JPH0936419A - Semiconductor device containing nitrogen - Google Patents

Semiconductor device containing nitrogen

Info

Publication number
JPH0936419A
JPH0936419A JP18304295A JP18304295A JPH0936419A JP H0936419 A JPH0936419 A JP H0936419A JP 18304295 A JP18304295 A JP 18304295A JP 18304295 A JP18304295 A JP 18304295A JP H0936419 A JPH0936419 A JP H0936419A
Authority
JP
Japan
Prior art keywords
layer
growth
inn
nitrogen
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18304295A
Other languages
Japanese (ja)
Other versions
JP3598593B2 (en
Inventor
Takashi Udagawa
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP18304295A priority Critical patent/JP3598593B2/en
Publication of JPH0936419A publication Critical patent/JPH0936419A/en
Application granted granted Critical
Publication of JP3598593B2 publication Critical patent/JP3598593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the quality of a III-V compound semiconductor containing nitrogen and In by specifying the variation in the concentration of In atom within a specified region from the surface of an InN layer. SOLUTION: Assuming the thickness of an InN growth layer 123 is (t), variation in the concentration of in atom is set within ±15% in a region of 0.2t-0.6t from the surface of InN growth layer. More specifically, In is distributed uniformly in an active layer and the quality of a III-V compound semiconductor 123 containing nitrogen and In is enhanced. When 1,4-diazobicyclo (2, 2, 2) octane is used as the source of N at the time of vapor phase epitaxial growth of III-V compound semiconductor 123 containing nitrogen and In, melting point is set in the range of 158-160 deg.C and sublimation takes place at a temperature lower than the melting point. Since a low temperature vapor phase epitaxial growth is realized and thermal diffusion of In is controlled, the ratio of concentration (α) between N and In can be sustained constant (within ±15% for some value).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化インジウム(In
N)や窒化ガリウム・インジウム(GaInN)等のI
nを含む含窒素III −V族化合物半導体層を備えた積層
構造からなる電界効果型トランジスタや発光ダイオード
等の半導体装置に係わり、特に、半導体装置の高性能化
をもたらすInを含む含窒素III −V族化合物半導体層
を備えた積層構造からなる半導体装置に関する。
The present invention relates to indium nitride (In
N) or gallium nitride / indium (GaInN), etc.
The present invention relates to a semiconductor device such as a field-effect transistor or a light emitting diode having a laminated structure including a nitrogen-containing III-V group compound semiconductor layer containing n, and in particular, a nitrogen-containing III containing In that brings high performance of the semiconductor device III- The present invention relates to a semiconductor device having a laminated structure including a group V compound semiconductor layer.

【0002】[0002]

【従来の技術】InNは室温で約2eVの禁止体幅を有
する含窒素III −V族化合物半導体の一つである。この
ため、波長がおおよそ620nmの橙色の発光を呈する
発光ダイオード(LED)用の発光層材料として注目さ
れている。また、Inを含む窒化ガリウム(GaN)は
青色LEDの発光層として利用されている(例えば、
S.Nakamura他、Appl.Phys.Let
t.、64(13)(1994)、1687.)。
2. Description of the Related Art InN is one of nitrogen-containing III-V compound semiconductors having a forbidden width of about 2 eV at room temperature. Therefore, it has been attracting attention as a light emitting layer material for a light emitting diode (LED) that emits orange light having a wavelength of about 620 nm. Further, gallium nitride (GaN) containing In is used as a light emitting layer of a blue LED (for example,
S. Nakamura et al., Appl. Phys. Let
t. 64 (13) (1994), 1687. ).

【0003】この様な半導体装置用途の積層構造におい
て、半導体装置の機能を実現するに重要な例えば発光層
等の機能層として利用されているInNやGaInNな
どのInを含む含窒素III −V族化合物半導体は、MO
VPE(MOCVDともOMVPEとも称される。)や
MBE等の気相成長法により得られている。
In such a laminated structure for semiconductor device use, a nitrogen-containing III-V group containing In, such as InN or GaInN, which is used as a functional layer such as a light emitting layer, which is important for realizing the function of the semiconductor device. Compound semiconductors are MO
It is obtained by a vapor phase growth method such as VPE (also called MOCVD or OMVPE) or MBE.

【0004】In原子とN原子からなるInNは真空中
で約620℃近傍で既に分解するとされる(日本産業技
術振興協会新材料技術委員会編、「化合物半導体デバイ
ス」(1973年9月15日、(財)日本産業技術振興
協会発行)、397頁)分解し易い物質である。また、
InNを母体材料とするが故に分解し易いGaInNは
実際には、約800℃の高温で成長が実施されている
(中村 修二、日本学術振興会光電相互変換第125委
員会第148回研究会資料(平成6年5月27日)、1
頁)。しかも、成長反応系にかなり過剰にIn原料を供
給して成長が実施されている。高温での成長において
は、Inが成長層より揮散するため、成長層を構成する
In等の第III 族原子とN等の第V族原子との化学量論
的な構成比率の不平衡度が増すのを抑制するためであ
る。
It is said that InN composed of In atoms and N atoms is already decomposed at about 620 ° C. in vacuum ("Compound Semiconductor Device", edited by Japan Society for Promotion of Industrial Technology, New Materials Technology Committee (September 15, 1973). , Japan Industrial Technology Promotion Association, p. 397) It is a substance that is easily decomposed. Also,
GaInN, which is easy to decompose because it uses InN as the base material, is actually grown at a high temperature of about 800 ° C. (Shuji Nakamura, Japan Society for the Promotion of Science, Photoelectric Interconversion, 125th Committee, 148th Workshop Material (May 27, 1994), 1
page). Moreover, the growth is carried out by supplying the In raw material in a considerably excessive amount to the growth reaction system. During growth at a high temperature, In is volatilized from the growth layer, so that the stoichiometric disequilibrium of the group III atoms such as In and the group V atoms such as N constituting the growth layer is unbalanced. This is to suppress the increase.

【0005】InNやGaInN等のInを含む含窒素
III −V族化合物半導体層をMOVE法等により気相成
長させるに際しては、アンモニア(NH3 )がNの原料
として従来から使用されている。しかし、NH3 は比較
的熱分解し難い。また、分解反応も可逆的であるため、
例え分解により窒素を含むIII −V族化合物半導体層を
構成する第V族原子であるN原子或いはN原子が相互に
結合した窒素ガス(N2 )を放出したとしても、これら
の分解生成物の一部は、同じく分解により生成した水素
原子(H)若しくは水素ガス(H2 )と再びNH3 とな
り、化学的な平衡状態を維持しようとする。このため、
NH3 をN源とする従来の気相成長では、成長環境下に
於けるN原子の濃度を化学量論的な組成を有する含窒素
III−V族化合物半導体層を得るに充分な程、高くでき
ない問題があった。経験的には、成長温度を800℃を
越える高温に設定しないと気相成長環境下に充分なN原
子が存在し得ないとされる。
Nitrogen-containing In containing InN, GaInN, etc.
Ammonia (NH 3 ) has been conventionally used as a raw material for N when vapor-depositing the III-V compound semiconductor layer by the MOVE method or the like. However, NH 3 is relatively difficult to thermally decompose. Also, since the decomposition reaction is reversible,
Even if a nitrogen gas (N 2 ) which is a group V atom constituting the nitrogen-containing III-V group compound semiconductor layer or a nitrogen gas (N 2 ) in which N atoms are bonded to each other is released by the decomposition, these decomposition products A part of them again becomes NH 3 with hydrogen atoms (H) or hydrogen gas (H 2 ) generated by decomposition, and tries to maintain a chemical equilibrium state. For this reason,
In the conventional vapor phase growth using NH 3 as the N source, the nitrogen-containing nitrogen having a stoichiometric composition of the concentration of N atoms under the growth environment is used.
There is a problem that the height cannot be increased sufficiently to obtain a III-V compound semiconductor layer. Empirically, it is considered that sufficient N atoms cannot exist in the vapor phase growth environment unless the growth temperature is set higher than 800 ° C.

【0006】一方、InNを構成する第III 族原子であ
るInの気相成長原料には、特にMOVPEにおいては
トリメチルインジウム((CH33 In)やトリエチ
ルインジウム((C253 In)等の脂肪族In化
合物や、シクロペンタジエニルインジウム(C55
n)等の脂環式In化合物(J.Cryst.Grow
th、107(1991)、360.)が従来から用い
られている。これらの有機In化合物は概して熱分解し
易く、このことが熱分解気相成長(MOVPE)法の原
料として利用されている所以である。例えば、C55
Inは約270℃の低温でIn原子を放出する(第50
回応用物理学会学術講演会(平成元年9月27日〜30
日)講演番号30a−W−9(講演予稿集第一分冊31
5頁))。即ち、NH3 をN源とし有機In化合物をI
n源とする気相成長においては、In原子はN原子とは
対称的に成長反応系内に多量に存在させることができ
る。成長環境下に於けるこのN原子とIn原子との量的
な不均衡は化学量論的に組成の釣合がとれていない、I
n原子の濃度がN原子の濃度に比較して当量的に高い成
長層を与える欠点があった。これに起因して例えば、I
nNにあっては、層の深部の領域でもInとN原子の濃
度の比率が一定とならず、不安定な結晶特性を招いてい
た。
On the other hand, as a vapor phase growth material for In, which is a group III atom constituting InN, especially in MOVPE, trimethylindium ((CH 3 ) 3 In) or triethylindium ((C 2 H 5 ) 3 In) is used. ) And other aliphatic In compounds and cyclopentadienylindium (C 5 H 5 I
n) and other alicyclic In compounds (J. Cryst.
th, 107 (1991), 360. ) Is conventionally used. These organic In compounds are generally easily decomposed by heat, which is the reason why they are used as a raw material for the pyrolysis vapor phase epitaxy (MOVPE) method. For example, C 5 H 5
In emits In atoms at a low temperature of about 270 ° C. (50th
The Japan Society of Applied Physics Academic Lecture Meeting (September 27, 1989-30)
Sun) Lecture No. 30a-W-9 (Lecture Proceedings First Volume 31)
Page 5)). That is, NH 3 is used as the N source and the organic In compound is
In vapor phase growth using an n source, a large amount of In atoms can be present in the growth reaction system symmetrically with N atoms. The quantitative imbalance between N atom and In atom under the growth environment is not stoichiometrically balanced in composition, I
There is a drawback that a growth layer in which the concentration of n atoms is equivalently higher than the concentration of N atoms is provided. Due to this, for example, I
In the case of nN, the concentration ratio of In and N atoms was not constant even in the deep region of the layer, leading to unstable crystal characteristics.

【0007】また、Inは融点が約157℃の低融点金
属である。このため、高温の状態では極めて拡散し易い
傾向がある。特に、NH3 と(CH33 In等の有機
In化合物を各々、第V族及び第III 族の原料とする従
来の気相成長法で得た例えばInN成長層にあっては、
成長反応系に存在するN原子等のNを含む分解生成物の
量とIn等のInを含む分解生成物の量の不釣り合いに
起因して、通常はInが過剰の状態となっている。この
当量的に過剰となったInは高温ではより拡散し、In
N成長層の表面に滲み出し、滲み出したInは相互に融
合して成長層の表面にIn金属の析出を招く。このた
め、成長層の表面近傍でのIn原子の濃度が成長層の内
部に於けるIn原子の濃度に比較し、極端に高くなる結
果をもたらしていた。
In is a low melting point metal having a melting point of about 157 ° C. Therefore, it tends to be extremely diffused at a high temperature. In particular, for example, in an InN growth layer obtained by a conventional vapor phase growth method using NH 3 and an organic In compound such as (CH 3 ) 3 In as raw materials of Group V and Group III,
Due to the imbalance between the amount of the decomposition products containing N such as N atoms existing in the growth reaction system and the amount of the decomposition products containing In such as In, In is usually in an excessive state. This stoichiometrically excess In diffuses more at high temperatures,
The exudates on the surface of the N growth layer and the exuded In fuses with each other to cause precipitation of In metal on the surface of the growth layer. Therefore, the concentration of In atoms in the vicinity of the surface of the growth layer is extremely higher than the concentration of In atoms in the inside of the growth layer.

【0008】一例として、N源としてNH3 を、In源
としてC55 Inを使用したNH3 /C55 In/
2 成長反応系で、常圧のMOCVD法により温度80
0℃でサファイア基板上させたInN成長層のIn原子
の濃度の深さ方向の分布の従来例を図1に示す。この深
さ方向の濃度の分布は2次イオン質量分析法(SIMS
と略す。)に依り測定した。また、このInN成長層の
表面にはIn金属が析出しているのが認められた。同図
に示す如く、基板とInN成長層との界面近傍より、I
nの析出が認められるInN成長層の表面に向けてIn
濃度は漸次、増加している。即ち、InN層は、層の内
部に亘ってIn濃度が一定となっているとは限らなかっ
た。このことが、特性の安定したInN層が良好な再現
性をもって得られない一つの理由となっていた。
As an example, NH 3 / C 5 H 5 In / using NH 3 as the N source and C 5 H 5 In as the In source is used.
In the H 2 growth reaction system, the temperature is 80
FIG. 1 shows a conventional example of the distribution of the concentration of In atoms in the InN growth layer on the sapphire substrate at 0 ° C. in the depth direction. This concentration distribution in the depth direction is determined by secondary ion mass spectrometry (SIMS
Abbreviated. ). Further, it was confirmed that In metal was deposited on the surface of this InN growth layer. As shown in the figure, from the vicinity of the interface between the substrate and the InN growth layer, I
Toward the surface of the InN growth layer where precipitation of n is observed
The concentration is gradually increasing. That is, the InN layer does not always have a constant In concentration throughout the layer. This is one reason why an InN layer having stable characteristics cannot be obtained with good reproducibility.

【0009】ここでInN或いはInとNを含む含窒素
III −V族化合物半導体層内のN原子の濃度をCN (個
/cm3 )とし、In原子の濃度をCIn(個/cm3
で表すとする。原子量が114.82のInと原子量が
14.00のNの合計原子量は、128.82である。
例えば、InNの密度は6.88g/cm3 であるか
ら、単位体積当たりのInの原子数は3.22×1022
個/cm3 となる。InN2元結晶については、Nの原
子数もまたこれに等しい。CN に対するCInの比率(C
In/CN )をαで表すとする。α=1であればCN =C
Inであり、化学量論的ストイキオメトリックなInN成
長層となっていることを意味している。α>1の時は、
In>CN となり、N原子に対しIn原子が過剰な状態
にあることを意味している。逆に、α<1では、CN
InとなりN原子が過剰に存在していることを表してい
る。α>1またはα<1では、いずれにしても化学量論
的な組成が崩れたInNとなっていることを意味する。
Here, nitrogen containing InN or nitrogen containing In and N
The concentration of N atoms in the III-V group compound semiconductor layer is C N (number / cm 3 ), and the concentration of In atoms is C In (number / cm 3 ).
Let be represented by. The total atomic weight of In having an atomic weight of 114.82 and N having an atomic weight of 14.00 is 128.82.
For example, since the density of InN is 6.88 g / cm 3 , the number of In atoms per unit volume is 3.22 × 10 22.
The number / cm 3. For InN binary crystals, the number of N atoms is also equal. Ratio of C In to C N (C
Let In / C N ) be represented by α. If α = 1, C N = C
In , which means that it is a stoichiometric stoichiometric InN growth layer. When α> 1,
C In > C N , which means that In atoms are in excess of N atoms. Conversely, for α <1, C N >
It becomes C In , indicating that N atoms are present in excess. In the case of α> 1 or α <1, it means that the stoichiometric composition is InN in any case.

【0010】本発明の云うαの値を、例えば従来の気相
成長方式で得たInN成長層の表面からの深さ(d)に
関連させて表すとする。図1に示したIn濃度の分布を
呈する試料につき、αを図1に重ねて示す。InN成長
層は膜厚が100nmのInN成長層であるが、d≦1
2nmの表面近傍の領域、即ち成長層の表面より12n
m以下の深さの領域では、αの最大値は5程度となって
いる。従って、表面近傍でIn原子が過剰となってお
り、このため、上記の如くInN成長層の表面にIn金
属の析出が目視されることとなる。d>12nmの深さ
領域では、成長層表面へのInの熱拡散のためにCIn
{0001}サファイア基板側に向けて漸次低下してお
り、一定のα値とはなっていない。即ち、分解に高温を
要するNH3 をN源とする従来のMOVPE法等により
気相成長させたInN成長層にあっては、In原子の成
長層表面へ向けての熱拡散と析出に伴いInN成長層の
内部で化学量論的な組成の均衡が崩れN原子に対しIn
原子の量が不足している状態が発生しており、αが一定
とはなっていなかった。
The value of α according to the present invention is expressed in relation to the depth (d) from the surface of the InN growth layer obtained by the conventional vapor phase growth method, for example. For the sample exhibiting the In concentration distribution shown in FIG. 1, α is overlaid on FIG. The InN growth layer is an InN growth layer having a film thickness of 100 nm, and d ≦ 1
Area near the surface of 2 nm, that is, 12 n from the surface of the growth layer
In the depth region of m or less, the maximum value of α is about 5. Therefore, the In atoms are excessive near the surface, and as a result, precipitation of In metal is visually observed on the surface of the InN growth layer as described above. In the depth region of d> 12 nm, C In gradually decreases toward the {0001} sapphire substrate side due to thermal diffusion of In to the surface of the growth layer, and does not have a constant α value. That is, in the InN growth layer vapor-deposited by the conventional MOVPE method using NH 3 which requires a high temperature for decomposition as an N source, InN growth layer due to thermal diffusion and precipitation of In atoms toward the growth layer surface. The equilibrium of the stoichiometric composition is broken inside the growth layer and
There was a shortage of atoms, and α was not constant.

【0011】In原子の濃度が表面で過剰となると、本
来、透明であるInN成長層の表面が褐色、灰色若しく
は黒色に着色する。含窒素III −V族化合物半導体層を
利用した半導体装置の中でも光の透過性を必要とするL
EDなどにあっては、着色した不透明な含窒素III −V
族化合物半導体層は発光を吸収するため、高輝度のLE
Dの提供を妨げる結果を招いていた。
When the concentration of In atoms is excessive on the surface, the surface of the originally transparent InN growth layer is colored brown, gray or black. Among semiconductor devices using a nitrogen-containing III-V group compound semiconductor layer, L which requires light transmittance
For ED etc., colored opaque nitrogen-containing III-V
Since the group compound semiconductor layer absorbs light emission, LE with high brightness
The result was that the provision of D was hindered.

【0012】また、半導体装置は総じて単一の半導体層
のみから構成されているのではない。例えば、電界効果
型トランジスタにあっては、緩衝層、チャネル層(能動
層)及び時としてコンタクト層の合計3層を備えた積層
構造から構成されるのが一般的である。また、LEDに
あっては、緩衝層、発光反射層(DBR層)、下部クラ
ッド層、発光層、上部クラッド層、電流拡散層及びコン
タクト層等からなる積層構造から構成される。従って、
この様な半導体装置用途の積層構造を構成するためには
InN成長層の表面上に更に他の成長層を堆積させる必
要がある。InN成長層の表面近傍のIn原子の濃度が
高く、過剰のInが表面近傍に存在する場合、この過剰
なInはその上に堆積する第二の成長層との界面を通し
て第二の成長層内へ拡散し、第二の成長層の結晶学的組
成や電気的特性を乱す。また、過剰に存在するInは第
二の成長層との界面に蓄積し、期待される界面物性が得
られなくなる。界面の物性が半導体装置の特性を顕現さ
せる上で重要となる高移動度トランジスタにあっては、
In原子の界面への蓄積は特性の顕現を阻害していた。
The semiconductor device is not generally composed of only a single semiconductor layer. For example, a field effect transistor is generally composed of a laminated structure including a buffer layer, a channel layer (active layer), and sometimes a contact layer in total of three layers. Further, the LED has a laminated structure including a buffer layer, a light emitting reflection layer (DBR layer), a lower clad layer, a light emitting layer, an upper clad layer, a current diffusion layer, a contact layer, and the like. Therefore,
In order to form such a laminated structure for semiconductor device use, it is necessary to deposit another growth layer on the surface of the InN growth layer. When the concentration of In atoms near the surface of the InN growth layer is high and excess In exists near the surface, this excess In passes through the interface with the second growth layer deposited on the inside of the second growth layer. And diffuse into the crystallographic composition and electrical characteristics of the second growth layer. In addition, excessive In is accumulated at the interface with the second growth layer, and the expected interface physical properties cannot be obtained. In the high mobility transistor, where the physical properties of the interface are important for revealing the characteristics of the semiconductor device,
Accumulation of In atoms at the interface hindered the manifestation of characteristics.

【0013】InN等のInを含む含窒素III −V族化
合物半導体層において、層の表面近傍でIn原子の濃度
が増加する或いはInの析出が生ずる主な原因に、これ
らの層を気相成長させるに際し、従来から一般にN源と
して利用されているNH3 の難分解性がある。約800
℃以上とされるNH3 が効率的にN原子若しくはNを含
む分解物を放出する温度に比較し、有機In化合物の分
解温度が極端に低いために、気相成長環境内に放出され
る含N分解物と含In分解物との濃度の比率の不均衡性
に起因している。In原子に対し充分にN原子が供給さ
れれば、当量的に見合うInN層が得られる。或いは、
逆にNH3 と同様の難分解性を有するIn化合物をIn
源として使用すれば上記の熱分解の均衡性は得られると
考えられる。
In a nitrogen-containing III-V group compound semiconductor layer containing In such as InN, vapor deposition of these layers is the main cause of increase in concentration of In atoms or precipitation of In near the surface of the layer. In this case, NH 3 which has been conventionally used as an N source is hardly decomposed. About 800
Since the decomposition temperature of the organic In compound is extremely low in comparison with the temperature at which NH 3 is set to ℃ or higher and the decomposition product containing N atom or N is efficiently released, the content of NH 3 contained in the vapor phase growth environment is increased. This is due to the imbalance in the ratio of the concentrations of N-decomposition products and In-containing decomposition products. If N atoms are sufficiently supplied to In atoms, an InN layer having an equivalent amount can be obtained. Alternatively,
On the contrary, an In compound having the same difficulty of decomposition as NH 3 is
When used as a source, it is thought that the above-mentioned thermal decomposition equilibrium is obtained.

【0014】しかし、III −V族化合物半導体層の気相
成長においては、成長層の成長速度は第III 族原子の成
長環境内への供給量に依存する。第III 族原子の成長環
境内への供給量が少ないと成長速度は低下する。成長速
度が低下すれば、目的とする層厚の成長層を得るにより
時間を費やす必要がある。原子が熱拡散に到達し得る距
離は成長時間に比例して増加する。つまり、例えばIn
NのMOVPE成長において、成長時間の増加によりI
nの拡散距離は長くなり、成長層の表面近傍へのInの
蓄積を促進する結果を招き好ましくはない。
However, in the vapor phase growth of the III-V compound semiconductor layer, the growth rate of the growth layer depends on the supply amount of the group III atoms into the growth environment. If the supply amount of group III atoms into the growth environment is small, the growth rate will decrease. If the growth rate decreases, it is necessary to spend more time to obtain a growth layer having a target layer thickness. The distance an atom can reach thermal diffusion increases in proportion to the growth time. That is, for example, In
In MOVPE growth of N, by increasing the growth time, I
The diffusion distance of n becomes long, resulting in promoting the accumulation of In in the vicinity of the surface of the growth layer, which is not preferable.

【0015】[0015]

【発明が解決しようとする課題】この様なInを含む含
窒素III −V族化合物半導体層を構成する原子濃度の不
均衡性についての従来の問題点を克服するためには、例
えばInの熱拡散が顕著に発生しない低温での成膜をも
たらす低温分解性の気相成長用の新たなN源が先ず必要
である。また、Inを含むInN等のInを含む含窒素
III −V族化合物半導体層を備えた積層構造からなる半
導体装置の特性向上のために備えるべき成長層の内部に
於けるIn濃度に関連した規定や成長層表面或いは他の
成長層との界面近傍でのαの最大値を明らかにする必要
がある。例えば、InN層において成長層内部のIn濃
度に一定性があり、また、αが成長層表面或いは界面近
傍と成長層の内部に亘り限りなく1に近い量論的に均衡
のとれていることが必要なのは当然である。しかし、実
際には、前述の如くInの熱拡散性が高いこともあり、
In濃度の一定性やαについては現実的な範囲を規定す
る必要がある。しかし、現在迄に優れた半導体装置の特
性向上を意図して、半導体装置の特性向上をもたらすに
充分な、優れた結晶性を有するInを含む含窒素III −
V族化合物半導体層を得るための、本発明の云うαを規
定した例は知られていない。
In order to overcome the conventional problems concerning the imbalance of the atomic concentration which constitutes such a nitrogen-containing III-V compound semiconductor layer containing In, it is necessary to use, for example, the heat of In. There is a first need for a new N source for low temperature decomposable vapor phase growth that results in low temperature film formation without significant diffusion. In addition, nitrogen containing In, such as InN containing In, etc.
Regulations related to the In concentration in the growth layer to be provided for improving the characteristics of the semiconductor device having the laminated structure including the III-V compound semiconductor layer, the growth layer surface, and the vicinity of the interface with other growth layers It is necessary to clarify the maximum value of α at. For example, in the InN layer, the In concentration inside the growth layer is constant, and α is stoichiometrically balanced close to 1 over the surface of the growth layer or the vicinity of the interface and the inside of the growth layer. Of course it is necessary. However, in reality, In may have a high thermal diffusivity as described above,
It is necessary to define a practical range for the constant In concentration and α. However, for the purpose of improving the characteristics of the excellent semiconductor device to date, a nitrogen-containing In containing III having excellent crystallinity, which has sufficient crystallinity III-
There is no known example of defining α in the present invention for obtaining a Group V compound semiconductor layer.

【0016】[0016]

【課題を解決するための手段】即ち、本発明は基板上に
堆積されたInN層において、InNの層厚をtとした
場合、InN層の表面から内部の0.2t以上0.6t
以下の領域で、In原子の濃度変化が±15%の範囲内
である含窒素III −V族化合物半導体を具備した半導体
装置を提供する。また、N原子の濃度(CN (個/cm
3 )で表す。)に対するIn原子濃度(CIn(個/cm
3 )で表す。)の比率(CIn/CN 、数値αで表すとす
る。)が、InN層の表面から内部の0.2t以上0.
6t以下の領域内で一定である半導体装置を提供する。
特に、表面若しくは成長層の界面から0.2tで与えら
れる数値未満の深さ領域において、αの最大値を2以下
とする半導体装置を提供する。
That is, according to the present invention, in an InN layer deposited on a substrate, when the layer thickness of InN is t, 0.2 t or more and 0.6 t or more inside the surface of the InN layer are provided.
Provided is a semiconductor device including a nitrogen-containing III-V group compound semiconductor in which the change in In atom concentration is within ± 15% in the following region. In addition, the concentration of N atoms (C N (pieces / cm
3 ). In atomic concentration (C In (pieces / cm
3 ). ) (C In / C N , represented by numerical value α) is 0.2 t or more from the surface of the InN layer to the inside.
Provided is a semiconductor device which is constant within a region of 6t or less.
In particular, the present invention provides a semiconductor device in which the maximum value of α is 2 or less in the depth region less than the value given by 0.2t from the surface or the interface of the growth layer.

【0017】Inを含む含窒素III −V族化合物半導体
層において、Inの熱拡散を抑制するには、第一に成長
温度の低下をもたらす低温分解性の含窒素化合物をN源
とする必要がある。本発明者らが鋭意、検討した結果か
らは、例えば窒素原子を環の一構成原子として含む含窒
素複素環式化合物、同じく窒素を環の一構成原子として
含む脂環式化合物等の含窒素化合物が気相成長用のN源
として目的に合致するのが判明した。これらの含窒素化
合物の中でも例えば、1H−ピーロル(Pyrrol
e)、1,4−ジアゾビシクロ(2,2,2)オクタン
(1,4−Diazobicyclo(2,2,2)o
ctan)やオルトフェニレンジアミン(1,2−ジア
ミノベンゼン)(o−Phenylenediamin
e)等の化合物が、特にInを含む含窒素III −V族化
合物半導体層を気相成長する際のN源として適する。こ
れらの含窒素化合物をN源として利用すれば、従来のN
3をN源として含窒素III −V族化合物半導体層を気
相成長させる際の成長温度より低温の、500℃〜70
0℃の低温で含窒素III −V族化合物半導体層の成長が
果たせる。
In order to suppress the thermal diffusion of In in the nitrogen-containing III-V compound semiconductor layer containing In, it is first necessary to use a low-temperature decomposable nitrogen-containing compound that causes a decrease in the growth temperature as the N source. is there. From the results of earnestly studied by the present inventors, for example, a nitrogen-containing heterocyclic compound containing a nitrogen atom as a ring-constituting atom, a nitrogen-containing compound such as an alicyclic compound containing nitrogen as a ring-constituting atom, etc. Has been found to be fit as an N source for vapor phase growth. Among these nitrogen-containing compounds, for example, 1H-pyrrol (Pyrrol)
e), 1,4-diazobicyclo (2,2,2) octane (1,4-Diazobicyclo (2,2,2) o
ctan) and orthophenylenediamine (1,2-diaminobenzene) (o-Phenylenediamine)
A compound such as e) is particularly suitable as an N source when vapor-depositing a nitrogen-containing III-V group compound semiconductor layer containing In. If these nitrogen-containing compounds are used as the N source, conventional N
Of H 3 nitrogen-containing III -V compound semiconductor layer of a low temperature than the growth temperature at which vapor phase growth as N source, 500 ° C. to 70
The growth of the nitrogen-containing III-V compound semiconductor layer can be achieved at a low temperature of 0 ° C.

【0018】特に、1,4−ジアゾビシクロ(2,2,
2)オクタンは、融点が158℃〜160℃であり室温
では固体であるが、融点未満の温度で既に昇華する性質
を有している。昇華圧は50℃で2.9Torr、11
0℃で83.4Torrとなる。従って、一般的なバル
ブ類等の耐熱温度である70〜100℃以下の温度で気
相成長用途の原料として充分な昇華圧を有しており、原
料の蒸気を気相成長を実施する成長反応系へ容易に添加
できる利点がある。
In particular, 1,4-diazobicyclo (2,2,2
2) Octane has a melting point of 158 ° C. to 160 ° C. and is a solid at room temperature, but has a property of already subliming at a temperature below the melting point. Sublimation pressure is 2.9 Torr at 50 ° C, 11
It becomes 83.4 Torr at 0 degreeC. Therefore, it has a sublimation pressure sufficient as a raw material for vapor phase growth applications at a temperature of 70 to 100 ° C. or lower, which is a heat resistant temperature of general valves, and a growth reaction for performing vapor phase growth of vapor of the raw material. It has the advantage that it can be easily added to the system.

【0019】従来のNH3 を代替するこれらの含窒素化
合物をN源とすることにより、気相成長プロセスの低温
化が果たされ、これよりInの熱拡散活動が抑制され
る。従って、InN等の成長層の表面近傍でのαの値を
小さくでき、また、成長層内部の広い範囲においてαの
値を一定にできる。本発明では、InN層厚をtとした
場合、InN層の表面から0.2t以上0.6t以下の
領域内でCInとαが一定であるInN層を積層構造の一
構成層として利用する。CInとαについての本発明の云
う一定とは、原子の濃度の深さ方向の分析精度を考慮し
て或る値に対して±15%以内の範囲にあることを云
う。±15%とするのは、CInとα共にこの範囲内に収
納されていれば、本発明者が鋭意検討した結果からは、
LEDにおいて発光波長や順方向のしきい値電圧等の半
導体装置の特性に然したる影響を及ぼさなかったからで
ある。
By using these nitrogen-containing compounds which replace conventional NH 3 as the N source, the temperature of the vapor phase growth process can be lowered, and the thermal diffusion activity of In can be suppressed. Therefore, the value of α in the vicinity of the surface of the growth layer such as InN can be reduced, and the value of α can be made constant over a wide range inside the growth layer. In the present invention, when the thickness of the InN layer is t, the InN layer in which C In and α are constant within a region of 0.2 t or more and 0.6 t or less from the surface of the InN layer is used as a constituent layer of the laminated structure. . The constant value of C in and α according to the present invention means that the value is within ± 15% with respect to a certain value in consideration of the analysis accuracy of the atomic concentration in the depth direction. The reason for setting ± 15% is that, if both C In and α are stored in this range, the result of earnest study by the present inventor shows that
This is because the LED does not affect the characteristics of the semiconductor device such as the emission wavelength and the threshold voltage in the forward direction.

【0020】上記した新たなN含有化合物である1,4
−ジアゾビシクロ(2,2,2)オクタンをN源として
利用し、これとシクロペンタジエニルInと水素とから
なる気相成長反応系により600℃で成長させたInN
成長層のCN とCInの深さ方向の分の一例を図2に示
す。InN成長層の層厚(t)は200nmである。成
長層表面から0.2tに相当する40nm以上、0.8
tに相当する160nm以上の深さの領域においてCIn
とα共に一定となっている。
1,4 which is the above-mentioned new N-containing compound
-InN grown at 600 ° C. by using diazobicyclo (2,2,2) octane as an N source and using a vapor phase growth reaction system consisting of this, cyclopentadienyl In and hydrogen
FIG. 2 shows an example of C N and C In in the depth direction of the growth layer. The layer thickness (t) of the InN growth layer is 200 nm. 40 nm or more corresponding to 0.2 t from the surface of the growth layer, 0.8
C In in a region of 160 nm or more in depth corresponding to t
And α are both constant.

【0021】0.2t以上0.6t以下の領域内でCIn
とαを±15%と規定するのは、この範囲を越えたCIn
とαを有する当量的に不均衡な成長層は結晶性も良好で
なく、また、所望する比抵抗や移動度等の電気的な要素
量すら安定して得られないからである。このため、この
様な±15%を越える当量的に不均衡な成長層を備えた
積層構造から構成される半導体装置、例えば、電界効果
型トランジスタにあってはソース/ドレイン電極間のリ
ーク電流、ドレイン電流のドリフトを増長するなどの悪
影響を及ぼすからである。
Within the range of 0.2t to 0.6t, C In
And α are defined as ± 15% because C In beyond this range
This is because the equivalently unbalanced growth layer having a and α does not have good crystallinity, and even a desired amount of electrical elements such as specific resistance and mobility cannot be stably obtained. Therefore, in the case of a semiconductor device having a stacked structure having such an equilibrium growth layer exceeding ± 15%, for example, in a field effect transistor, a leak current between source / drain electrodes, This is because it has an adverse effect such as increasing the drift of the drain current.

【0022】0.2t以上0.6t以下の領域内でαが
一定であるInを含む含窒素III −V族化合物半導体層
成長の場合、成長層の表面から0.2t未満の表面近傍
の比較的浅い領域において、従来例の如くαの最大値が
5以上と大きくなることは殆どない。0.2t以上0.
6t以下の領域内でαが一定であれば、通常はαが最大
でも2程度に収まる。成長層の表面近傍の成長層全体の
層厚に対しては極く一部の領域でα<2であれば、In
を含む含窒素III −V族化合物半導体層は不透明化しな
い。従って、0.2t以上0.6t以下の領域内でαを
一定に規定することにより、成長層の表面近傍にInの
熱拡散によって生ずる成長層表面近傍のInの蓄積が抑
制され、これによりLED等の半導体装置に充分に適用
できる成長層を供給できる。本発明の云う0.2t以上
0.6t以下の領域とは、あくまでも連続した領域のこ
とを指す。αやCInが一定である領域が成長層内に不連
続に存在する場合、不連続に存在する各領域の広さの合
計が0.2t以上0.6t以下の範囲に収納されていれ
ば良いと云うことではない。
In the case of growth of a nitrogen-containing III-V group compound semiconductor layer containing In, in which α is constant in the region of 0.2t or more and 0.6t or less, comparison of the vicinity of the surface less than 0.2t from the surface of the growth layer In the extremely shallow region, the maximum value of α hardly increases to 5 or more as in the conventional example. 0.2t or more 0.
If α is constant in the region of 6t or less, α is usually set to about 2 at maximum. If α <2 in a very small region with respect to the thickness of the entire growth layer near the surface of the growth layer, In
The nitrogen-containing III-V compound semiconductor layer containing is not opaque. Therefore, by defining α to be constant in the region of 0.2t or more and 0.6t or less, the accumulation of In near the surface of the growth layer caused by thermal diffusion of In is suppressed, and thus the LED is suppressed. It is possible to supply a growth layer that can be sufficiently applied to semiconductor devices such as. The area of 0.2t or more and 0.6t or less in the present invention means a continuous area. When regions where α and C In are constant exist in the growth layer discontinuously, if the total size of the discontinuous regions is accommodated within a range of 0.2t or more and 0.6t or less. It's not good.

【0023】表面から0.6tを越える成長層内部のよ
り基板側の領域においては、使用する基板の材質等に依
って変化する。基板の表面の直上近傍に成長の初期に堆
積する成長層の内部にあっては、必ずしも CN =CIn
とはならず、基板の表面処理方法に依ってCN >CIn
いはCIn>CN となる場合がある。成長層の内部の基板
側の深部領域においてもαは一定であるのが望ましく、
この様な事態が発生する場合にあっては、成長の初期に
N源及びIn源の成長反応系への供給量をαが一定とな
る様に故意に変化させる成長操作を行えばαを1にする
ことも出来る。
In the region closer to the substrate inside the growth layer that exceeds 0.6 t from the surface, it varies depending on the material of the substrate used and the like. C N = C In does not always exist in the growth layer deposited immediately above the surface of the substrate at the initial stage of growth.
However, C N > C In or C In > C N may be obtained depending on the surface treatment method of the substrate. It is desirable that α is constant even in the deep region on the substrate side inside the growth layer,
If such a situation occurs, if the growth operation is performed by intentionally changing the supply amount of the N source and the In source to the growth reaction system at the initial stage of growth, α is set to 1 You can also

【0024】本発明に依り提示された低温分解性の窒素
化合物を利用すれば当量的に均衡のとれたInを含む含
窒素III −V族化合物半導体成長層をもたらすばかりで
はない。その低温分解性によってもたらされる低温での
気相成長は、従来のNH3 をN源とする気相成長法では
使用出来なかったガラスやアルミニウム(Al)等から
なる材料が基板として利用できる。ガラス材料などは従
来のサファイア(アルミナ単結晶)や特にSiC単結晶
に比較すれば遥かに安価であるため、結果としては廉価
な半導体装置をもたらすなどの経済的な効果も期待され
る。
The use of the low temperature decomposable nitrogen compound presented according to the present invention not only results in a stoichiometrically balanced nitrogen-containing III-V compound semiconductor growth layer containing In. For the vapor phase growth at low temperature brought about by the low temperature decomposability, materials such as glass and aluminum (Al) which cannot be used in the conventional vapor phase growth method using NH 3 as the N source can be used as the substrate. Since glass materials and the like are much cheaper than conventional sapphire (alumina single crystal) and especially SiC single crystal, an economical effect such as a cheap semiconductor device is expected as a result.

【0025】本発明の云う規定された成長層内の範囲内
で一定のαを有するInを含む含窒素化合物半導体層の
成長方式は、MOVPE法に限定されない。MBE法、
MO−MBE法、VPE法やCBE(Chemical
Beam Epitaxy)法等であっても差し支え
ない。MOVPE法においては、減圧された環境下で成
長を実施する減圧MOVPE方式と大気圧近傍の圧力で
成長を行う常圧MOVPE法のいずれの方式であっても
構わない。いずれの方式であっても、成長温度としては
500℃〜700℃前後が適当である。減圧MOVPE
法においては、圧力を通常は1〜200Torr程度に
設定して行われるが、本発明の実施に於いても通常の減
圧下で成長を行えば良く、特異な圧力の設定は要しな
い。
The growth method of the nitrogen-containing compound semiconductor layer containing In having a constant α within the defined growth layer of the present invention is not limited to the MOVPE method. MBE method,
MO-MBE method, VPE method and CBE (Chemical)
The Beam Epitaxy method or the like may be used. The MOVPE method may be either a reduced pressure MOVPE method in which growth is performed in a reduced pressure environment or a normal pressure MOVPE method in which growth is performed at a pressure near atmospheric pressure. Regardless of which method is used, a suitable growth temperature is around 500 ° C to 700 ° C. Decompression MOVPE
In the method, the pressure is usually set to about 1 to 200 Torr, but also in the practice of the present invention, growth may be performed under a normal reduced pressure, and a specific pressure setting is not required.

【0026】[0026]

【作用】活性層中のInの分布を均一にすることによっ
て、Inを含む含窒素III −V族化合物半導体層の品質
の向上をもたらす。
By making the distribution of In uniform in the active layer, the quality of the nitrogen-containing III-V group compound semiconductor layer containing In is improved.

【0027】[0027]

【実施例】本発明をInを含む含窒素III −V族化合物
半導体層を備えた積層構造からLEDを構成する例によ
り説明する。図5に本実施例で得たLED構造の構造図
を示す。面方位が(111)の硫黄(S)が添加された
n形のGaP単結晶を基板(115)として使用した。
基板(115)の厚さは約350μmであった。基板
(115)の形状は直径が約50mmの円形とした。こ
の基板(115)上に常圧のMOVPE法により、Al
N、InN及びGaNを順次成長させ、LED用途の積
層構造を得た。使用した気相成長設備の概略を図3に示
す。
EXAMPLES The present invention will be described with reference to an example of forming an LED from a laminated structure including a nitrogen-containing III-V group compound semiconductor layer containing In. FIG. 5 shows a structural diagram of the LED structure obtained in this example. An n-type GaP single crystal doped with sulfur (S) having a plane orientation of (111) was used as a substrate (115).
The thickness of the substrate (115) was about 350 μm. The substrate (115) had a circular shape with a diameter of about 50 mm. Al is formed on the substrate (115) by the MOVPE method under normal pressure.
N, InN and GaN were sequentially grown to obtain a laminated structure for LED. An outline of the vapor phase growth equipment used is shown in FIG.

【0028】AlN、InN及びGaNを成長させるた
めの窒素源(101)として、1,4−ジアゾビシクロ
(2,2,2)オクタンを使用した。この物質はステン
レス鋼製の容器(102)内に収納し、恒温槽(10
7)により容器(102)を70℃に保持した。70℃
に於ける1,4−ジアゾビシクロ(2,2,2)オクタ
ンの昇華圧は約45Torrである。
1,4-diazobicyclo (2,2,2) octane was used as the nitrogen source (101) for growing AlN, InN and GaN. This substance is stored in a stainless steel container (102) and placed in a constant temperature bath (10
The container (102) was kept at 70 ° C. by 7). 70 ° C
The sublimation pressure of 1,4-diazobicyclo (2,2,2) octane in the above is about 45 Torr.

【0029】容器(102)内に原料搬送用ガス(11
0)として高純度の水素ガスを流通させた。昇華した
1,4−ジアゾビシクロ(2,2,2)オクタンを含む
水素ガスは配管(113−1)を通して、反応容器(1
08)に通ずる配管(111)か排気用配管(112)
のいずれかにバルブ((114−1)及び(114−
2))の切り換え操作により供給した。容器(102)
内に原料搬送用ガス(110)を流通させる水素ガスの
流量は目的とする含窒素化合物層毎に変化させた。
In the container (102), the raw material carrying gas (11
As 0), high-purity hydrogen gas was circulated. The hydrogen gas containing the sublimed 1,4-diazobicyclo (2,2,2) octane was passed through the pipe (113-1) and the reaction vessel (1
08) pipe (111) or exhaust pipe (112)
Valves ((114-1) and (114-
It was supplied by the switching operation of 2)). Container (102)
The flow rate of the hydrogen gas, through which the raw material-transporting gas (110) was circulated, was changed for each target nitrogen-containing compound layer.

【0030】インジウム源(105)としてはシクロペ
ンタジエルインジウム(Cyclopentadien
yl Indium)(C55 In:CpInと略記
する。)を使用した。CpInはステンレス鋼製の容器
(106)内に収納した。容器(106)は恒温槽(1
07)により60℃に保持した。ガリウム(Ga)源
(103)としては、トリメチルガリウム((CH3
3 Ga)を用いた。Ga源(103)はステンレス鋼製
容器(104)に収納し、恒温槽(107)により0℃
に保持した。Al源(119)には、トリメチルアルミ
ニウム((CH33 Al)を使用した。アルミニウム
源(119)はステンレス鋼製容器(120)に収納
し、恒温槽(107)により25℃に保持した。
As the indium source (105), cyclopentadiene indium (Cyclopentadiene) is used.
yl Indium) (abbreviated as C 5 H 5 In: CpIn) was used. CpIn was stored in a stainless steel container (106). The container (106) is a thermostat (1
The temperature was maintained at 60 ° C according to 07). As a gallium (Ga) source (103), trimethylgallium ((CH 3 )
3 Ga) was used. The Ga source (103) is housed in a stainless steel container (104), and is kept at 0 ° C. in a constant temperature bath (107).
Held. Trimethyl aluminum ((CH 3 ) 3 Al) was used as the Al source (119). The aluminum source (119) was stored in a stainless steel container (120) and kept at 25 ° C. by a constant temperature bath (107).

【0031】CpInを収納する容器(106)内に
は、精製された高純度の水素ガスを原料搬送用ガス(1
10)として流通し、昇華したCpInを含む水素ガス
は配管(113−2)を通じて反応容器(108)に通
ずる配管(111)か反応容器(108)とは通じてお
らず、反応に係わるガスやその他のガスを容器(10
8)の外部に排出するための配管に連結している排気用
配管(112)のいずれかに流通した。流通する配管
は、配管(113−3)の中途に設けたバルブ((11
4−5)及び(114−6))の開閉により選択した。
In the container (106) accommodating CpIn, purified high-purity hydrogen gas (1) is used as a raw material carrying gas (1).
The hydrogen gas containing CpIn, which has circulated as 10) and is sublimated, does not communicate with the pipe (111) or the reaction container (108) that communicates with the reaction container (108) through the pipe (113-2). Other gas containers (10
8) It was circulated in any of the exhaust pipes (112) connected to the pipe for discharging to the outside. The circulating pipe is a valve ((11
4-5) and (114-6)) were opened and closed for selection.

【0032】(CH33 Gaを収納する容器(10
4)及び(CH33 Alを収納する容器(119)内
には、各々精製された高純度の水素ガスを原料搬送用ガ
ス(110)として流通し、(CH33 Ga若しくは
(CH33 Alをバブリングした。(CH33 Ga
若しくは(CH33 Alを随伴した原料搬送用ガス
(110)は、配管((113−2)または(113−
4))を通してバルブ((114−3)または(114
−4)及び(114−7)または(114−8))の切
換え操作により、成長反応容器(108)へ通ずる配管
(111)または排気用配管(112)に導入した。
A container (10 for storing (CH 3 ) 3 Ga
4) and (CH 3 ) 3 Al are stored in a container (119) containing purified high-purity hydrogen gas as a raw material carrying gas (110), and (CH 3 ) 3 Ga or (CH 3 3 ) 3 Al was bubbled. (CH 3 ) 3 Ga
Alternatively, the raw material carrying gas (110) accompanied with (CH 3 ) 3 Al is pipe ((113-2) or (113-
4)) through the valve ((114-3) or (114
-4) and (114-7) or (114-8)) were switched to introduce into the pipe (111) or the exhaust pipe (112) leading to the growth reaction container (108).

【0033】成膜を開始する以前の段階では上記の各原
料を収納する各容器((102)、(104)、(10
6)及び(119))内に予め原料搬送用ガス(11
0)を流した。成膜が開始される以前には、第V族元素
若しくは第III 族元素の原料の蒸気若しくは昇華気体を
随伴する原料搬送用ガス(110)の、配管(111)
への導通をもたらすバルブ((114−1)、(114
−3)、(114−5)及び(116−7))を閉の状
態とし、逆に排気用配管(112)に通ずるバルブ
((114−2)、(114−4)、(114−6)及
び(114−8))を開の状態とした。従って、成膜を
開始する以前には、第V族元素若しくは第 III族元素の
原料の蒸気若しくは昇華気体を随伴する原料搬送用ガス
(110)は、排気用配管(112)へ流出させておい
た。前もって、原料搬送用ガス(110)の流量の経時
的な安定性を確保するためである。
At the stage before the film formation is started, the containers ((102), (104), (10) for accommodating the above raw materials are stored.
6) and (119)), and the raw material carrying gas (11
0) was poured. Before the film formation is started, the pipe (111) for the raw material carrying gas (110) accompanied by the vapor or sublimation gas of the raw material of the group V element or the group III element
Valves ((114-1), (114
-3), (114-5) and (116-7)) are closed, and conversely the valves ((114-2), (114-4), (114-6) communicating with the exhaust pipe (112). ) And (114-8)) were opened. Therefore, before starting the film formation, the raw material carrying gas (110) accompanied by the vapor or the sublimation gas of the raw material of the group V element or the group III element is allowed to flow to the exhaust pipe (112). I was there. This is in advance to ensure the temporal stability of the flow rate of the raw material carrying gas (110).

【0034】上記の基板(115)を反応容器(10
8)内の加熱体(117)の上に載置した。反応容器
(108)内を不活性ガスで置換した後、配管(11
1)を通してキャリアガス(109)とした水素ガスを
8.0リットル/分の流量をもって反応容器(108)
内に流通させた。キャリア水素ガス(109)の反応容
器(108)内への流通を開始してから20分後に、加
熱体(117)に通電を開始し、基板(115)の温度
を室温から600℃に昇温させた。同温度に到達してか
ら10分間、同温度に保持し基板温度を安定化させた。
The above substrate (115) is placed in a reaction vessel (10
It was placed on the heating element (117) in 8). After replacing the inside of the reaction vessel (108) with an inert gas, the pipe (11
Hydrogen gas used as a carrier gas (109) through 1) at a flow rate of 8.0 l / min in the reaction vessel (108)
Distributed inside. Twenty minutes after starting the flow of the carrier hydrogen gas (109) into the reaction vessel (108), energization of the heating element (117) was started to raise the temperature of the substrate (115) from room temperature to 600 ° C. Let After reaching the same temperature, the same temperature was maintained for 10 minutes to stabilize the substrate temperature.

【0035】然る後、N源(101)とした1,4−ジ
アゾビシクロ(2,2,2)オクタンの蒸気を含む原料
搬送用水素ガス(110)を、排気用配管(112)に
導入するためのバルブ(114−2)を閉状態とし、同
時にバルブ(114−1)を逆に開として配管(11
1)内に合流させた。反応容器(108)へ通ずる配管
(111)に合流させた1,4−ジアゾビシクロ(2,
2,2)オクタンの蒸気を含む原料搬送用水素ガス(1
10)は、上記の水素キャリアガス(109)により反
応容器(108)内に搬送した。N源のための原料搬送
用ガスとしては、水素の他、アルゴン(Ar)や窒素
(N2 )等の不活性ガスであっても良い。また、例えば
水素ガスとArガスとの混合ガスであっても構わない。
After that, a hydrogen gas (110) for transporting the raw material, which contains 1,4-diazobicyclo (2,2,2) octane vapor as the N source (101), is introduced into the exhaust pipe (112). Valve (114-2) for closing the valve (114-1) is opened at the same time, and the pipe (11-1) is opened.
1) Joined inside. 1,4-diazobicyclo (2,4) joined to a pipe (111) leading to a reaction vessel (108)
2,2) Hydrogen gas for transporting raw materials containing octane vapor (1
10) was carried into the reaction vessel (108) by the hydrogen carrier gas (109). The raw material carrying gas for the N source may be an inert gas such as argon (Ar) or nitrogen (N 2 ) in addition to hydrogen. Further, for example, a mixed gas of hydrogen gas and Ar gas may be used.

【0036】N源(101)とした1,4−ジアゾビシ
クロ(2,2,2)オクタンの蒸気を含む水素キャリア
ガス(109)を反応容器(108)に導入して5分を
経た後、(CH33 Alを随伴する原料搬送用ガス
(110)を排気用配管(112)に導入するために設
けたバルブ(114−8)を閉とし、逆にバルブ(11
4−7)を開状態とした。これにより、Al源(11
9)とした(CH33 Alを反応容器(108)に導
入し、基板(115)上へn形のAlN層(121)を
堆積した。n伝導形のAlN層(121)は、体積濃度
にして約5ppmのジシランを含む高純度水素ガスから
なるドーピングガスをボンベ(124)より10cc/
分の割合で供給して、Siをドーピングすることによっ
て得た。このドーピングガスの流量はAlN層(12
1)のキャリア濃度が約1×1018cm -3となる様に調
整されたものである。ドーピングガスは上記のN源(1
01)を反応容器(108)に供給したと同時期に配管
(111)に合流させた。
1,4-diazobic acid used as N source (101)
Hydrogen carrier containing chlorine (2,2,2) octane vapor
5 minutes after introducing the gas (109) into the reaction vessel (108)
After that, (CHThree )Three Raw material carrying gas accompanied by Al
Installed to introduce (110) into the exhaust pipe (112).
The digit valve (114-8) is closed, and conversely the valve (11-8) is closed.
4-7) was opened. As a result, the Al source (11
9) (CHThree )Three Guide Al into the reaction vessel (108)
And put an n-type AlN layer (121) on the substrate (115).
Deposited. The n-conductivity type AlN layer (121) has a volume concentration
From high-purity hydrogen gas containing about 5 ppm disilane
The doping gas from the cylinder (124) is 10cc /
By supplying Si at a rate of
I got it. The flow rate of this doping gas is the AlN layer (12
Carrier concentration of 1) is about 1 x 1018cm -3To be
It has been arranged. The doping gas is the N source (1
01) was supplied to the reaction vessel (108) at the same time as piping
Merged with (111).

【0037】AlN層(121)を得るに当たって、N
源(101)を搬送するための水素ガス(110)の流
量は250cc/分に設定した。(CH33 Alをバ
ブリングする水素の流量は35cc/分とした。昇華し
たN源(101)の気体を随伴する水素ガスと(CH
33 Alの蒸気を含む水素ガスは反応容器(108)
内ガスノズル(118)を通して40分間に亘り供給を
継続し、0.3μmのAlN層(121)を堆積した。
In obtaining the AlN layer (121), N
The flow rate of hydrogen gas (110) for carrying the source (101) was set to 250 cc / min. The flow rate of hydrogen bubbling (CH 3 ) 3 Al was 35 cc / min. Hydrogen gas accompanied by the gas of the sublimated N source (101) and (CH
3 ) Hydrogen gas containing vapor of 3 Al is used in the reaction vessel (108)
The supply was continued through the inner gas nozzle (118) for 40 minutes to deposit a 0.3 μm AlN layer (121).

【0038】AlN層(121)の成長後、一旦(CH
33 Alの蒸気を含む水素ガス(110)の反応容器
に通ずる配管(111)への導入口となるバルブ(11
4−7)を閉とし、逆にバルブ(114−8)を開とし
て(CH33 Alの蒸気を含む水素ガスを排気用配管
(112)に流入させた。それと時期を同じくして、ド
ーパントガスの配管(111)への導入を一時停止し
た。N源(101)の蒸気を含む水素ガスはその流量を
維持させて配管(111)内への導入を継続した。
After the growth of the AlN layer (121), once (CH
3 ) A valve (11) serving as an inlet for the hydrogen gas (110) containing the vapor of 3 Al into the pipe (111) communicating with the reaction vessel.
4-7) is closed, and allowed to flow into the valve (114-8) Conversely as open (CH 3) hydrogen gas containing 3 Al of steam in the exhaust pipe (112). At the same time, the introduction of the dopant gas into the pipe (111) was temporarily stopped. The hydrogen gas containing the N source (101) vapor was kept introduced at the same flow rate and introduced into the pipe (111).

【0039】(CH33 Alの蒸気を含む原料搬送用
水素ガス(110)及びドーパントガスの配管(11
1)への導入を停止して5分を経過した後、昇華したC
pInの気体を含む原料搬送用水素ガス(110)をバ
ルブ((114−5)及び(114−6))の切り換え
により配管(111)内に導入した。また、p形の不純
物(ドーパント)の添加源となる、体積濃度にして約5
0ppmのジメチル亜鉛と高純度水素の混合ガスをガス
ボンベ(126)から12cc/分の流量で供給した。
CpInの昇華気体を含む水素ガス及びドーパントを含
むガスは成長容器(108)内のノズル(118)を通
して、60分間継続して基板(115)に吹き付けた。
これにより、キャリア濃度を約1×1017cm-3とする
p形のInN層(123)を堆積した。膜厚は0.1μ
mであった。60分間が経過した時点で、バルブ((1
14−5)及び(114−6))の開閉状態を切り換え
て、CpInを含む原料搬送用水素ガス(110)の配
管(111)へ導入を停止し、逆にそれを排気用配管
(112)側に導入した。p形ドーピングガス及びN源
(101)を含む搬送用水素ガス(110)の配管(1
11)への導入はCpInを含む原料搬送用ガス(11
0)の流路の変更に拘らず継続した。
A hydrogen gas (110) for transporting a raw material containing a vapor of (CH 3 ) 3 Al and a pipe (11) for a dopant gas.
After 5 minutes have passed since the introduction to 1) was stopped, sublimated C
A raw material-transporting hydrogen gas (110) containing a pIn gas was introduced into the pipe (111) by switching valves ((114-5) and (114-6)). The volume concentration of the p-type impurity (dopant) is about 5%.
A mixed gas of 0 ppm of dimethyl zinc and high-purity hydrogen was supplied from a gas cylinder (126) at a flow rate of 12 cc / min.
The hydrogen gas containing the sublimation gas of CpIn and the gas containing the dopant were sprayed on the substrate (115) continuously for 60 minutes through the nozzle (118) in the growth container (108).
As a result, a p-type InN layer (123) having a carrier concentration of about 1 × 10 17 cm −3 was deposited. Thickness is 0.1μ
m. When 60 minutes have passed, the valve ((1
14-5) and (114-6)) are opened and closed to stop the introduction of the hydrogen gas (110) for raw material transport containing CpIn into the pipe (111), and conversely, to exhaust it (112). Introduced to the side. Piping (1) for hydrogen gas (110) for transportation containing p-type doping gas and N source (101)
11) is introduced into the raw material carrying gas (11) containing CpIn.
It continued regardless of the change of the flow path of 0).

【0040】CpInを含む原料搬送用水素ガス(11
0)の流路を変更して5分経過した後、Ga源(10
3)とした(CH33 Gaを含む原料搬送用水素ガス
(110)を排気用配管(112)に導入するためバル
ブ(114−4)を開状態から閉状態とし、逆にバルブ
(114−3)を開とした。これにより、(CH33
Gaを配管(113−2)を通して配管(111)に導
入し、配管(111)内を流れる水素キャリアガス(1
09)、N源(101)を含む原料搬送用ガス(11
0)及びp形ドーピングガスに合流させ、反応容器(1
08)内に導き、p形GaN層(122)の成長を実施
した。(CH33 Gaの原料搬送用ガス(110)の
流量は30cc/分とした。(CH33 Gaを含む原
料搬送用水素ガス(110)の配管(111)への合流
を開始してから50分間、GaN層(122)の成長を
継続した。GaN層(122)の膜厚は0.3μmであ
った。p形ドーピングガスの流量はキャリア濃度が約1
17cm-3となる様に20cc/分とした。
Hydrogen gas for raw material transportation containing CpIn (11
After changing the flow path of 0) for 5 minutes, the Ga source (10
The valve (114-4) is changed from the open state to the closed state in order to introduce the hydrogen gas (110) for transporting the raw material containing (CH 3 ) 3 Ga described in 3 ) into the exhaust pipe (112), and conversely the valve (114 -3) was opened. This gives (CH 3 ) 3
Ga is introduced into the pipe (111) through the pipe (113-2), and the hydrogen carrier gas (1
09), a raw material carrying gas (11) containing an N source (101)
0) and the p-type doping gas, and the reaction vessel (1
08), and a p-type GaN layer (122) was grown. The flow rate of the raw material carrying gas (110) of (CH 3 ) 3 Ga was set to 30 cc / min. The growth of the GaN layer (122) was continued for 50 minutes after starting the merging of the hydrogen gas (110) for transporting the raw material containing (CH 3 ) 3 Ga into the pipe (111). The thickness of the GaN layer (122) was 0.3 μm. The carrier concentration of the p-type doping gas is about 1
It was set to 20 cc / min so as to be 0 17 cm -3 .

【0041】得られた積層構造についての含窒素III −
V族化合物半導体層の構成元素であるGa、In、A
l、N元素のSIMS分析法による深さ方向の分布を図
4示す。特に、InN層(123)についてはAlN層
(121)との界面からGaN層(122)の界面に至
る0.1μmの領域がInN層の層厚に相当する。Al
N成長層(121)との界面(図中のA地点)から、I
nN成長層(123)の内部へ0.02μmの深さ(本
文中で云うd=0.02)の地点Bを経て、GaN成長
層(122)との界面(d=0.10)(地点C)に至
る0.08μmの連続した領域で本文中に記載したCN
とCInとの比αはほぼ一定となっている。CN とCIn
定量値を基に分析対象元素に依る分析感度等の補正を加
え、本文中のαを計算した。即ち、本発明の範囲の0.
2t≦d≦0.6tの範囲で、少なくとも本文中に記載
のαは1.04と一定の値となった。また、d<0.0
2のAlN成長層との界面(A地点)に近い領域におい
ても、αの最大値は1.06に抑制されていた。このた
め、InN成長層(123)には褐色、灰色や黒色等の
着色は認められなかった。
Nitrogen-containing content of the obtained laminated structure III-
Ga, In, A which are the constituent elements of the group V compound semiconductor layer
FIG. 4 shows the distribution of the l and N elements in the depth direction by SIMS analysis. In particular, for the InN layer (123), the region of 0.1 μm from the interface with the AlN layer (121) to the interface with the GaN layer (122) corresponds to the layer thickness of the InN layer. Al
From the interface with the N growth layer (121) (point A in the figure), I
Through the point B of 0.02 μm depth (d = 0.02 in the text) into the nN growth layer (123), the interface (d = 0.10) with the GaN growth layer (122) (point C N described in the text in a continuous area of 0.08 μm leading to C)
The ratio α between C In and C In is almost constant. Based on the quantitative values of C N and C In, the analytical sensitivity depending on the element to be analyzed was corrected, and α in the text was calculated. That is, in the range of 0.
Within the range of 2t ≦ d ≦ 0.6t, at least α described in the text was a constant value of 1.04. Also, d <0.0
The maximum value of α was suppressed to 1.06 even in the region near the interface with the AlN growth layer of No. 2 (point A). Therefore, the InN growth layer (123) was not colored in brown, gray or black.

【0042】GaP基板(115)の表面上に堆積した
AlN成長層(121)とInN成長層(123)とG
aN成長層(122)からなる積層構造(116)の表
面には、公知のフォトリソグラフィー技術を利用したパ
ターニング法を応用して帯状の中心電極(128)とそ
れと対向する周辺電極(129)とを形成した。中心電
極(128)は積層構造の最表層であるGaN成長層
(122)上に設けた。中心電極(128)の幅は約9
0μmとし、長さは約350μmとした。中心電極(1
28)に対向する周辺電極(129)はAlN成長層
(121)上に設けた。周辺電極の幅は、約75μmと
し、長さは約350μmとした。中心及び周辺((12
8)及び(129))電極共にAlより構成した。
AlN growth layer (121), InN growth layer (123) and G deposited on the surface of the GaP substrate (115).
A strip-shaped center electrode (128) and a peripheral electrode (129) facing the strip-shaped center electrode (128) are formed on the surface of the laminated structure (116) including the aN growth layer (122) by applying a patterning method using a known photolithography technique. Formed. The center electrode (128) was provided on the GaN growth layer (122) which is the outermost layer of the laminated structure. The width of the center electrode (128) is about 9
The length was 0 μm and the length was about 350 μm. Center electrode (1
The peripheral electrode (129) facing 28) was provided on the AlN growth layer (121). The peripheral electrode had a width of about 75 μm and a length of about 350 μm. Center and surroundings ((12
Both 8) and (129)) electrodes were made of Al.

【0043】尚、本実施例では2元化合物のAlN、I
nN及びGaNの合計3層からなるLED用途の積層構
造を構成したが、積層構造を構成する含窒素III −V族
化合物半導体層の組合せ、伝導形、膜厚及びキャリア濃
度はこれに限定されない。例えば、AlGaNとGaN
とのヘテロ接合を含む積層構造でも良い。積層構造を構
成する層の数にも特別な規定がないのは勿論である。ま
た、本実施例に記載の積層構造から構成する半導体装置
はLEDには限定されない。
In this example, binary compounds AlN and I are used.
Although the laminated structure for an LED is composed of a total of three layers of nN and GaN, the combination, conduction type, film thickness and carrier concentration of the nitrogen-containing III-V group compound semiconductor layers constituting the laminated structure are not limited thereto. For example, AlGaN and GaN
A laminated structure including a heterojunction with Of course, there is no special regulation on the number of layers constituting the laminated structure. Further, the semiconductor device having the laminated structure described in this embodiment is not limited to the LED.

【0044】上記した1,4−ジアゾビシクロ(2,
2,2)オクタンをN源として低温で気相成長されたI
nを含む含窒素III −V族化合物半導体層を備えた積層
構造から構成されたLED構造からは赤色帯域の中心波
長を約650nmとする可視光が発せられるのが認めら
れた。動作電流を20mAに設定した通電劣化試験に於
いては、通電時間の増大に伴う発光波長の変化が、従来
のInを含む含窒素 III−V族化合物半導体層を備えた
積層構造からなるLEDに比較し少ないことが認められ
た。電極間に4.5Vの直流動作電圧を印加した直後に
おける発光波長の変化量をもって具体的に例示すれば、
従来のLEDでは発光波長が約25nm長波長側に移行
するのに対し、本実施例に係わるLEDでは長波長側へ
の発光波長の移行量は約5nmに抑制される。従来のL
EDにあっては、この通電に伴う発光波長の変化に伴い
発光光度も劣化し、通電直後に発光光度は約15%低下
し、通電を継続することによって漸次、低下する傾向を
示した。一方、本発明に係わるLEDでは、発光光度は
通電直後に約5%の低下を示したものの、その後の継続
した通電においては光度は一定となる傾向を示した。ほ
ぼ一定となった通電時点での発光光度は約45ミリカン
デラであり、この時点においても従来例のLEDに比較
して約1.4倍の発光光度を維持していた。これら波長
及び発光光度の経時変化の一因には、電界によるインジ
ウム原子のヘテロ界面近傍への移動(マイグレーショ
ン)が挙げられる。本発明に係わるLEDでは、発光波
長及び光度の経時変化が低く抑制されていることから、
αを規定することは動作電圧の印加によって発生する電
界による或いは発生する熱によるインジウム原子の層内
移動に伴うインジウム原子のヘテロ界面などへの蓄積を
抑制する効果があると考慮される。要約すれば、αを規
定することは発光の透過性に優れる光学的に透明なIn
N層をもたらし、よって発光光度の向上をもたらすと共
に、発光光や発光波長の経時劣化の少ないInを含む含
窒素III −V族化合物半導体層を備えた積層構造からな
るLEDを提供できる。
The above-mentioned 1,4-diazobicyclo (2,4
2,2) I grown by low temperature vapor deposition using octane as N source
It was found that visible light having a center wavelength in the red band of about 650 nm was emitted from the LED structure composed of the laminated structure including the nitrogen-containing III-V group compound semiconductor layer containing n. In an energization deterioration test in which the operating current was set to 20 mA, the change in emission wavelength with the increase of energization time was observed in the conventional LED having a laminated structure including a nitrogen-containing III-V group compound semiconductor layer containing In. It was recognized that the number was small compared to the above. As a specific example of the amount of change in the emission wavelength immediately after applying a DC operating voltage of 4.5 V between the electrodes,
In the conventional LED, the emission wavelength shifts to the long wavelength side of about 25 nm, whereas in the LED according to the present embodiment, the shift amount of the emission wavelength to the long wavelength side is suppressed to about 5 nm. Conventional L
In the ED, the luminous intensity was also deteriorated with the change of the emission wavelength accompanying the energization, the luminous intensity was decreased by about 15% immediately after the energization, and there was a tendency that the luminous intensity was gradually decreased by continuing the energization. On the other hand, in the LED according to the present invention, the luminous intensity decreased about 5% immediately after energization, but the luminous intensity tended to be constant in the subsequent energization. The luminous intensity at the time of energization which became almost constant was about 45 millicandelas, and even at this time, the luminous intensity was about 1.4 times that of the LED of the conventional example. One of the causes of these changes in wavelength and emission intensity over time is migration of indium atoms to the vicinity of the hetero interface due to an electric field. In the LED according to the present invention, since the temporal change of the emission wavelength and the luminous intensity is suppressed to be low,
It is considered that defining α has the effect of suppressing the accumulation of indium atoms at the hetero interface or the like due to the movement of indium atoms in the layer due to the electric field generated by the application of the operating voltage or the heat generated. In summary, defining α is an optically transparent In that excels in light emission transparency.
It is possible to provide an LED having a laminated structure including a nitrogen-containing III-V group compound semiconductor layer that provides an N layer and thus improves emission light intensity and that has little deterioration of emitted light and emission wavelength with time.

【0045】本実施例で用いた1,4−ジアゾビシクロ
(2,2,2)オクタンは、ヘテロ原子として窒素原子
を2個含む複素環式化合物の一例であり、N源としては
この含窒素化合物に限定されることはない。
The 1,4-diazobicyclo (2,2,2) octane used in this example is an example of a heterocyclic compound containing two nitrogen atoms as hetero atoms, and the nitrogen source is the nitrogen-containing compound. It is not limited to compounds.

【0046】[0046]

【発明の効果】Inを含む含窒素III −V族化合物半導
体層を備えた積層構造からなる半導体装置の特性を向上
させる。特に、LEDにあっては、動作の信頼性と発光
強度の増大をもたらす。
The characteristics of a semiconductor device having a laminated structure provided with a nitrogen-containing III-V group compound semiconductor layer containing In are improved. Particularly, in the case of the LED, the operation reliability and the emission intensity are increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のInN層のIn濃度とCIn/CN 比率
(α)との深さ方向の分布示す図である。
FIG. 1 is a diagram showing a distribution of In concentration and C In / C N ratio (α) in a conventional InN layer in the depth direction.

【図2】本発明に係わるInN層のIn濃度とCIn/C
N 比率(α)の深さ方向の分布を示す図である。
FIG. 2 shows the In concentration and C In / C of the InN layer according to the present invention.
It is a figure which shows the distribution of N ratio ((alpha)) in the depth direction.

【図3】本発明の実施に用いた気相成長装置の概略図で
ある。
FIG. 3 is a schematic view of a vapor phase growth apparatus used for carrying out the present invention.

【図4】実施例に係わる積層構造の構成元素の深さ方向
の分布を示す図である。
FIG. 4 is a diagram showing distributions of constituent elements of a laminated structure according to an example in the depth direction.

【図5】実施例に係わる半導体装置(LED)の模式図
である。
FIG. 5 is a schematic view of a semiconductor device (LED) according to an example.

【符号の説明】[Explanation of symbols]

(101) 窒素源 (102) 窒素源収納用ステンレス鋼製容器 (103) ガリウム(Ga)源 (104) ガリウム源収納用ステンレス鋼製容器 (105) インジウム(In)源 (106) インジウム源収納用ステンレス鋼製容器 (107) 恒温槽 (108) 成長反応容器 (109) 水素キャリアガス (110) 原料搬送用ガス (111) 成長反応容器へ通ずる配管 (112) 排気用配管 (113) 配管 (114) バルブ (115) 基板 (116) 積層構造 (117) 加熱体 (118) ノズル (119) アルミニウム源 (120) アルミニウム源収納用ステンレス鋼製容器 (121) 窒化アルミニウム(AlN)成長層 (122) 窒化ガリウム(GaN)成長層 (123) 窒化インジウム(InN)成長層 (124) n形層形成用ドーピングガス収納ボンベ (125) n形層形成用ドーピングガス用配管 (126) p形層形成用ドーピングガス収納ボンベ (127) p形層形成用ドーピングガス用配管 (128) 中心電極 (129) 周辺電極 (101) Nitrogen source (102) Nitrogen source storage stainless steel container (103) Gallium (Ga) source (104) Gallium source storage stainless steel container (105) Indium (In) source (106) Indium source storage Stainless steel container (107) Constant temperature bath (108) Growth reaction container (109) Hydrogen carrier gas (110) Raw material transfer gas (111) Pipe leading to growth reaction container (112) Exhaust pipe (113) Pipe (114) Valve (115) Substrate (116) Laminated structure (117) Heater (118) Nozzle (119) Aluminum source (120) Aluminum source container for stainless steel (121) Aluminum nitride (AlN) growth layer (122) Gallium nitride (GaN) Growth Layer (123) Indium Nitride (InN) Growth Layer (1 24) N-type layer forming doping gas storage cylinder (125) N-type layer forming doping gas pipe (126) P-type layer forming doping gas storage cylinder (127) P-type layer forming doping gas pipe (128) Center electrode (129) Peripheral electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に堆積されたInN成長層を含む
積層構造を有する半導体装置において、InN成長層の
層厚をtとした場合、InN成長層の表面から内部に向
かって0.2t以上0.6t以下の領域において、In
原子の濃度変化が±15%以内であることを特徴とする
含窒素III −V族化合物半導体層を備えた含窒素半導体
装置。
1. In a semiconductor device having a laminated structure including an InN growth layer deposited on a substrate, when the layer thickness of the InN growth layer is t, 0.2 t or more from the surface of the InN growth layer toward the inside. In the region of 0.6 t or less, In
A nitrogen-containing semiconductor device provided with a nitrogen-containing III-V group compound semiconductor layer, characterized in that the concentration change of atoms is within ± 15%.
【請求項2】 InN成長層中のN原子濃度CN とIn
原子濃度CInとの比率α(α=CIn/CN )の変動が、
InN成長層の層厚をtとした場合、InN成長層の表
面から内部に向かって0.2t以上0.6t以下の領域
において±15%以内であることを特徴とする請求項1
に記載の含窒素半導体装置。
2. The N atom concentration C N and In in the InN growth layer.
The variation of the ratio α (α = C In / C N ) with the atomic concentration C In is
When the layer thickness of the InN growth layer is t, it is within ± 15% in a region of 0.2t or more and 0.6t or less from the surface to the inside of the InN growth layer.
The nitrogen-containing semiconductor device according to.
【請求項3】 αの最大値が2以下であることを特徴と
する請求項2に記載の含窒素半導体装置。
3. The nitrogen-containing semiconductor device according to claim 2, wherein the maximum value of α is 2 or less.
JP18304295A 1995-07-19 1995-07-19 Nitrogen-containing semiconductor devices Expired - Fee Related JP3598593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18304295A JP3598593B2 (en) 1995-07-19 1995-07-19 Nitrogen-containing semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18304295A JP3598593B2 (en) 1995-07-19 1995-07-19 Nitrogen-containing semiconductor devices

Publications (2)

Publication Number Publication Date
JPH0936419A true JPH0936419A (en) 1997-02-07
JP3598593B2 JP3598593B2 (en) 2004-12-08

Family

ID=16128730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18304295A Expired - Fee Related JP3598593B2 (en) 1995-07-19 1995-07-19 Nitrogen-containing semiconductor devices

Country Status (1)

Country Link
JP (1) JP3598593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030918A1 (en) * 2004-09-13 2006-03-23 Showa Denko K.K. Method for fabrication of group iii nitride semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030918A1 (en) * 2004-09-13 2006-03-23 Showa Denko K.K. Method for fabrication of group iii nitride semiconductor
US7674644B2 (en) 2004-09-13 2010-03-09 Showa Denko K.K. Method for fabrication of group III nitride semiconductor

Also Published As

Publication number Publication date
JP3598593B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
Edgar et al. related Semiconductors
Denbaars Gallium-nitride-based materials for blue to ultraviolet optoelectronics devices
US5432808A (en) Compound semicondutor light-emitting device
EP0390552B1 (en) Method of manufacturing compound semiconductor thin film
JP3124861B2 (en) Thin film growth method and semiconductor device manufacturing method
US6559038B2 (en) Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US6218269B1 (en) Process for producing III-V nitride pn junctions and p-i-n junctions
US20040026704A1 (en) III-V compound semiconductor device with an AIxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
Kressel Gallium arsenide and (alga) as devices prepared by Liquid-Phase epitaxy
US6599133B2 (en) Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques
US6479839B2 (en) III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer
US6472300B2 (en) Method for growing p-n homojunction-based structures utilizing HVPE techniques
Kolodziejski et al. Wide-Bandgap II-VI Heterostructures for Blue/Green Optical Sources: Key Materials Issues
US4782034A (en) Semi-insulating group III-V based compositions doped using bis arene titanium sources
JP2001015437A (en) Iii group nitride crystal growing method
JP3760478B2 (en) Method for producing group III-V compound semiconductor device
JP3458625B2 (en) Semiconductor growth method
JP3598593B2 (en) Nitrogen-containing semiconductor devices
US5986288A (en) Epitaxial wafer for a light-emitting diode and a light-emitting diode
JP2533212B2 (en) Method for manufacturing semiconductor device
Hayafuji et al. Atomic layer epitaxy of device quality AlGaAs and AlAs
KR960004591B1 (en) Doped crystal growing method
JP3090063B2 (en) Compound semiconductor device
US7473316B1 (en) Method of growing nitrogenous semiconductor crystal materials
JPH07254751A (en) Compound semiconductor element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees