制御することより、電
極間距離に関係なく電極平面方向の検出出力を一定にで
きることを知見し、この発明を完成した。
As a result of various studies on a signal circuit for the purpose of constructing a structure in which the external force detection sensitivity of the electrode plane can be made substantially constant, the inventor has found that the force detection sensitivity in the electrode plane direction is the distance between electrodes. It was found that the detection output in the electrode plane direction can be made constant irrespective of the inter-electrode distance by controlling with the detection voltage of 1.

【0009】すなわち、この発明は、外力の作用により
動く一つの可動部を有し、この可動部に複数の電極を配
置し、この可動部の電極と固定部の電極対によって容量
素子を構成し、この容量素子の静電容量の変化に基づい
て、電極間の距離方向の外力と電極の平面方向の外力を
検出するセンサ用信号処理回路において、電極の平面方
向の外力の検出回路の中に外部信号による感度調整回路
を有し、該感度調整回路に電極間方向の外力の検出信号
を接続し、電極間方向の外力に応じ電極の平面方向の外
力の検出感度を制御可能にすることを特徴とする回路を
有する静電容量の変化を利用したセンサ用の信号処理回
路である。
That is, the present invention has one movable part that moves by the action of an external force, a plurality of electrodes are arranged on this movable part, and the capacitive element is constituted by the electrode of this movable part and the electrode pair of the fixed part. , In the signal processing circuit for the sensor that detects the external force in the distance direction between the electrodes and the external force in the plane direction of the electrodes based on the change in the capacitance of this capacitive element, It has a sensitivity adjustment circuit by an external signal, and connects the detection signal of the external force in the inter-electrode direction to the sensitivity adjustment circuit so that the detection sensitivity of the external force in the planar direction of the electrodes can be controlled according to the external force in the inter-electrode direction. A signal processing circuit for a sensor using a change in electrostatic capacitance, which has a characteristic circuit.

【0010】[0010]

【発明の実施の形態】以下に、この発明を図面に基づい
て詳述する。図1は静電容量型センサの信号処理回路の
基本構成を示す回路図である。図4は電極間距離と静電
容量との関係を示すグラフ、図5は平均電極間距離の違
いによる電極平面方向外力の検出出力を示すグラフであ
る。図6はこの発明による信号処理回路の具体例を示す
回路図であり、図7は図6の信号処理回路の動作波形例
を示す説明図である。静電容量型センサは、前述した図
2、図3の構成からなる静電容量型加速度センサを対象
としている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to the drawings. FIG. 1 is a circuit diagram showing a basic configuration of a signal processing circuit of a capacitance type sensor. FIG. 4 is a graph showing the relationship between the inter-electrode distance and capacitance, and FIG. 5 is a graph showing the detection output of the external force in the electrode plane direction due to the difference in the average inter-electrode distance. FIG. 6 is a circuit diagram showing a specific example of the signal processing circuit according to the present invention, and FIG. 7 is an explanatory diagram showing an operation waveform example of the signal processing circuit of FIG. The electrostatic capacitance type sensor is intended for the electrostatic capacitance type acceleration sensor having the configuration of FIG. 2 and FIG. 3 described above.

【0011】図1において、電極間方向外力検出用の静
電容量素子1に、静電容量を電圧に変換するCV変換回
路2を接続し、この回路の出力を電極間方向の検出出力
としている。電極平面方向外力検出用の静電容量素子
3,4は差動で動作し、それぞれ静電容量を電圧に変換
するCV変換回路5,6に接続される。このCV変換回
路の出力を演算増幅器7で減算し、この回路の出力を電
極平面方向の外力の検出出力としている。
In FIG. 1, a CV conversion circuit 2 for converting an electrostatic capacity into a voltage is connected to a capacitance element 1 for detecting an external force between electrodes, and the output of this circuit is used as a detection output in the direction between electrodes. . The electrostatic capacitance elements 3 and 4 for detecting the external force in the electrode plane direction operate differentially and are connected to CV conversion circuits 5 and 6 for converting the electrostatic capacitance into a voltage, respectively. The output of this CV conversion circuit is subtracted by the operational amplifier 7, and the output of this circuit is used as the detection output of the external force in the electrode plane direction.

【0012】一方、電極間距離方向の外力の検出出力
は、感度調整回路8,9に接続され、それぞれの感度調
整回路8,9が電極平面方向外力検出用の静電容量3,
4に接続される。この感度調整回路8,9は、電極間方
向外力に応じて電極平面方向検出用の静電容量の両端に
現れる電圧の振幅を制御するよう構成されている。
On the other hand, the detection output of the external force in the inter-electrode distance direction is connected to the sensitivity adjusting circuits 8 and 9, and the sensitivity adjusting circuits 8 and 9 respectively detect the electrostatic capacitances 3 for detecting the external force in the electrode plane direction.
4 is connected. The sensitivity adjusting circuits 8 and 9 are configured to control the amplitude of the voltage appearing at both ends of the electrostatic capacitance for detecting the electrode plane direction in accordance with the external force between the electrodes.

【0013】次に動作の詳細について説明する。一般に
静電容量式センサにおいては、外力と電極間距離dは比
例関係にあり、電極距離dと静電容量Cは図4に示すよ
うに反比例の関係にある。図4において、実線で示す電
極間距離d1の点で一定の力が加わって変化した静電容
量分はC1となる。同様に、破線で示す電極間距離d2
点で同じ力が加わって変化した静電容量分はC2とな
る。このC1とC2を比較すると電極間距離の短いC1
値が大きくなることが分かる。つまり電極間距離によっ
て同じ印加した力でも検出された静電容量値が異なり、
これが検出電圧の誤差となっている。
Next, details of the operation will be described. Generally, in the capacitance type sensor, the external force and the inter-electrode distance d are in a proportional relationship, and the electrode distance d and the electrostatic capacitance C are in an inversely proportional relationship as shown in FIG. In FIG. 4, the electrostatic capacitance component changed by applying a constant force at the point of the inter-electrode distance d 1 shown by the solid line is C 1 . Similarly, at the point of the inter-electrode distance d 2 indicated by the broken line, the electrostatic capacitance component changed by applying the same force is C 2 . Comparing C 1 and C 2 , it can be seen that the value of C 1 having a short distance between the electrodes becomes large. In other words, the detected capacitance value differs depending on the distance between the electrodes even with the same applied force,
This is the error in the detected voltage.

【0014】仮に可動部電極が電極間方向の力により、
一点鎖線で示す平均電極間距離d0に対し±10%程度
動き、この点で電極間平面方向に平均電極間距離の5%
分に相当する力が加わった場合、電極間距離最大点と最
小点の電極平面方向の感度の差は下記のとおりとなる。
静電容量C=(誘電率ε×電極面積S)÷電極間距離d
より、誘電率と電極面積は固定であり電極間方向の力
を検出する静電容量分をKCZとし、電極間平面方向の力
を検出する静電容量分をKCXとすると、電極間距離の力
を検出する。
Assuming that the movable part electrode is subjected to a force between the electrodes,
It moves about ± 10% with respect to the average inter-electrode distance d 0 indicated by the one-dot chain line, and at this point, 5% of the average inter-electrode distance in the inter-electrode plane direction.
When a force equivalent to that is applied, the difference in sensitivity in the electrode plane direction between the maximum point and the minimum point between the electrodes is as follows.
Capacitance C = (dielectric constant ε × electrode area S) / distance d between electrodes
Therefore, if the permittivity and the electrode area are fixed and the capacitance for detecting the force in the inter-electrode direction is K CZ, and the capacitance for detecting the force in the inter-electrode plane direction is K CX , the inter-electrode distance Detect the force of.

【0015】電極間距離の力を検出する平均電極間距離
の静電容量C0は、 C0=KCZ÷d0 、 電極間方向の外力で電極間距離最小点の静電容量C
1は、 C1=KCZ÷(0.9×d0) 、 電極間方向の外力で電極間距離最大点の静電容量C
2は、 C2=KCZ÷(1.1×d0) 。
The capacitance C 0 of the average distance between the electrodes for detecting the force of the distance between the electrodes is C 0 = K CZ ÷ d 0 , and the capacitance C at the minimum point of the distance between the electrodes is the external force in the direction between the electrodes.
1 is C 1 = K CZ ÷ (0.9 × d 0 ), and the capacitance C at the maximum point of the inter-electrode distance due to the external force in the inter-electrode direction.
2 is C 2 = K CZ ÷ (1.1 × d 0 ).

【0016】電極間平面方向の力を検出する、C0の状
態に電極平面方向の外力が加わった時の静電容量C
7は、 C7=KCX÷(1.0×d0−0.05×d0)=KCX÷(0.95×d0) 、C0の状態に電極平面方向の外力が加わった時の静電
容量C8は、 C8=KCX÷(1.0×d0+0.05×d0)=KCX÷(1.05×d0) 、C1の状態に電極平面方向の外力が加わった時の静電
容量C3は、 C3=KCX÷(0.9×d0−0.05×d0)=KCX÷(0.85×d0) 、C1の状態に電極平面方向の外力が加わった時の静電
容量C4は、 C4=KCX÷(0.9×d0+0.05×d0)=KCX÷(0.95×d0) 、C2の状態に電極平面方向の外力が加わった時の静電
容量C3は、 C5=KCX÷(1.1×d0−0.05×d0)=KCX÷(1.05×d0) 、C2の状態に電極平面方向の外力が加わった時の静電
容量C4は、 C6=KCX÷(1.1×d0+0.05×d0)=KCX÷(1.05×d0) 。
Capacitance C when an external force in the electrode plane direction is applied to the state of C 0 for detecting the force in the electrode plane direction
7 , C 7 = K CX ÷ (1.0 × d 0 −0.05 × d 0 ) = K CX ÷ (0.95 × d 0 ), and an external force in the electrode plane direction was applied to the state of C 0 . The electrostatic capacitance C 8 at this time is C 8 = K CX ÷ (1.0 × d 0 + 0.05 × d 0 ) = K CX ÷ (1.05 × d 0 ), in the electrode plane direction in the state of C 1. The electrostatic capacitance C 3 when the external force is applied is C 3 = K CX ÷ (0.9 × d 0 −0.05 × d 0 ) = K CX ÷ (0.85 × d 0 ), C 1 The electrostatic capacitance C 4 when an external force in the electrode plane direction is applied to the state is C 4 = K CX ÷ (0.9 × d 0 + 0.05 × d 0 ) = K CX ÷ (0.95 × d 0 ), the electrostatic capacitance C 3 when an external force in the electrode plane direction is applied to the state of C 2 is C 5 = K CX ÷ (1.1 × d 0 −0.05 × d 0 ) = K CX ÷ (1.05 × d 0), the capacitance C 4 when the external force of the electrode plane direction is applied to the state of C 2 is, C 6 = K CX (1.1 × d 0 + 0.05 × d 0) = K CX ÷ (1.05 × d 0).

【0017】検出される力は静電容量に比例することよ
り、電極平面方向の静電容量を電圧に変化する係数をK
VXとすると、d1とd2の電極平面方向の検出電圧VX1
およびVX2は下記式となる。
Since the detected force is proportional to the electrostatic capacitance, the coefficient for changing the electrostatic capacitance in the electrode plane direction into a voltage is K.
Let VX be the detection voltage V X1 in the electrode plane direction of d 1 and d 2 ,
And V X2 is given by the following formula.

【0018】[0018]

【数1】 [Equation 1]

【0019】[0019]

【数2】 [Equation 2]

【0020】[0020]

【数3】 (Equation 3)

【0021】上記検出電圧を比較すると同じ外力にもか
かわらず大きな違いがあることが分かる。基本的には、
電極間平面方向に5%の外力を加え、2つの静電容量を
作動方式で検出する方式なので上記式の右側の最初の係
数は0.05×2=0.100が真値である。従って、
1の点では+24%、d2の点では−17%の検出誤差
となっていることが分かる。この状態を図5に平均電極
間距離の違いによる電極間方向検出出力として示す。
Comparing the detected voltages, it can be seen that there is a large difference despite the same external force. Basically,
Since the external force of 5% is applied in the inter-electrode plane direction and two electrostatic capacitances are detected by the operating method, the first coefficient on the right side of the above equation is a true value of 0.05 × 2 = 0.100. Therefore,
It can be seen that the detection error is + 24% at the point of d 1 and -17% at the point of d 2 . This state is shown in FIG. 5 as the inter-electrode direction detection output due to the difference in the average inter-electrode distance.

【0022】この発明によれば、上記VX1とVX2を平均
電極間距離で下記のように補正することができる。電極
間距離方向の静電容量を電圧に変換する係数をKCZとす
ると、d0の点の平均電極間距離の検出電圧VZ0は、 VZ0=KVZ×C0=KVZ×KCZ÷d0 、 d1の点の平均電極間距離の検出電圧VZ1は、 VZ1=KVZ×C1=KVZ×KCZ÷(0.9×d0) 、 d2の点の平均電極間距離の検出電圧VZ2は、 VZ2=KVZ×C2=KVZ×KCZ÷(1.1×d0) 、 となる。
According to the present invention, the above V X1 and V X2 can be corrected by the average inter-electrode distance as follows. Letting K CZ be a coefficient for converting the electrostatic capacitance in the inter-electrode distance direction into a voltage, the detection voltage V Z0 of the average inter-electrode distance at the point of d 0 is V Z0 = K VZ × C 0 = K VZ × K CZ The detection voltage V Z1 of the average inter-electrode distance at the points ÷ d 0 and d 1 is V Z1 = K VZ × C 1 = K VZ × K CZ ÷ (0.9 × d 0 ), the average of the points d 2 The detection voltage V Z2 of the distance between the electrodes is V Z2 = K VZ × C 2 = K VZ × K CZ ÷ (1.1 × d 0 ).

【0023】この検出電圧に一定比例定数KZHを乗じた
値で、前記電極間平面方向の検出電圧のゲインをd0
点の補正係数を1とし、平均電極間距離が狭いときは小
さく、広いときは大きくなるよう制御する。VX1の補正
後の検出電圧をVX3とすると、下記式になる。
[0023] In the value obtained by multiplying a predetermined proportionality constant K ZH to the detected voltage, the gain of the inter-electrode plane direction of the detection voltage is 1 the correction coefficient of a point d 0, when the average distance between the electrodes is narrow small, When it is wide, control it so that it becomes large. When the detection voltage after the correction of V X1 and V X3, becomes the following equation.

【0024】[0024]

【数4】 ただし、VZ1−VZ0=(KCZ×KCZ÷d0)×(1÷0.9−1) =(KVZ×KCZ÷d0)×0.111(Equation 4) However, V Z1 -V Z0 = (K CZ × K CZ ÷ d 0) × (1 ÷ 0.9-1) = (K VZ × K CZ ÷ d 0) × 0.111

【0025】ここで、VX1は(VZ1−VZ0))に対し基
本的には作動方式のため2倍の変化量であり、これに対
応し、KZH×(KVZ×KCZ÷d0)を2とするようKZH
を調整すれば、VX3は下記式となる。
Here, V X1 is basically a double change amount due to the operating system with respect to (V Z1 -V Z0 ), and corresponding to this, K ZH × (K VZ × K CZ ÷ K ZH so that d 0 ) is 2.
If V x3 is adjusted, V X3 becomes the following formula.

【0026】[0026]

【数5】 (Equation 5)

【0027】VX2の補正後の検出電圧をVX4とすると、
下記式となる。
If the detected voltage after correction of V X2 is V X4 ,
It becomes the following formula.

【0028】[0028]

【数6】 但し、VZ2−VZ0=(KVZ×KCZ÷d0)×(1−1÷1.1) =(KVZ×KCZ÷d0)×−0.091(Equation 6) However, V Z2 -V Z0 = (K VZ × K CZ ÷ d 0) × (1-1 ÷ 1.1) = (K VZ × K CZ ÷ d 0) × -0.091

【0029】ここで、前述と同様にKZH×(KVZ×KCZ
÷d0)を2とするようにKZHを調整すれば、VX4を得
る。
Here, in the same manner as described above, K ZH × (K VZ × K CZ
If K ZH is adjusted so that ÷ d 0 ) becomes 2, V X4 is obtained.

【0030】[0030]

【数7】 (Equation 7)

【0031】以上のようにこの発明によれば、平均電極
間距離が異なっていても電極平面方向の力の検出感度を
1%程度の誤差に補正することができる。
As described above, according to the present invention, the detection sensitivity of the force in the electrode plane direction can be corrected to an error of about 1% even if the average inter-electrode distance is different.

【0032】[0032]

【実施例】この発明の一実施例として図6の信号処理回
路について説明する。電極間方向外力検出用の静電容量
素子1,3,4には外部から一定振幅のクロックパルス
が印加される。この電極間方向外力検出用の静電容量と
ほぼ等しい固定容量2bが同様な回路で並列に接続さ
れ、前記検出用静電容量に印加したパルスと逆相のパル
スが一定振幅で印加される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A signal processing circuit shown in FIG. 6 will be described as an embodiment of the present invention. A clock pulse having a constant amplitude is externally applied to the electrostatic capacitance elements 1, 3 and 4 for detecting the external force between the electrodes. The fixed capacitance 2b, which is substantially equal to the electrostatic capacitance for detecting the external force in the inter-electrode direction, is connected in parallel in the same circuit, and the pulse having the opposite phase to the pulse applied to the electrostatic capacitance for detection is applied with a constant amplitude.

【0033】電極間方向の外力がゼロの場合は、この固
定容量2bの両端波形と電極間方向外力検出用静電容量
1の両端波形は同じであり演算増幅器U1の出力はゼロ
となる。ここに電極間方向に外力が加われば電極間方向
外力検出用静電容量1が変化し、同静電容量の両端の電
圧波形も変化するため、演算増幅器U1に出力が現れ
る。この出力電圧を同期検波平滑回路2aにて同期検波
し平滑することで電極間方向外力を検出している。
When the external force in the inter-electrode direction is zero, the waveforms at both ends of the fixed capacitance 2b and the electrostatic capacitance 1 for detecting the inter-electrode direction external force are the same, and the output of the operational amplifier U 1 becomes zero. When an external force is applied to the inter-electrode direction, the inter-electrode direction external force detecting electrostatic capacitance 1 changes, and the voltage waveform across the electrostatic capacitance also changes, so that an output appears in the operational amplifier U 1 . By synchronously detecting and smoothing this output voltage by the synchronous detection and smoothing circuit 2a, the inter-electrode direction external force is detected.

【0034】電極平面方向外力の検出についても基本的
には同じ考え方であり、電極平面方向外力検出用静電容
量3,4が差動式で前述の固定容量2b分にも検出用静
電容量3,4が接続される。そして各々の静電容量が逆
に増減するために電極間方向の外力の検出に比べ倍の検
出出力を得ることができる。ここで電極間方向の検出電
圧は分圧回路にも接続され、一定の比で分圧されて差動
式電極平面方向外力検出用静電容量を駆動しているパル
スの振幅を可変できるようにしている。このパルスの振
幅は電極間方向外力検出用静電容量が増加すれば振幅減
となるようにし、前述の電極平面方向外力の検出出力の
補正を行う。
Basically, the same idea is applied to the detection of the external force in the electrode plane direction. The electrostatic capacitances 3 and 4 for detecting the external force in the electrode plane direction are of the differential type, and the electrostatic capacitance for detection is also included in the fixed capacitance 2b. 3, 4 are connected. Since the respective capacitances increase or decrease conversely, it is possible to obtain a detection output that is twice as large as the detection output of the external force in the inter-electrode direction. Here, the detection voltage in the inter-electrode direction is also connected to a voltage dividing circuit, and divided in a constant ratio so that the amplitude of the pulse driving the differential electrode plane direction external force detection capacitance can be varied. ing. The amplitude of this pulse is made to decrease as the inter-electrode direction external force detecting capacitance increases, and the detection output of the electrode plane direction external force described above is corrected.

【0035】以上の実施例では、電極間平面方向の検出
感度を変えるために駆動パルスの振幅を変える方式で説
明したが、電極平面方向外力の検出出力に乗算器を設け
てもよく、また、FETなどを使用して抵抗値変化によ
るゲイン変化として扱う手段を採用することができる。
In the above embodiments, the method of changing the amplitude of the driving pulse in order to change the detection sensitivity in the inter-electrode plane direction has been described, but a multiplier may be provided for the detection output of the external force in the electrode plane direction. It is possible to adopt a means of treating as gain change due to resistance value change using FET or the like.

【0036】[0036]

【発明の効果】この発明による静電容量型センサ用信号
処理回路は、電極平面方向の力の検出感度を電極間距離
方向の検出電圧で制御する非常に簡単でかつ安価な回路
により、1つの可動部と固定部で複数の電極を持つ多軸
力センサの平均電極間距離が異なっていても、電極平面
方向外力の検出感度をほぼ一定にでき、高性能センサを
提供できるようになる。
The signal processing circuit for an electrostatic capacitance type sensor according to the present invention has a very simple and inexpensive circuit which controls the detection sensitivity of the force in the electrode plane direction by the detection voltage in the inter-electrode distance direction. Even if the average distance between the electrodes of the multi-axis force sensor having a plurality of electrodes in the movable portion and the fixed portion is different, the detection sensitivity of the external force in the electrode plane direction can be made substantially constant, and a high performance sensor can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】静電容量型センサの信号処理回路の基本構成を
示す回路図である。
FIG. 1 is a circuit diagram showing a basic configuration of a signal processing circuit of a capacitance type sensor.

【図2】静電容量型センサの平面説明図である。FIG. 2 is a plan view of a capacitance type sensor.

【図3】静電容量型センサの断面説明図である。FIG. 3 is a cross-sectional explanatory view of a capacitance type sensor.

【図4】電極間距離と静電容量との関係を示すグラフで
ある。
FIG. 4 is a graph showing a relationship between a distance between electrodes and a capacitance.

【図5】平均電極間距離の違いによる電極平面方向外力
の検出出力を示すグラフである。
FIG. 5 is a graph showing the detection output of the external force in the electrode plane direction due to the difference in the average inter-electrode distance.

【図6】この発明による信号処理回路の具体例を示す回
路図である。
FIG. 6 is a circuit diagram showing a specific example of a signal processing circuit according to the present invention.

【図7】図6の信号処理回路の動作波形例を示す説明図
である。
7 is an explanatory diagram showing an example of operation waveforms of the signal processing circuit of FIG.

【符号の説明】[Explanation of symbols]

1,3,4 静電容量素子 2,5,6 CV変換回路 2a,7a 同期検波平滑回路 2b 固定容量 7,U1,U2 演算増幅器 8,9 感度調整回路 10 枠体 11 固定基板 12 可撓基板 13 作動子 26 電極 C21〜C25 静電容量素子1, 3, 4 Capacitance element 2, 5, 6 CV conversion circuit 2a, 7a Synchronous detection smoothing circuit 2b Fixed capacitance 7, U 1 , U 2 Operational amplifier 8, 9 Sensitivity adjustment circuit 10 Frame 11 Fixed substrate 12 Yes Flexible substrate 13 Actuator 26 Electrodes C 21 to C 25 Capacitance element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外力の作用により動く一つの可動部を有
し、この可動部に複数の電極を配置し、この可動部の電
極と固定部の電極対によって容量素子を構成し、この容
量素子の静電容量の変化に基づいて、電極間の距離方向
の外力と電極の平面方向の外力を検出するセンサ用信号
処理回路において、電極の平面方向の外力の検出回路の
中に外部信号による感度調整回路を有し、該感度調整回
路に電極間方向の外力の検出信号を接続し、電極間方向
の外力に応じ電極の平面方向の外力の検出感度を制御可
能にすることを特徴とする回路を有する静電容量の変化
を利用したセンサ用の信号処理回路。
1. A single movable part that moves by the action of an external force is provided, a plurality of electrodes are arranged on the movable part, and a capacitive element is constituted by the electrode of the movable part and an electrode pair of the fixed part. In the signal processing circuit for the sensor that detects the external force in the distance direction between the electrodes and the external force in the planar direction of the electrode based on the change in the capacitance of the A circuit having an adjusting circuit, wherein the detection signal of the external force in the inter-electrode direction is connected to the sensitivity adjusting circuit, and the detection sensitivity of the external force in the planar direction of the electrodes can be controlled according to the external force in the inter-electrode direction. A signal processing circuit for a sensor that utilizes a change in capacitance.
JP07212617A 1995-07-28 1995-07-28 Signal processing circuit for sensors using change in capacitance Expired - Fee Related JP3124710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07212617A JP3124710B2 (en) 1995-07-28 1995-07-28 Signal processing circuit for sensors using change in capacitance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07212617A JP3124710B2 (en) 1995-07-28 1995-07-28 Signal processing circuit for sensors using change in capacitance

Publications (2)

Publication Number Publication Date
JPH0943068A true JPH0943068A (en) 1997-02-14
JP3124710B2 JP3124710B2 (en) 2001-01-15

Family

ID=16625649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07212617A Expired - Fee Related JP3124710B2 (en) 1995-07-28 1995-07-28 Signal processing circuit for sensors using change in capacitance

Country Status (1)

Country Link
JP (1) JP3124710B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8413510B2 (en) 2007-03-09 2013-04-09 Panasonic Corporation Acceleration sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509338A (en) 1999-06-30 2003-03-11 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション Mixed metal alkoxide complexes and polymerization catalysts prepared therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8413510B2 (en) 2007-03-09 2013-04-09 Panasonic Corporation Acceleration sensor

Also Published As

Publication number Publication date
JP3124710B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
JP3264884B2 (en) Capacitance detection circuit
US6148670A (en) Apparatus and method for multi-axis capacitive sensing
US7886601B2 (en) Microelectromechanical sensor having multiple full-scale and sensitivity values
KR100513346B1 (en) A capacitance accelerometer having a compensation elctrode
US6761069B2 (en) Feedback circuit for micromachined accelerometer
JPH0862248A (en) Capacitive acceleration sensor
US5531128A (en) Capacitive transducer feedback-controlled by means of electrostatic force and method for controlling the profile of the transducing element in the transducer
US7980133B2 (en) Method and apparatus for a micromachined multisensor
JPH05203667A (en) Capacitive three-axis acceleration sensor
JPH0943068A (en) Signal processing circuit for sensor utilizing change in capacitance
US4799386A (en) Electrostatic accelerometer with dual electrical connection to its test mass
JP2002031644A (en) Triaxial acceleration sensor and correction method for its z-axis dependence
JPH1123608A (en) Capacitive sensor circuit
JPH07243863A (en) Capacity-type sensor
JP3036675B2 (en) Method for correcting nonlinearity of capacitance type acceleration sensor
JPH1123610A (en) Capacitive multiaxial acceleration sensor
JPH11194139A (en) Capacitance type acceleration sensor
JP2999291B2 (en) Force, acceleration, and magnetism detectors for multi-dimensional directions
JPH0933563A (en) Capacitance type sensor
JP3287244B2 (en) Acceleration detector
JPH08136575A (en) Acceleration detection device
JPH0921825A (en) Correcting method for another axis interference output of acceleration sensor
JPH06222076A (en) Capacitive acceleration sensor
JP3354727B2 (en) Capacitive acceleration sensor
JPH0862246A (en) Acceleration sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees