JPH0936278A - Semiconductor device coated with metallic foil, its manufacture, and metallic foil material used therefor - Google Patents

Semiconductor device coated with metallic foil, its manufacture, and metallic foil material used therefor

Info

Publication number
JPH0936278A
JPH0936278A JP7178688A JP17868895A JPH0936278A JP H0936278 A JPH0936278 A JP H0936278A JP 7178688 A JP7178688 A JP 7178688A JP 17868895 A JP17868895 A JP 17868895A JP H0936278 A JPH0936278 A JP H0936278A
Authority
JP
Japan
Prior art keywords
metal foil
semiconductor device
foil material
adhesive layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7178688A
Other languages
Japanese (ja)
Inventor
Yuji Hotta
祐治 堀田
Seiji Kondo
誠司 近藤
Shinichi Oizumi
新一 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP7178688A priority Critical patent/JPH0936278A/en
Publication of JPH0936278A publication Critical patent/JPH0936278A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the separation of metallic foil materials, to improve the reliability of the materials during TCT tests, and to improve the cracking resistances of the materials at soldering time by providing adhesive layers which can be fixed temporarily to metallic cavity surfaces and are not shifted in position at molding time on one surfaces of the materials. SOLUTION: At the time of manufacturing a semiconductor device coated with metallic foil, metallic foil materials 7 are temporarily fixed to the cavity surfaces of metallic molds 1 and 2 with such adhesive forces that do not allow the materials 7 to shift in position. After a semiconductor element 4 positioned on a lead frame 5 is set to the metallic molds 1 and 2, the molds 1 and 2 are closed and a sealing resin 6 is injected into and molded and hardened in the molds 1 and 2. In order to temporarily fix the materials 7 to the cavities, adhesive layers 8 containing appropriate amounts of inorganic fillers are provided on one surfaces of the materials 7. Therefore, the temporarily fixing force of the materials 7 to and removing properties of the materials 7 from the cavity surfaces of the molds 1 and 2 after molding can be controlled and the semiconductor device can be manufactured stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子を樹脂で封止
してなる半導体装置の表面に固着されてなる金属箔材
料、及びこれを備えた半導体装置と半導体装置の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal foil material fixed to the surface of a semiconductor device obtained by sealing a semiconductor element with a resin, a semiconductor device provided with the same, and a method of manufacturing the semiconductor device.

【0002】[0002]

【従来の技術】トランジスタ、IC及びLSI等の半導
体素子は、従来、セラミックにより封止され半導体装置
化されていたが、コスト及び量産性の観点から樹脂封止
が主流になっている。この樹脂封止には従来からエポキ
シ樹脂が使用されており良好な成績を収めている。一
方、半導体分野の技術革新によって集積度の増大化とと
もに半導体素子サイズの大型化が進んでいる反面、半導
体装置の小型化、薄型化の要請が強く、そのため、封止
用樹脂材料の占める容積率が減少しており、封止材料に
ついては、より高度な信頼性が要求されてきている。特
に近年、半導体素子サイズの大型化に伴って、半導体封
止樹脂の性能評価用の加速試験である熱サイクル試験
(TCTテスト)に対して、従来以上の性能の向上が要
求されている。また、半導体装置の配線基板への実装方
法として表面実装が主流となってきており、このため、
半導体装置を吸湿した状態で半田付けした際に半導体装
置にクラックや膨れが発生しないという特性が要求され
ている。
2. Description of the Related Art Conventionally, semiconductor elements such as transistors, ICs, and LSIs have been encapsulated with ceramics to be semiconductor devices, but resin encapsulation has become mainstream from the viewpoint of cost and mass productivity. Epoxy resin has been conventionally used for this resin encapsulation and has achieved good results. On the other hand, while technological innovation in the semiconductor field has led to an increase in the degree of integration and an increase in the size of semiconductor elements, there is a strong demand for miniaturization and thinning of semiconductor devices. However, higher reliability has been demanded for the sealing material. Particularly in recent years, with the increase in the size of semiconductor elements, there has been a demand for higher performance than before in a thermal cycle test (TCT test), which is an accelerated test for evaluating the performance of a semiconductor encapsulating resin. In addition, surface mounting is becoming the main method for mounting semiconductor devices on wiring boards.
It is required that the semiconductor device is not cracked or swollen when soldered while absorbing moisture.

【0003】これらの要求に対して従来から、TCTテ
ストで評価される耐熱応力性の向上のために封止用樹脂
の中にゴムの微粒子を添加したり、シリコーン化合物で
エポキシ樹脂を変性して熱応力を低減させることが検討
されている。また、半田付け時の耐クラック性の向上の
ために、吸湿量の小さな封止樹脂を採用したり、リード
フレームとの密着性の向上等も検討されてきたが、その
効果はいまだ充分でなかった。
To meet these demands, rubber fine particles have been conventionally added to a sealing resin or an epoxy resin has been modified with a silicone compound in order to improve heat stress resistance evaluated by a TCT test. It has been studied to reduce thermal stress. In addition, in order to improve the crack resistance during soldering, it has been studied to use a sealing resin with a small moisture absorption amount and to improve the adhesion with the lead frame, but the effect is still insufficient. It was

【0004】そこで本願発明者らは、半導体装置が薄型
化しても、耐湿性、耐熱応力性、半田付け時の耐クラッ
ク性に優れ、高信頼性をもつ半導体装置を得るために、
特願平6−80158号にて金属箔によりプラスチック
パッケージ表面を被覆することを提案し、その方法とし
て、半導体素子を封止する樹脂を金型を用いて成形加工
する際に、金型の成形面に金属箔材料を仮固定した後樹
脂を注入、成形することにより、プラスチックパッケー
ジ表面に金属箔材料を直接固着させる方法を提案してい
る。その場合の金型成形面への仮固定方法としては、金
属箔材料面に仮固定用の接着剤層を設けて仮固定する方
法を提案している。また特願平7−33677号では金
属箔材料と封止材料との親和性をあげると剥離防止に効
果があることを見いだし、成形時に封止用樹脂と接触す
ることとなる当該金属箔材料面の水に対する接触角が1
10゜以下であるもので構成されている金属箔の使用を
提案した。また特開昭63−250846号では接着剤
層を設けずに真空吸着、磁力、重力等の物理的手段によ
り仮固定する方法が提案されている。
Therefore, the inventors of the present invention have to obtain a semiconductor device which is excellent in moisture resistance, heat stress resistance, and crack resistance during soldering and has high reliability even if the semiconductor device is made thin.
Japanese Patent Application No. 6-80158 proposes to coat the surface of a plastic package with a metal foil. As a method therefor, when molding a resin for sealing a semiconductor element using a mold, molding of the mold is performed. It proposes a method of directly fixing the metal foil material to the surface of the plastic package by temporarily fixing the metal foil material to the surface and then injecting and molding a resin. In that case, as a temporary fixing method to the die molding surface, a method of providing an adhesive layer for temporary fixing on the metal foil material surface and temporarily fixing it is proposed. Further, in Japanese Patent Application No. 7-33677, it was found that increasing the affinity between the metal foil material and the sealing material is effective in preventing peeling, and the surface of the metal foil material that comes into contact with the sealing resin during molding. Contact angle of water with water is 1
It has been proposed to use a metal foil composed of one that is 10 ° or less. Further, Japanese Patent Application Laid-Open No. 63-250846 proposes a method of temporarily fixing by a physical means such as vacuum adsorption, magnetic force or gravity without providing an adhesive layer.

【0005】[0005]

【発明が解決しようとする課題】上記のように、仮固定
用の接着剤層を設けた金属箔材料をその接着層を介して
金型に仮固定した後、封止用樹脂を注入、成形し、製造
する方法において、 (1)金属箔と半導体装置間の接着力が不十分なため封
止樹脂の成形時や成形後の硬化時、あるいは配線基板へ
の当該半導体装置の実装時などの熱応力負荷時に金属箔
が剥がれることが有り、その結果、半導体装置表面を金
属箔で被覆したことにより得られるはずの効果、例えば
TCTテストに於ける信頼性の向上や半田付け時の耐ク
ラック性の向上等の効果が一部損なわれるという問題が
生じていた。 (2)さらに金型キャビテイ表面に仮固定して用いられ
る金属箔材料については、金属箔上に形成された接着剤
層の種類によっては、成形時の金属箔材料のキャビテイ
面での位置ズレや金型汚れが発生することが有った。
As described above, the metal foil material provided with the adhesive layer for temporary fixing is temporarily fixed to the mold through the adhesive layer, and then the sealing resin is injected and molded. In the manufacturing method, (1) when the sealing resin is molded or cured after molding because the adhesive force between the metal foil and the semiconductor device is insufficient, or when the semiconductor device is mounted on a wiring board, etc. The metal foil may peel off when a thermal stress is applied, and as a result, the effect that should be obtained by coating the surface of the semiconductor device with the metal foil, such as improvement of reliability in TCT test and crack resistance during soldering However, there has been a problem that some of the effects such as the improvement of (2) Further, regarding the metal foil material that is temporarily fixed and used on the surface of the mold cavity, depending on the type of the adhesive layer formed on the metal foil, the metal foil material may be misaligned on the cavity surface during molding. Mold stains were sometimes generated.

【0006】[0006]

【課題を解決するための手段】本発明はこのような問題
に鑑みてなされたものであって、半導体素子を封止する
樹脂を金型を用いて成形する際に、(1)金属箔材料を
金型キャビテイ表面に仮固定して、その後の金型内への
封止用樹脂の注入、成形により半導体装置表面に金属箔
材料を固着させる金属箔被覆半導体装置の製造方法と
(2)該金属箔材料と該製造方法を用いて得られる半導
体装置を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and when (1) a metal foil material is used to mold a resin for sealing a semiconductor element using a mold. And (2) a method of manufacturing a metal foil-covered semiconductor device, wherein a metal foil material is fixed to the surface of the semiconductor device by injecting and molding a sealing resin into the mold thereafter. The present invention provides a metal foil material and a semiconductor device obtained by using the manufacturing method.

【0007】以下発明の詳細を説明するが、参考のため
に、その成形加工方法の一例を図面を参考にしながら説
明する。先ず、図1の(A)に示すように、開かれた金
型1、2のキャビテイ面に金属箔材料7を接着剤層8を
介して仮固定する。次いで、同図(B)に示すように、
封止すべき半導体素子4にリードフレーム5を伴ったも
のを供給する。次に、同図(c)に示すように、金型2
を閉じた後その金型内に封止樹脂6を注入して成形・硬
化させる。硬化後、金型1、2を開いて、同図(D)に
示すように樹脂6の表面に金属箔材料7が固着された半
導体装置を取り出す。尚、上記の場合において、仮固定
とは、金型の開閉動作によっても脱落せず、さらに成形
中にも位置ずれを生じず、樹脂成形後は金型から容易に
剥離させ得る程度の固着性を意味する。
The present invention will be described in detail below, but for reference, an example of the molding method will be described with reference to the drawings. First, as shown in FIG. 1A, the metal foil material 7 is temporarily fixed to the cavity surfaces of the opened molds 1 and 2 via the adhesive layer 8. Then, as shown in FIG.
The semiconductor element 4 to be sealed is supplied with the lead frame 5. Next, as shown in FIG.
After closing, the sealing resin 6 is injected into the mold to be molded and cured. After curing, the molds 1 and 2 are opened, and the semiconductor device in which the metal foil material 7 is fixed to the surface of the resin 6 is taken out as shown in FIG. In the above case, the term “temporary fixing” means that the mold does not fall off even when the mold is opened and closed, does not dislocate during molding, and can be easily separated from the mold after resin molding. Means

【0008】図2に金属箔構造材料3の構造例を模式的
に拡大して示す。ここに例示した金属箔構造材料3にお
いては、金属箔材料7の片面に金型キャビテイ面への仮
固定用の接着剤層8が設けられている。これは、金型
1、2のキャビテイ部へ樹脂6を注入する際に金属箔構
造材料3のセット位置が変化したり、樹脂6が金属箔構
造材料3と金型キャビテイ面との間に流れ込んだりしな
いようにするためのものである。この際後述する金属箔
材料を金型キャビテイ面に仮固定し、半導体素子を成形
し樹脂封止し金属箔被覆半導体装置を製造するにあたり
金型キャビテイ面の表面粗さ(10点平均粗さ;Rz;
JIS B0601−1982)が4〜15μmの金型
を用い、封止用樹脂を注入、成形することを特徴として
いる。即ち金属箔材料上に形成された接着剤層の種々の
工夫と相俟って、生産性良く金属箔被覆半導体装置が製
造できるとともに、表面外観の良好な半導体装置が得ら
れる。金型キャビテイ部の表面粗さが4μm未満の場合
は金属箔未被覆部の離型性不良、また15μmを越える
場合には金属箔仮固定時の固定不良が起こるので好まし
くない。
FIG. 2 schematically shows an enlarged structural example of the metal foil structural material 3. In the metal foil structural material 3 illustrated here, the adhesive layer 8 for temporarily fixing to the mold cavity surface is provided on one surface of the metal foil material 7. This is because the setting position of the metal foil structural material 3 changes when the resin 6 is injected into the cavities of the molds 1 and 2, or the resin 6 flows between the metal foil structural material 3 and the mold cavity surface. This is to prevent it from getting boring. At this time, when a metal foil material described later is temporarily fixed to the mold cavity surface, a semiconductor element is molded, and resin is sealed to manufacture a metal foil-covered semiconductor device, the surface roughness of the mold cavity surface (10-point average roughness; Rz;
JIS B0601-1982) is characterized in that a mold of 4 to 15 μm is used and a sealing resin is injected and molded. That is, in combination with various ideas of the adhesive layer formed on the metal foil material, a metal foil-covered semiconductor device can be manufactured with high productivity and a semiconductor device having a good surface appearance can be obtained. When the surface roughness of the mold cavity is less than 4 μm, the releasability of the metal foil uncovered portion is poor, and when it exceeds 15 μm, the fixing failure during temporary fixing of the metal foil occurs, which is not preferable.

【0009】次ぎに本発明に用いられる金属箔材料につ
いて述べる。ここで用いられる金属箔材料は、成形時の
樹脂温度や金型温度に耐え得るように300℃以上の融
点を有する金属であれば、特に制限するものではない。
このようなものとしては、例えば、アルミニウム、ステ
ンレスステイール、銅、ニッケル等があげられる。また
金属箔材料の厚みは1μm〜300μmの範囲、好まし
くは5〜200μmの範囲に設定される。厚さが1μm
以下のものはその取扱が困難であり、厚さが300μm
をこえると、半導体素子を包む樹脂の厚さが減少し、成
形時における樹脂の流動性が悪くなる。更に上記金属箔
材料は金型キャビテイ表面に仮固定するための接着剤層
がその片面に予め設けられる。
Next, the metal foil material used in the present invention will be described. The metal foil material used here is not particularly limited as long as it is a metal having a melting point of 300 ° C. or higher so as to withstand the resin temperature and mold temperature during molding.
Examples of such materials include aluminum, stainless steel, copper, nickel and the like. The thickness of the metal foil material is set in the range of 1 μm to 300 μm, preferably 5 to 200 μm. Thickness is 1 μm
The following items are difficult to handle and have a thickness of 300 μm
If it exceeds, the thickness of the resin that wraps the semiconductor element decreases, and the fluidity of the resin during molding deteriorates. Further, an adhesive layer for temporarily fixing the metal foil material to the surface of the mold cavity is provided on one surface in advance.

【0010】この接着剤層に用いられる接着剤は、高温
に熱せられている金型に仮固定可能であり、かつ、封止
樹脂注入時には注入樹脂の圧力による金属箔材料の流動
を起こさないものでなければならない。また、成形後
は、接着剤層での凝集破壊あるいは金属箔と接着剤層界
面での界面破壊が起こることなく金型と接着剤層での界
面破壊により、金型から半導体装置を離型性良く取り出
すことができなければならない。これらの要求を満たす
ものとして、高温下でも接着性のある接着剤、例えば、
フェノキシ樹脂、エチレン酢酸ビニル共重合体、ポリエ
ステル樹脂等、あるいはエポキシ樹脂等の熱硬化樹脂を
ベースに無機質充填材を含有させた接着剤層を用いるこ
とができる。接着層の厚みは5μm〜20μmが好まし
い。この場合無機質充填材は、接着剤層の凝集力を上げ
るため、金型キャビテイ面への接着剤残存を防止する効
果を発現する。
The adhesive used in this adhesive layer can be temporarily fixed to a mold heated to a high temperature and does not cause the metal foil material to flow due to the pressure of the injected resin when the sealing resin is injected. Must. After molding, the semiconductor device can be released from the mold by the interface destruction between the mold and the adhesive layer without causing the cohesive failure at the adhesive layer or the interface failure at the interface between the metal foil and the adhesive layer. It must be able to be taken out well. To meet these requirements, adhesives that are adhesive even at high temperatures, for example,
It is possible to use an adhesive layer containing an inorganic filler based on a thermosetting resin such as a phenoxy resin, an ethylene vinyl acetate copolymer, a polyester resin, or an epoxy resin. The thickness of the adhesive layer is preferably 5 μm to 20 μm. In this case, since the inorganic filler increases the cohesive force of the adhesive layer, it exhibits an effect of preventing the adhesive from remaining on the mold cavity surface.

【0011】無機質充填材としてはシリカ、酸化アルミ
ニウム、酸化ジルコニウム、銀粉末、アルミニウム粉末
等を使用することができる。この時使用する充填材の平
均粒径で所望の機能発現範囲を検討してみると接着剤層
の厚みとの相関がある事がわかり、無機質充填材の平均
粒径が接着剤層の厚みの0.05〜0.8倍であると好
適であることが判明した。0.05倍未満のときは成形
後の半導体装置の離型時に金型キャビテイ面に接着剤が
残存しやすく、0.8倍を越えると金型への金属箔材料
の仮固定が不良となるため好ましくない。接着剤層の好
ましく使用される厚みは5〜20μmであるから、この
場合に使用される無機質充填材の平均粒径は一般的には
1〜10μmのものが好適に使用できる。その添加量は
接着剤層100重量部に対して3〜40重量部にするこ
とにより凝集力と金型キャビテイ面との接着性とのバラ
ンスがとれて好適である。3重量部未満では成形後の半
導体装置の金型からの離型時に金型キャビテイ面に接着
剤が残存しやすく、40重量部を越えると金型への金属
箔材料の仮固定不良となりやすい。
As the inorganic filler, silica, aluminum oxide, zirconium oxide, silver powder, aluminum powder or the like can be used. Examining the desired function expression range with the average particle size of the filler used at this time, it was found that there is a correlation with the thickness of the adhesive layer, and the average particle size of the inorganic filler is the thickness of the adhesive layer. It has been found that a value of 0.05 to 0.8 is suitable. If it is less than 0.05 times, the adhesive tends to remain on the mold cavity surface when releasing the semiconductor device after molding, and if it exceeds 0.8 times, the temporary fixing of the metal foil material to the mold becomes defective. Therefore, it is not preferable. Since the thickness of the adhesive layer is preferably 5 to 20 μm, the average particle diameter of the inorganic filler used in this case is generally 1 to 10 μm. It is preferable that the addition amount is 3 to 40 parts by weight with respect to 100 parts by weight of the adhesive layer, because the cohesive force and the adhesiveness to the mold cavity surface are balanced. If it is less than 3 parts by weight, the adhesive tends to remain on the mold cavity surface when the semiconductor device after molding is released from the mold, and if it exceeds 40 parts by weight, temporary fixing failure of the metal foil material to the mold tends to occur.

【0012】またこの際使用する無機質充填材の最大粒
径についてその効果を確認した結果、無機質充填材はそ
れぞれ固有の粒度分布をもっている為平均粒径だけで説
明できない状況も発生する事がわかった。特に本発明の
ように膜厚の薄い層に無機質充填材を分散させて使用す
る場合には最大粒径の影響がでやすい。検討の結果最大
粒径の大きさを接着剤層の厚みの1.5〜3倍の範囲で
使用することにより金型キャビテイ面との接着力を成形
時のせん断力に耐え得る接着力を保持するのに有効であ
ることを見いだした。尚ここでいう最大粒径とは累積重
量%が90%の時の粒径を意味する。おそらく接着層の厚
みよりやや大きめの無機質充填材粒子が適当量接着剤層
面から飛び出ることにより金型キャビテイ面との接着力
を低下させ、金属箔材料を半導体装置側に転写しやすく
する為と思われる。また本発明で使用される無機質充填
材としてアルミナ、酸化鉄、銀粉末などがあるがこの中
でシリカが有利に使用できる。即ちシリカには無定形シ
リカと結晶性シリカが有りまたその粒径分布の異なるも
のが多く存在する上に、不純物イオンが少ないため半導
体装置に対しては好適に使用できる。
Further, as a result of confirming the effect on the maximum particle size of the inorganic filler used at this time, it was found that there is a situation where the average particle size alone cannot explain because the inorganic filler has its own particle size distribution. . In particular, when the inorganic filler is dispersed in a thin layer as in the present invention and used, the influence of the maximum particle size is likely to occur. As a result of the examination, by using the maximum particle size in the range of 1.5 to 3 times the thickness of the adhesive layer, the adhesive force with the mold cavity surface is maintained to withstand the shearing force during molding. It has been found to be effective in doing so. The maximum particle size as used herein means the particle size when the cumulative weight% is 90%. Probably because the inorganic filler particles, which are slightly larger than the thickness of the adhesive layer, jump out from the adhesive layer surface in an appropriate amount to reduce the adhesive force with the mold cavity surface and facilitate transfer of the metal foil material to the semiconductor device side. Be done. Further, as the inorganic filler used in the present invention, there are alumina, iron oxide, silver powder, etc. Among them, silica can be advantageously used. That is, there are amorphous silica and crystalline silica, and many of them have different particle size distributions, and since they contain few impurity ions, they can be suitably used for semiconductor devices.

【0013】このように充填材を用いた接着剤層を構成
する有機材料としては熱硬化性樹脂が好ましい。その理
由は一般的に熱硬化性樹脂は耐熱性、接着性が優れるの
で無機質充填材を使用した場合でも接着力の極度の低下
を押さえられ、仮固定としての接着力のコントロールが
可能であるからである。代表的な熱硬化性樹脂としては
エポキシ樹脂、ポリエステル樹脂、ジアリルフタレート
樹脂、ポリイミド樹脂などが上げられ、好ましくはエポ
キシ樹脂が使用される。エポキシ樹脂を用いる場合、接
着剤層に可とう性を付与するためにゴム系接着剤を接着
剤全量の5〜40重量%配合することが好ましい。接着
層厚みは、5μm〜20μmの範囲が好ましい。また、
シリコーンオイル、ワックス類、フィラーなど金型に対
して離型効果を有する離型剤を接着剤全量の0.01〜
5重量%含有させることができる。
As the organic material forming the adhesive layer using the filler as described above, a thermosetting resin is preferable. The reason is that thermosetting resins generally have excellent heat resistance and adhesiveness, so even if an inorganic filler is used, the extreme decrease in adhesive strength can be suppressed and the adhesive strength for temporary fixing can be controlled. Is. Typical thermosetting resins include epoxy resin, polyester resin, diallyl phthalate resin, and polyimide resin, and epoxy resin is preferably used. When an epoxy resin is used, it is preferable to add a rubber-based adhesive in an amount of 5 to 40% by weight based on the total amount of the adhesive in order to impart flexibility to the adhesive layer. The thickness of the adhesive layer is preferably in the range of 5 μm to 20 μm. Also,
A release agent such as silicone oil, waxes, fillers, etc. having a release effect on the mold is 0.01 to 0.01% of the total amount of the adhesive.
5% by weight can be contained.

【0014】金型キャビテイ面に仮固定した金属箔材料
を生産性良く半導体装置表面に転写し、金属箔被覆半導
体装置を得るためには、仮固定用接着剤層と金型キャビ
テイ面との離型性、および接着剤の金型キャビテイ面へ
の接着剤が残存することによる金型汚れの問題を解決す
る必要がある。そこで本発明は、このような問題に対処
するために、仮固定用接着剤層と金型キャビテイ面との
離型性を向上させ、かつ、同接着剤の金型成形面への糊
残りを低減させうる金属箔材料を提供し、あわせてその
金属箔材料により被覆された半導体装置を生産性良く提
供することも目的としている。
In order to obtain a metal foil-covered semiconductor device by transferring the metal foil material temporarily fixed to the mold cavity surface to the surface of the semiconductor device with high productivity, the adhesive layer for temporary fixing and the mold cavity surface are separated. There is a need to solve the moldability and the problem of mold fouling due to the adhesive remaining on the mold cavity surface of the adhesive. Therefore, in order to deal with such a problem, the present invention improves the releasability between the temporary fixing adhesive layer and the mold cavity surface, and eliminates the adhesive residue of the adhesive on the mold forming surface. It is also an object to provide a metal foil material that can be reduced and also to provide a semiconductor device covered with the metal foil material with high productivity.

【0015】詳述すれば接着剤層の金型キャビテイ面に
対する175℃における引張接着強さが0.3〜5.0
kgf/cm2、好ましくは0.5〜4.0kgf/c
m2である接着剤を用いるのがよい。0.3kgf/c
m2未満の場合は、金型キャビテイ面に仮固定した金属
箔材料が封止樹脂の注入時に位置の移動、変形、剥離な
どをおこしやすく、また5.0kgf/cm2を越える
と、成形後の半導体装置の金型からの離型の際、半導体
装置に損傷を与えるため好ましくない。ここで、本発明
でいう引張接着強さとは、、175℃で100kgf/
cm2の圧力を加えて接着させたものを、JIS K
6849に準じた測定法で、175℃雰囲気下,引張速
度が300mm/minの条件で測定した値である。こ
の範囲の接着力を得るためには上記した金型キャビテイ
表面粗さと金属箔材料のいずれかを任意に選ぶことがで
きる。
More specifically, the adhesive strength of the adhesive layer to the mold cavity surface at 175 ° C. is 0.3 to 5.0.
kgf / cm2, preferably 0.5 to 4.0 kgf / c
It is better to use an adhesive that is m2. 0.3 kgf / c
If it is less than m2, the metal foil material temporarily fixed to the mold cavity surface is apt to move, deform and peel off when the sealing resin is injected, and if it exceeds 5.0 kgf / cm2, the semiconductor after molding is molded. When the device is released from the mold, the semiconductor device is damaged, which is not preferable. Here, the tensile adhesive strength in the present invention means 100 kgf / 175 ° C.
What was adhered by applying a pressure of cm2 is JIS K
It is a value measured by a measuring method according to 6849 under an atmosphere of 175 ° C. and a pulling speed of 300 mm / min. In order to obtain the adhesive force in this range, any of the above-mentioned mold cavity surface roughness and metal foil material can be arbitrarily selected.

【0016】さらに金属箔材料の接着層を形成する面と
は逆の面で封止樹脂と接触する側の面の水に対する接触
角が110゜以下、好ましくは100〜25゜である有
機下塗層を設け、封止樹脂と金属箔材料との接着性向上
を図る事も有効である。110゜より大きいと封止用樹
脂との濡れ性不足のために、金属箔材料と封止樹脂との
界面にエアポケットを生じ、その結果、成形時や成形後
の硬化時、あるいは実装時などの熱応力負荷時に金属箔
材料が剥がれる恐れがあるからである。使用される有機
下塗層としては、シランカップリング剤層やポリイミド
樹脂、ポリエーテルイミド樹脂、エポキシ樹脂、カルボ
ジイミド樹脂等の材料を0.1〜20μmの厚み範囲で
通常使用される。因みに封止用樹脂の水に対する接触角
は60〜100°であり封止樹脂と金属箔材料との親和
性の影響が明かにあることが伺える。
Further, an organic undercoating in which the contact angle of water on the surface of the metal foil material opposite to the surface on which the adhesive layer is formed and which contacts the sealing resin is 110 ° or less, preferably 100 to 25 °. It is also effective to provide a layer to improve the adhesiveness between the sealing resin and the metal foil material. If it is larger than 110 °, the wettability with the encapsulating resin is insufficient and air pockets are generated at the interface between the metal foil material and the encapsulating resin. As a result, at the time of molding, curing after molding, or mounting. This is because the metal foil material may peel off when the thermal stress is applied. As the organic undercoat layer used, materials such as a silane coupling agent layer, a polyimide resin, a polyetherimide resin, an epoxy resin, and a carbodiimide resin are usually used in a thickness range of 0.1 to 20 μm. Incidentally, the contact angle of the sealing resin with water is 60 to 100 °, and it can be seen that the influence of the affinity between the sealing resin and the metal foil material is obvious.

【0017】次いで金属箔被覆半導体装置について述べ
る。上記した金属箔材料のいずれかに該当する金属箔材
料が表面に固着された半導体装置に関するものであり、
金属箔で被覆したことにより耐湿性、耐熱応力性、半田
付け時クラック性等半導体装置の信頼性が向上する。こ
の時、上記金属箔材料を用いて半導体装置を被覆する場
合、その半導体装置表面積の20%以上を被覆するのが
好ましく特に80%以上が好ましい。20%以上被覆す
ることにより、得られる半導体装置のTCTテストにお
ける信頼性や半田付け時の耐クラック性が向上し、特に
80%以上の場合にそのような性能向上効果が著しいか
らである。
Next, the metal foil-covered semiconductor device will be described. The present invention relates to a semiconductor device in which a metal foil material corresponding to any of the above metal foil materials is fixed on the surface,
By coating with a metal foil, the reliability of the semiconductor device such as moisture resistance, heat stress resistance, and cracking during soldering is improved. At this time, when the semiconductor device is coated with the metal foil material, it is preferable to cover 20% or more of the surface area of the semiconductor device, and particularly 80% or more. This is because the coating of 20% or more improves the reliability of the obtained semiconductor device in the TCT test and the crack resistance during soldering, and particularly in the case of 80% or more, such a performance improving effect is remarkable.

【0018】図3に仮固定用として接着剤層を用いた金
属箔被覆半導体装置の模式的断面図を示した。この特徴
は金属箔材料7の表面9が周囲の封止樹脂表面より陥没
していることである。そして封止樹脂と接着剤層の面が
同一平面になるため、金属箔材料は接着剤層の厚み分だ
け埋設されて固着される点が特徴である。そのため半導
体装置に金属箔を貼付した場合と比較して半導体装置寸
法と金型寸法と一致する点や金属箔が半導体装置から剥
がれにくいなどの利点がある。金属箔上の接着剤層は仮
固定を経て半導体装置表面に固着された状態では、実用
上支障無い硬度を有している。尚、図3は本発明の半導
体装置の一例を示したもので、本発明の半導体装置がこ
れに限られないことは勿論である。例えば、同図に示し
た半導体装置では半導体装置の両面に金属箔材料7が固
着されているが、本発明の半導体装置には、半導体装置
の片面にしか金属箔材料が固着されていないようなもの
も含まれる。
FIG. 3 is a schematic sectional view of a metal foil-covered semiconductor device using an adhesive layer for temporary fixing. This feature is that the surface 9 of the metal foil material 7 is depressed from the surrounding sealing resin surface. Since the surfaces of the sealing resin and the adhesive layer are flush with each other, the metal foil material is embedded and fixed by the thickness of the adhesive layer. Therefore, as compared with the case where a metal foil is attached to the semiconductor device, there are advantages that the dimensions of the semiconductor device and the die size match and that the metal foil is less likely to be peeled from the semiconductor device. The adhesive layer on the metal foil has a hardness that does not hinder practical use when it is fixed to the surface of the semiconductor device through temporary fixing. Incidentally, FIG. 3 shows an example of the semiconductor device of the present invention, and it goes without saying that the semiconductor device of the present invention is not limited to this. For example, in the semiconductor device shown in the figure, the metal foil material 7 is fixed on both sides of the semiconductor device, but in the semiconductor device of the present invention, the metal foil material is fixed only on one side of the semiconductor device. Things are also included.

【0019】また、この時に使用される半導体素子の封
止用樹脂材料としては熱硬化性樹脂が用いられ、例えば
エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹
脂、ポリエステル樹脂、ジアリルフタレート樹脂、架橋
型ポリフェニレンサルファイド等が上げられる。この中
でもエポキシ樹脂を使用することが好ましい。エポキシ
樹脂としてはビスフェノールA型エポキシ樹脂、フェノ
ールノボラック型エポキシ樹脂、クレゾールノボラック
型エポキシ樹脂、環状脂肪族型エポキシ樹脂、ナフトー
ル型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジシ
クロペンタジエン型エポキシ樹脂などが挙げられる。こ
の場合、エポキシ樹脂には、硬化剤、硬化促進剤、充填
材、金型に対する離型剤等の従来公知の添加剤が配合さ
れエポキシ樹脂組成物として使用される。
A thermosetting resin is used as the resin material for sealing the semiconductor element used at this time, and for example, an epoxy resin, a phenol resin, a urea resin, a melamine resin, a polyester resin, a diallyl phthalate resin, a cross-linking type resin is used. Examples include polyphenylene sulfide. Among these, it is preferable to use an epoxy resin. Examples of the epoxy resin include bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, cycloaliphatic type epoxy resin, naphthol type epoxy resin, biphenol type epoxy resin and dicyclopentadiene type epoxy resin. In this case, the epoxy resin is mixed with a conventionally known additive such as a curing agent, a curing accelerator, a filler, and a mold releasing agent, and used as an epoxy resin composition.

【0020】更に上記半導体装置において、金属箔材料
上に形成された接着剤層に、当該半導体装置に関する固
体識別情報が記録されている半導体装置も本発明の一態
様である。半導体装置の製品名、製造ロット番号等の個
体識別情報は、一般的には成形後に、半導体装置表面に
記録されるが、本発明においては、半導体装置表面を被
覆した金属箔材料上の硬化もしくは固化後の硬度を有す
る接着剤層表面に記録されることが好ましい。この個体
識別情報は、一般的な方法であるレーザーマーキング、
スタンプなどの方法により記録してもよい。またよりコ
ントラストを得るために通常はカーボンなどの顔料や染
料を接着剤層に添加し、接着剤層を着色し、余分な反射
光の影響を除去し、広い角度から固体識別情報を正確に
認識可能にすることができる。
Furthermore, in the above semiconductor device, a semiconductor device in which solid identification information regarding the semiconductor device is recorded on an adhesive layer formed on a metal foil material is also an aspect of the present invention. The individual identification information such as the product name and manufacturing lot number of the semiconductor device is generally recorded on the surface of the semiconductor device after molding, but in the present invention, it is hardened or cured on the metal foil material covering the surface of the semiconductor device. It is preferably recorded on the surface of the adhesive layer having hardness after solidification. This individual identification information is laser marking, which is a common method.
It may be recorded by a method such as a stamp. In addition, in order to obtain more contrast, pigments and dyes such as carbon are usually added to the adhesive layer to color the adhesive layer to eliminate the effect of excess reflected light and accurately recognize solid identification information from a wide angle. You can enable it.

【0021】[0021]

【作用】本発明の金属箔被覆半導体装置は、金属箔材料
を金型キャビテイ面に成形中に位置ずれのない程度の接
着力を持たせて仮固定した後、リードフレーム上に配置
された半導体素子を金型にセットし、次いで金型を閉じ
た後封止樹脂を注入して成形・硬化させて得られる。金
属箔材料を金型キャビテイに仮固定するために金属箔材
料のキャビテイと接触する側には接着剤層を設け、当該
接着剤層に無機質充填材を適量含有させることにより、
金属箔材料の金型キャビテイ面への仮固定力と、成形後
の金型キャビテイからの半導体装置の離型性とをコント
ロールできるため安定した金属箔被覆製造が可能とな
る。この時接着剤層に用いる構成樹脂が熱硬化性である
と、無機質充填材使用による接着力低下をカバーできる
ため、さらに離型性コントロールが容易となる。さらに
その金属箔材料上の接着剤層とは逆の金属箔材料面に、
水に対する接触角は110°以下である有機下塗層を設
けると、封止樹脂とのなじみも良く、成形時や成形後硬
化時、或るいは実装時などの熱応力負荷時に金属箔材料
の剥離を防止することができる。これらの経過を通じて
見いだした金型キャビテイと金属箔上の接着層との17
5℃に於ける引っ張り接着強さの最適範囲を使用すると
生産性良く金属箔被覆半導体装置が得られる。また金属
箔材料を金型キャビテイに仮固定する際、金型表面粗さ
を4〜15μmに選定すると、仮固定用として種々の工
夫がなされた金属箔材料上に設けられた接着剤層との組
合せにより生産性良く金属箔被覆半導体装置が製造でき
るとともに、表面外観の良好な半導体装置が得られる。
得られた金属箔被覆半導体装置の金属箔材料上には硬化
もしくは固化した接着剤層が存在するので、これを利用
して半導体装置の固体識別情報の記録も可能な、熱応力
負荷時に損傷の受けにくい半導体装置が提供できる。
The metal foil-covered semiconductor device of the present invention is such that the metal foil material is temporarily fixed to the mold cavity surface with an adhesive force that does not cause misalignment during molding, and then is placed on the lead frame. It is obtained by setting the element in a mold, then closing the mold, injecting a sealing resin, and molding and curing. To temporarily fix the metal foil material to the mold cavity, an adhesive layer is provided on the side of the metal foil material that comes into contact with the cavity, and the adhesive layer contains an appropriate amount of an inorganic filler,
Since the temporary fixing force of the metal foil material on the mold cavity surface and the releasability of the semiconductor device from the mold cavity after molding can be controlled, stable metal foil coating can be manufactured. At this time, if the constituent resin used for the adhesive layer is thermosetting, it is possible to cover the decrease in the adhesive strength due to the use of the inorganic filler, and thus it becomes easier to control the releasability. Furthermore, on the metal foil material side opposite to the adhesive layer on the metal foil material,
When an organic undercoat layer having a contact angle with water of 110 ° or less is provided, it is well compatible with the encapsulating resin, and the metal foil material is not affected by thermal stress during molding, curing after molding, or mounting. Peeling can be prevented. The mold cavities found through these processes and the adhesive layer on the metal foil 17
If the optimum range of the tensile adhesive strength at 5 ° C. is used, a metal foil coated semiconductor device can be obtained with good productivity. Further, when the metal foil material is temporarily fixed to the mold cavity, if the mold surface roughness is selected to be 4 to 15 μm, it is possible to obtain an adhesive layer provided on the metal foil material which has been devised for temporary fixing. By the combination, a metal foil-covered semiconductor device can be manufactured with good productivity and a semiconductor device having a good surface appearance can be obtained.
Since there is a hardened or solidified adhesive layer on the metal foil material of the obtained metal foil-covered semiconductor device, it is also possible to record the solid identification information of the semiconductor device by using this, and to prevent damage during thermal stress loading. A semiconductor device that is hard to receive can be provided.

【0022】[0022]

【実施例】以下に本発明の実施例について説明する。金
属箔被覆半導体装置は次のようにして作成した。 (1)金属箔の金型キャビテイ表面への仮固定 金属箔サイズは16×12mmで、厚みが40μmのも
のを用い、この金属箔上に形成した10μmの厚みの仮
固定用接着剤層は、下記組成からなるエポキシ系接着剤
を使用した。 エポキシ樹脂(ビスフェノールA型);5重量部 ゴム(カルボキシル化ニトリルゴム);2重量部 硬化剤(フェノール樹脂) ;3重量部 硬化触媒(燐系) ;0.3重量部 (2)金型への半導体素子とフレームのセット 80pinQFP(サイズ20×14×2mm)、ダイ
パッド(サイズ8×8mm)上に半導体素子(サイズ6
×6mm)が接着された部材を金型にセット。 (3)金型を閉じ、封止樹脂を注入し175℃×2分間
成形し、金属箔被覆半導体装置を得た。得られた金属箔
被覆半導体装置の金属箔材料7は図3に示すように周囲
の封止樹脂表面よりも陥没していた。
Embodiments of the present invention will be described below. The metal foil-covered semiconductor device was prepared as follows. (1) Temporary Fixing of Metal Foil to Mold Cavity Surface A metal foil having a size of 16 × 12 mm and a thickness of 40 μm was used, and the adhesive layer for temporary fixing having a thickness of 10 μm formed on the metal foil was An epoxy adhesive having the following composition was used. Epoxy resin (bisphenol A type); 5 parts by weight Rubber (carboxylated nitrile rubber); 2 parts by weight Curing agent (phenolic resin); 3 parts by weight Curing catalyst (phosphorus); 0.3 parts by weight (2) To mold Set of semiconductor element and frame of 80pinQFP (size 20 × 14 × 2mm), semiconductor element (size 6) on die pad (size 8 × 8mm)
Set the member with x6mm) adhered to the mold. (3) The mold was closed, the sealing resin was injected, and molding was performed at 175 ° C. for 2 minutes to obtain a metal foil-covered semiconductor device. The metal foil material 7 of the obtained metal foil-covered semiconductor device was recessed from the surface of the surrounding sealing resin as shown in FIG.

【0023】本発明の実施例1、2では、上記金属箔材
料を構成する水に対する接触角が80°のアルミニウム
基材を用い、接着剤層としては、次のようなものをそれ
ぞれ使用した。
In Examples 1 and 2 of the present invention, an aluminum base material having a contact angle with water of 80 ° which constitutes the metal foil material was used, and the following adhesive layers were used.

【実施例1】平均粒径0.8μm、最大粒径20μmの
溶融シリカを前記接着剤100重量部に対して20重量
分含有させ、平均粒径が接着層厚みの0.08倍で、最
大粒径が接着剤層厚みの2.0倍の接着剤層を形成させ
た。
Example 1 Fused silica having an average particle size of 0.8 μm and a maximum particle size of 20 μm was contained in an amount of 20 parts by weight based on 100 parts by weight of the adhesive, and the average particle size was 0.08 times the thickness of the adhesive layer. An adhesive layer having a particle diameter of 2.0 times the thickness of the adhesive layer was formed.

【実施例2】平均粒径3.0μm、最大粒径25μmの
結晶性シリカを前記接着剤100重量部に対して20重
量部含有させ、平均粒径が接着剤層厚みの0.30倍
で、最大粒径が接着剤層厚みの2.5倍の接着剤層を形
成させた。
Example 2 20 parts by weight of crystalline silica having an average particle size of 3.0 μm and a maximum particle size of 25 μm was contained with respect to 100 parts by weight of the adhesive, and the average particle size was 0.30 times the thickness of the adhesive layer. An adhesive layer having a maximum particle diameter 2.5 times the thickness of the adhesive layer was formed.

【0024】このようにして得られた実施例1、2の金
属箔被覆半導体装置の性能を調べるため、−50℃/5
分〜150℃/5分のTCTテストと、85℃/85%
相対湿度の恒温層中に当該半導体装置を放置して吸湿さ
せた後半田浴に260℃10秒浸漬する耐半田性テスト
をそれぞれ行ない、各場合のクラック発生個数を測定し
た。また、封止樹脂の成形後、硬化後ならびにTCTテ
スト後の各場合において、封止樹脂表面(半導体装置表
面)からアルミニウム材が剥離しているかどうかを超音
波探査装置を用いて観察した。これらの結果を表1に示
す。表1からも明らかなように金属箔は半導体装置表面
にしっかりと固着されているため熱応力負荷されても金
属箔の剥離は見られず、また金属箔の効果によりTCT
テスト後や耐半田性テスト後でも殆どクラックの発生が
見られなかった。また金型との離型性は良好で、接着剤
層による金型汚れや金型への接着不良による成形不良は
発生しなかった。
In order to investigate the performance of the metal foil coated semiconductor devices of Examples 1 and 2 thus obtained, -50 ° C./5
Min-150 ° C / 5min TCT test and 85 ° C / 85%
The semiconductor device was left standing in a constant temperature layer of relative humidity to absorb moisture and then immersed in a solder bath at 260 ° C. for 10 seconds to perform a soldering resistance test, and the number of cracks generated in each case was measured. In addition, after molding the sealing resin, after curing, and after the TCT test, whether or not the aluminum material was peeled from the surface of the sealing resin (the surface of the semiconductor device) was observed using an ultrasonic probe. Table 1 shows the results. As is clear from Table 1, the metal foil is firmly adhered to the surface of the semiconductor device, so no peeling of the metal foil is observed even when heat stress is applied.
Almost no cracks were observed after the test or the solder resistance test. Further, the mold releasability from the mold was good, and the mold failure due to the adhesive layer and the poor adhesion to the mold did not occur.

【0025】実施例1、2に対応する比較例として、金
属箔材料は実施例1と同様のものを使用したが、接着剤
層は次に示すものを用いた。
As a comparative example corresponding to Examples 1 and 2, the same metal foil material as in Example 1 was used, but the following adhesive layer was used.

【比較例1】平均粒径0.2μm、最大粒径10μmの
溶融シリカを前記接着剤100重量部に対して20重量
部含有させ、平均粒径が接着層厚みの0.02倍で、最
大粒径が接着層厚みの1.0倍の接着剤層を形成させ
た。
[Comparative Example 1] 20 parts by weight of fused silica having an average particle size of 0.2 μm and a maximum particle size of 10 μm was contained with respect to 100 parts by weight of the adhesive, and the average particle size was 0.02 times the thickness of the adhesive layer. An adhesive layer having a particle size 1.0 times the thickness of the adhesive layer was formed.

【比較例2】平均粒径10μm、最大粒径40μmの溶
融シリカを前記接着剤100重量部に対して20重量部
含有させ、平均粒径が接着層厚みの1.0倍で、最大粒
径が接着層厚みの4.0倍の接着剤層を形成させた。表
1に示すように実施例1、2に対し比較例1では金型汚
れも著しく、離型性が不良となり、また、比較例2では
接着不良による成形不良も多く発生した。
Comparative Example 2 20 parts by weight of fused silica having an average particle size of 10 μm and a maximum particle size of 40 μm was contained with respect to 100 parts by weight of the adhesive, and the average particle size was 1.0 times the thickness of the adhesive layer. Formed an adhesive layer 4.0 times the thickness of the adhesive layer. As shown in Table 1, as compared with Examples 1 and 2, in Comparative Example 1, mold stain was remarkable and mold releasability was poor, and in Comparative Example 2, many molding defects due to defective adhesion occurred.

【0026】本発明の実施例4、5では、上記金属箔構
造材料を構成する仮固定用接着剤層に、平均粒径7μ
m、最大粒径28μmの溶融シリカを適当量含有させ、
平均粒径が接着層厚みの0.7倍で、最大粒径が接着層
厚みの2.8倍の接着剤層を形成させた。金型キャビテ
ィ面に対する175℃における引張接着強さは当該シリ
カの含有量によりコントロールした。また、この時金型
キャビティ部の表面粗さも適宜変更した。
In Examples 4 and 5 of the present invention, the average particle diameter of 7 μ was used in the temporary fixing adhesive layer constituting the metal foil structural material.
m, a maximum particle size of 28 μm, containing an appropriate amount of fused silica,
An adhesive layer having an average particle size of 0.7 times the adhesive layer thickness and a maximum particle size of 2.8 times the adhesive layer thickness was formed. The tensile adhesive strength at 175 ° C. with respect to the mold cavity surface was controlled by the content of the silica. At this time, the surface roughness of the mold cavity was also changed appropriately.

【実施例4】接着剤100重量部に対するシリカ含有量
が20重量部の175℃における引張接着強さが4.5
kgf/cm2の接着剤層を有する実施例1で使用のア
ルミニウム材を用い、キャビティ部の表面粗さが5μm
の金型を用いて成形した。
Example 4 Tensile bond strength at 175 ° C. of silica content of 20 parts by weight per 100 parts by weight of adhesive is 4.5.
The aluminum material used in Example 1 having an adhesive layer of kgf / cm 2 was used, and the surface roughness of the cavity was 5 μm.
It was molded using the mold.

【実施例5】接着剤100重量部に対するシリカ含有量
が30重量部の175℃における引張接着強さが2.0
kgf/cm2の接着剤層を有する実施例2で使用のア
ルミニウム材を用い、キャビティ部の表面粗さが5μm
の金型を用いて成形した。表1に示すように、本発明の
実施例4、5では、金型との離型性は良好で、接着剤層
による金型汚れや金型への接着不良による成形不良は発
生せず、実施例4では熱応力負荷後のクラックも認めら
れなかった。
Example 5 Tensile bond strength at 175 ° C. of silica content of 30 parts by weight per 100 parts by weight of adhesive is 2.0.
The aluminum material used in Example 2 having an adhesive layer of kgf / cm 2 was used, and the surface roughness of the cavity was 5 μm.
It was molded using the mold. As shown in Table 1, in Examples 4 and 5 of the present invention, the mold releasability from the mold was good, and the mold failure due to the dirt of the mold due to the adhesive layer and the poor adhesion to the mold did not occur, In Example 4, no crack was observed after the thermal stress was applied.

【0027】実施例4、5に対応する比較例として実施
例1で使用の金属箔材料を用い、接着剤の組成及び金型
キャビテイ表面粗さを適宜変更することによりにより接
着力のコントロールを行ない成形した。
As a comparative example corresponding to Examples 4 and 5, the metal foil material used in Example 1 was used, and the adhesive force was controlled by appropriately changing the composition of the adhesive and the surface roughness of the mold cavity. Molded.

【比較例3】キャビティ部の表面粗さが20μmの金型
を用い、175℃における引張接着強さが0.1kgf
/cm2の接着剤層を実施例1で使用のアルミニウム材
上に形成させた金属箔構成材料を用いて成形した。
[Comparative Example 3] A mold having a cavity surface roughness of 20 μm was used, and the tensile adhesive strength at 175 ° C. was 0.1 kgf.
An adhesive layer of / cm 2 was molded using the metal foil constituent material formed on the aluminum material used in Example 1.

【比較例4】キャビティ部の表面粗さが2μmの金型を
用い、175℃における引張接着強さ7.5kgf/c
m2の接着剤層を実施例1で使用のアルミニウム材上に
形成させた金属箔構成材料を用いて成形した。比較例3
では金属箔材料の仮固定接着力が低いため、成形中に金
属箔の位置づれが発生し良好な半導体装置が得られなか
った。また比較例4では金型キャビテイ部への接着力が
強すぎ、金型汚れが発生し、また離型も不良であった。
そのためか熱応力負荷時の半導体装置のクラックが発生
していた。
[Comparative Example 4] A mold having a cavity surface roughness of 2 μm was used, and the tensile adhesive strength at 175 ° C. was 7.5 kgf / c.
An adhesive layer of m2 was molded using the metal foil constituent material formed on the aluminum material used in Example 1. Comparative Example 3
However, since the temporary fixing adhesive strength of the metal foil material was low, the metal foil was misaligned during molding, and a good semiconductor device could not be obtained. Further, in Comparative Example 4, the adhesive force to the mold cavity portion was too strong, the mold was contaminated, and the mold release was also poor.
Probably because of this, cracks in the semiconductor device occurred under thermal stress.

【0028】[0028]

【実施例6】実施例1で使用の金属箔材料の封止材と接
触する側に厚さ10μmのポリカルボジイミド樹脂から
なる下塗層(水に対する接触角は78°)を設け仮固定
用接着剤層は実施例2のものをそのまま用いて実施例2
と同様成形し、半導体装置を得た。
Example 6 An undercoat layer made of polycarbodiimide resin having a thickness of 10 μm (contact angle to water is 78 °) is provided on the side of the metal foil material used in Example 1 that comes into contact with the encapsulant, and adhesive for temporary fixing is provided. The agent layer used in Example 2 was used as it is in Example 2.
A semiconductor device was obtained by molding in the same manner as.

【比較例5】実施例1で使用の金属箔材料の封止材と接
触する側に厚さ10μmのシリコーン樹脂からなる下塗
層(水に対する接触角は112°)を設け仮固定用接着
剤層は実施例2のものをそのまま用いて実施例2と同様
成形し、半導体装置を得た。表1に示すように接触角が
78°の実施例6では熱応力負荷後の金属箔材料の剥離
も見られず、また半導体装置のクラックの発生もなかっ
たが、接触角が112°の比較例の場合には熱応力負荷
後に金属箔材料の剥離が見られ、半導体装置のクラック
も一部見られた。
[Comparative Example 5] An adhesive layer for temporary fixing is provided by providing an undercoat layer (contact angle to water is 112 °) made of a silicone resin having a thickness of 10 µm on the side of the metal foil material used in Example 1 which comes into contact with the sealing material. A layer was formed in the same manner as in Example 2 using the layer of Example 2 as it was to obtain a semiconductor device. As shown in Table 1, in Example 6 in which the contact angle was 78 °, no peeling of the metal foil material was observed after the thermal stress was applied and no cracks were generated in the semiconductor device, but the contact angle was 112 °. In the case of the example, peeling of the metal foil material was observed after the thermal stress was applied, and some cracks in the semiconductor device were also observed.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】以上のように、本発明によれば、金属箔
材料を半導体装置の表面に固着するにあたり、熱応力負
荷時の損傷を保護し得る特定の金属箔材料を用い、当該
金属箔材料を金型キャビテイ表面に仮固定した後に成形
して半導体装置を製造するに適した金型キャビテイ表面
粗さ及び金属箔材料上に設けられた接着剤層を選定する
ことにより、熱応力負荷時の損傷を受けにくい金属箔被
覆半導体装置を生産性良く製造することが可能となる。
また金属箔材料上には接着剤層が存在するのでこれを用
いた半導体装置に関する固体識別情報の記録も可能とな
る。さらに本発明で得られる金属箔被覆半導体装置は、
出来上がった半導体装置に金属箔を貼付する場合と異な
り、金属箔材料が周囲の封止樹脂表面より陥没している
ため、外径寸法は金属箔未使用の半導体装置と同じにな
り、実装時に支障なく取扱えるという効果も有する。
As described above, according to the present invention, when the metal foil material is adhered to the surface of the semiconductor device, the specific metal foil material which can protect the damage when the thermal stress is applied is used. When heat stress is applied by selecting the surface roughness of the mold cavity and the adhesive layer provided on the metal foil material, which is suitable for manufacturing semiconductor devices by temporarily fixing the material on the surface of the mold cavity. It is possible to manufacture a metal foil-covered semiconductor device which is less likely to be damaged by the above-mentioned method with high productivity.
Since the adhesive layer is present on the metal foil material, it is possible to record the solid identification information on the semiconductor device using the adhesive layer. Furthermore, the metal foil-covered semiconductor device obtained by the present invention,
Unlike the case where metal foil is attached to the finished semiconductor device, the metal foil material is recessed from the surface of the encapsulating resin around it, so the outer diameter becomes the same as that of a semiconductor device that does not use metal foil, and there is a problem during mounting. It also has the effect that it can be handled without using it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における各工程を示すもので、
金型を開いた状態で、1対の金属箔材料を仮固定した
(A)、半導体素子の搭載されたリードフレームをセッ
トした(B)、金型を閉じ封止樹脂を注入し成形した
(C)、及び成形後金型から取り出して得られる金属箔
被覆半導体装置(D)の各断面図を示す。
1 shows each step in an embodiment of the present invention,
With the mold open, a pair of metal foil materials were temporarily fixed (A), the lead frame on which the semiconductor element was mounted was set (B), the mold was closed and a sealing resin was injected to mold ( 3C is a cross-sectional view of the metal foil-covered semiconductor device (D) obtained by taking out from the mold after molding.

【図2】金属箔構造材料の断面図を示す。FIG. 2 shows a cross-sectional view of a metal foil structural material.

【図3】金属箔被覆半導体装置の断面図を示す。FIG. 3 shows a cross-sectional view of a metal foil-covered semiconductor device.

【符号の説明】[Explanation of symbols]

1、2・・・金型 3・・・金属箔構造材料 4・・・半導体素子 5・・・リードフレーム 6・・・封止樹脂 7・・・金属箔材料 8・・・接着剤層 9・・・金属箔材料表面 1, 2 ... Mold 3 ... Metal foil structural material 4 ... Semiconductor element 5 ... Lead frame 6 ... Sealing resin 7 ... Metal foil material 8 ... Adhesive layer 9 ... Metal foil material surface

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子を封止する樹脂を金型を用い
て成形する際に、該金型のキャビテイ面に仮固定され、
その後の金型内への封止用樹脂の注入、成形により半導
体装置表面に固着される金属箔材料であって、金型キャ
ビテイ面へ仮固定可能で成形時に位置ずれの生じる事の
ない接着剤層が金属箔材料の片面に設けられていること
を特徴とする半導体装置被覆用金属箔材料。
1. When molding a resin for sealing a semiconductor element by using a mold, the resin is temporarily fixed to a cavity surface of the mold,
An adhesive that is a metal foil material that is fixed to the surface of the semiconductor device by subsequent injection of molding resin into the mold and molding, and that can be temporarily fixed to the mold cavity surface and that does not cause misalignment during molding. A metal foil material for semiconductor device coating, wherein the layer is provided on one side of the metal foil material.
【請求項2】 接着剤層が無機質充填材を含有すること
を特徴とする請求項1に記載の金属箔材料。
2. The metal foil material according to claim 1, wherein the adhesive layer contains an inorganic filler.
【請求項3】 接着剤層に含有する無機質充填材の平均
粒径が接着剤層の厚みの0.05〜0.8倍であること
を特徴とする請求項2に記載の金属箔材料。
3. The metal foil material according to claim 2, wherein the inorganic filler contained in the adhesive layer has an average particle diameter of 0.05 to 0.8 times the thickness of the adhesive layer.
【請求項4】 接着剤層に含有する無機質充填材の最大
粒径が接着剤層の厚みの1.5〜3倍であることを特徴
とする請求項2、3に記載の金属箔材料。
4. The metal foil material according to claim 2, wherein the maximum particle size of the inorganic filler contained in the adhesive layer is 1.5 to 3 times the thickness of the adhesive layer.
【請求項5】 無機質充填材がシリカである事を特徴と
する請求項2〜4に記載の金属箔材料。
5. The metal foil material according to claim 2, wherein the inorganic filler is silica.
【請求項6】 接着剤層が熱硬化性樹脂と無機質充填材
を主成分とする事を特徴とする請求項2〜5に記載の金
属箔材料。
6. The metal foil material according to claim 2, wherein the adhesive layer contains a thermosetting resin and an inorganic filler as main components.
【請求項7】 接着剤層の金型キャビテイ面に対する1
75℃に於ける引っ張り接着強さが0.3〜5.0kg
f/cm2であることを特徴とする請求項1〜6に記載
の金属箔材料。
7. The adhesive layer with respect to the mold cavity surface 1
Tensile adhesive strength at 75 ℃ is 0.3-5.0kg
It is f / cm2, The metal foil material of Claims 1-6 characterized by the above-mentioned.
【請求項8】 金属箔材料の他面に、水に対する接触角
が110゜以下である有機下塗層を有する事を特徴とす
る請求項1〜7記載の金属箔材料。
8. The metal foil material according to claim 1, further comprising an organic undercoat layer having a contact angle to water of 110 ° or less on the other surface of the metal foil material.
【請求項9】 請求項1〜8のいずれかに記載の金属箔
材料が表面に固着されている事を特徴とする半導体装
置。
9. A semiconductor device, wherein the metal foil material according to claim 1 is fixed on the surface.
【請求項10】 請求項9において、金属箔材料が封止
樹脂と接着剤層から形成される面より接着剤層の厚み分
だけ埋設されて固着されていることを特徴とする半導体
装置。
10. The semiconductor device according to claim 9, wherein the metal foil material is embedded and fixed by a thickness of the adhesive layer from a surface formed of the sealing resin and the adhesive layer.
【請求項11】 金属箔材料上の接着剤層に半導体装置
に関する固体識別情報が記録されている事を特徴とする
請求項9、10に記載の半導体装置。
11. The semiconductor device according to claim 9, wherein solid-state identification information regarding the semiconductor device is recorded on an adhesive layer on the metal foil material.
【請求項12】 半導体素子を成形し樹脂封止するにあ
たり、金型キャビテイ部の表面粗さ(10点平均粗さ;
Rz;JIS B 0601−1982)が4〜15μ
mのキャビテイ面に請求項1〜8のいずれかに記載の金
属箔材料を仮固定した後封止用樹脂を注入、成形するこ
とにより半導体装置の表面に金属箔材料を固着すること
を特徴とする半導体装置の製造方法。
12. When molding a semiconductor element and sealing it with resin, the surface roughness (10-point average roughness;
Rz; JIS B 0601-1982) is 4 to 15 μ.
The metal foil material according to any one of claims 1 to 8 is temporarily fixed to the cavity surface of m, and then the sealing resin is injected and molded to fix the metal foil material to the surface of the semiconductor device. Of manufacturing a semiconductor device.
JP7178688A 1995-07-14 1995-07-14 Semiconductor device coated with metallic foil, its manufacture, and metallic foil material used therefor Pending JPH0936278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7178688A JPH0936278A (en) 1995-07-14 1995-07-14 Semiconductor device coated with metallic foil, its manufacture, and metallic foil material used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7178688A JPH0936278A (en) 1995-07-14 1995-07-14 Semiconductor device coated with metallic foil, its manufacture, and metallic foil material used therefor

Publications (1)

Publication Number Publication Date
JPH0936278A true JPH0936278A (en) 1997-02-07

Family

ID=16052815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7178688A Pending JPH0936278A (en) 1995-07-14 1995-07-14 Semiconductor device coated with metallic foil, its manufacture, and metallic foil material used therefor

Country Status (1)

Country Link
JP (1) JPH0936278A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248974A (en) * 2006-03-17 2007-09-27 Shin Etsu Polymer Co Ltd Endless belt and image forming apparatus
JP2010143150A (en) * 2008-12-19 2010-07-01 Jfe Steel Corp Surface-treated steel plate and method of manufacturing the same
JP2011011361A (en) * 2009-06-30 2011-01-20 Shin-Etsu Chemical Co Ltd Hot press bonding silicone rubber sheet, and method for manufacturing the same
CN111880065A (en) * 2020-07-16 2020-11-03 广东电网有限责任公司 Built-in metal foil electrode sensor and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248974A (en) * 2006-03-17 2007-09-27 Shin Etsu Polymer Co Ltd Endless belt and image forming apparatus
JP2010143150A (en) * 2008-12-19 2010-07-01 Jfe Steel Corp Surface-treated steel plate and method of manufacturing the same
JP2011011361A (en) * 2009-06-30 2011-01-20 Shin-Etsu Chemical Co Ltd Hot press bonding silicone rubber sheet, and method for manufacturing the same
CN111880065A (en) * 2020-07-16 2020-11-03 广东电网有限责任公司 Built-in metal foil electrode sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH09232475A (en) Semiconductor device and its manufacture
US6309916B1 (en) Method of molding plastic semiconductor packages
US5834850A (en) Encapsulated semiconductor device having metal foil covering, and metal foil
KR101044584B1 (en) Laminated sheet
US7906857B1 (en) Molded integrated circuit package and method of forming a molded integrated circuit package
KR20110008144A (en) Adhesive sheet and and semiconductor device
JP2004349497A (en) Packaging component and semiconductor package
US5674343A (en) Method for manufacturing a semiconductor
JP4988531B2 (en) Adhesive sheet for manufacturing semiconductor device, and method for manufacturing semiconductor device using the same
TWI295091B (en) Coating for enhancing adhesion of molding compound to semiconductor devices
EP0645812B1 (en) Resin-sealed semiconductor device
KR100535848B1 (en) Resin-sealed Semiconductor Device, and Die Bonding Material and Sealing Material for Use Therein
JP4148434B2 (en) Manufacturing method of semiconductor devices
JPH0936278A (en) Semiconductor device coated with metallic foil, its manufacture, and metallic foil material used therefor
JP4002736B2 (en) Mask sheet for assembling semiconductor device and assembling method of semiconductor device
JP3207286B2 (en) Resin-sealed semiconductor device
JP4381630B2 (en) Resin-sealed module device for automobile control
JPH01253926A (en) Lead frame of semiconductor device
JPH0817855A (en) Manufacture of semiconductor device and laminate used therefor
JPH07288263A (en) Manufacture of semiconductor device and metal foil material
JPH08162573A (en) Semiconductor device
CN113658878A (en) Preparation method of electromagnetic shielding structure
WO2002075809A1 (en) Mask sheet for assembling semiconductor device and method for assembling semiconductor device
US20110057329A1 (en) Electronic device and manufacturing method of electronic device
JPS63250846A (en) Lsi plastic package for surface mounting and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees