JPH0935931A - Drive circuit for ac superconducting magnet - Google Patents

Drive circuit for ac superconducting magnet

Info

Publication number
JPH0935931A
JPH0935931A JP18751095A JP18751095A JPH0935931A JP H0935931 A JPH0935931 A JP H0935931A JP 18751095 A JP18751095 A JP 18751095A JP 18751095 A JP18751095 A JP 18751095A JP H0935931 A JPH0935931 A JP H0935931A
Authority
JP
Japan
Prior art keywords
circuit
superconducting
coil
voltage
side circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18751095A
Other languages
Japanese (ja)
Inventor
Shinichi Asakura
慎一 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP18751095A priority Critical patent/JPH0935931A/en
Publication of JPH0935931A publication Critical patent/JPH0935931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the size of a power supply by reducing required power- supply voltage and power-supply capacity in a drive circuit for an AC superconducting magnet. SOLUTION: A drive circuit for an AC superconducting magnet includes a primary circuit having an AC power supply 7, a phase advance capacitor 8 and a drive coil 9 which are serially connected, and a secondary circuit having a superconducting coil 11 and a phase advance capacitor 12 which are serially connected. The secondary circuit is a superocnducting circuit with little loss (through a resistor 13). The drive coil 9 and the superconducting coil 11 are closely located to constitute a superocnducting transformer. The capacitance C1, C2 of the phase advance capacitors 8, 12, respectively, and the inductance L1, L2 of the coils 9, 11, respectively, are so set that the primary circuit and the secondary circuit resonate. Thus, the current amplification factor and the voltage amplification factor of the superconducting transformer are greater than one, and the voltage and capacitance required for the AC power supply 7 are smaller than in a conventional circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、交流用超電導マグ
ネットの駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive circuit for an AC superconducting magnet.

【0002】[0002]

【従来の技術】従来より、極低温において超電導状態に
遷移する超電導体から超電動コイルを形成し、この超電
導コイルへ交流大電流を供給して強力な磁力線を発生さ
せる技術が知られている。なお、一般に、超電導状態に
おいて、交流電流に応じた磁力線を発生する超電導コイ
ルは、交流用超電導マグネットと呼ばれている。
2. Description of the Related Art Conventionally, there is known a technique in which a superconducting coil is formed from a superconductor which transitions to a superconducting state at an extremely low temperature, and a large alternating current is supplied to the superconducting coil to generate a strong magnetic line of force. In general, a superconducting coil that generates magnetic field lines according to an alternating current in a superconducting state is called an alternating-current superconducting magnet.

【0003】従来の交流用超電導マグネットの駆動回路
の概略構成を図2,図3に示す。なお、これらの図にお
いて、共通する部分には同一の記号が付されている。図
2に示す駆動回路では、高電圧交流電源1、シャント抵
抗2、および超電導コイル3を直列に接続してなる回路
において、超電導コイル3と並列に進相用コンデンサ4
が接続されている。なお、超電導コイル3のインダクタ
ンスLと、進相用コンデンサ4のキャパシタンスCと
は、ωL=1/(ωC)という共振条件を満足してお
り、回路全体がLC並列共振回路となるよう設定されて
いる。
2 and 3 show a schematic structure of a drive circuit for a conventional AC superconducting magnet. In addition, in these drawings, the same symbols are attached to common portions. In the drive circuit shown in FIG. 2, a high-voltage AC power supply 1, a shunt resistor 2, and a superconducting coil 3 are connected in series, and a phase advancing capacitor 4 is connected in parallel with the superconducting coil 3.
Is connected. The inductance L of the superconducting coil 3 and the capacitance C of the phase advancing capacitor 4 satisfy the resonance condition of ωL = 1 / (ωC), and the entire circuit is set to be an LC parallel resonance circuit. There is.

【0004】また、図3に示す回路は、大容量交流電源
5、シャント抵抗6、進相用コンデンサ4、および超電
導コイル3を直列に接続してなる回路であり、LC直列
共振回路を構成している。なお、図2,図3において、
交流用超電導マグネット駆動時には、超電導コイル3
は、液体ヘリウム等の冷媒により極低温に冷却され、超
電導状態に遷移している。このような状態において、電
源1,5から、各駆動回路の共振周波数に一致する周波
数の交流信号が出力されると、超電導コイル3に大電流
が流れ、強力な磁力線が発生する。
The circuit shown in FIG. 3 is a circuit in which a large capacity AC power source 5, a shunt resistor 6, a phase advancing capacitor 4 and a superconducting coil 3 are connected in series, and constitutes an LC series resonance circuit. ing. In addition, in FIG. 2 and FIG.
When driving the AC superconducting magnet, the superconducting coil 3
Is cooled to a cryogenic temperature by a coolant such as liquid helium and transitions to a superconducting state. In such a state, when an AC signal having a frequency matching the resonance frequency of each drive circuit is output from the power supplies 1 and 5, a large current flows in the superconducting coil 3 and a strong magnetic line of force is generated.

【0005】[0005]

【発明が解決しようとする課題】ところで、図2に示さ
れるLC並列共振回路では、電源電流は小でもよいが高
電圧の電源1が必要となる。また、図3に示されるLC
直列共振回路では、電源電圧は小でもよいが大容量の電
源5が必要となる。このような特徴は、交流用超電導マ
グネットの駆動回路のように、大電流駆動を実現する必
要がある場合に極端に現れる。
By the way, the LC parallel resonance circuit shown in FIG. 2 requires a high-voltage power supply 1 although the power supply current may be small. In addition, the LC shown in FIG.
In the series resonance circuit, the power supply voltage may be small, but a large capacity power supply 5 is required. Such a feature is extremely exhibited when it is necessary to realize a large current drive like a drive circuit for a superconducting magnet for alternating current.

【0006】従来、LC並列共振回路では、V=jωL
Iで表される数kVの電源電圧が必要となるが、数kV
の耐圧かつリニア駆動の半導体デバイスが存在しないた
め、損失の発生を覚悟して別途トランスを用いて昇圧し
ていた。また、LC直列共振回路では、マグネットに流
れる大電流と同一容量の電源を用意する必要があり、か
つ電源の出力デバイスでの損失が大となるため、電源が
著しく巨大化してしまう傾向があった。
Conventionally, in the LC parallel resonance circuit, V = jωL
A power supply voltage of several kV represented by I is required, but several kV
Since there is no semiconductor device that withstands pressure and is linearly driven, we prepared for the loss using a separate transformer. Further, in the LC series resonance circuit, it is necessary to prepare a power source having the same capacity as the large current flowing through the magnet, and the loss in the output device of the power source becomes large, so that the power source tends to become extremely large. .

【0007】すなわち、従来のものでは、必要とされる
電源電圧または電源容量が著しく大になってしまい、電
源装置の巨大化を招致していた。本発明は上述した事情
に鑑みて為されたものであり、必要とされる電源電圧お
よび電源容量が著しく大となることなく、電源を小型化
することができる交流用超電導マグネットの駆動回路を
提供することを目的とする。
That is, in the conventional device, the required power supply voltage or power supply capacity is remarkably increased, which causes the power supply device to become huge. The present invention has been made in view of the above circumstances, and provides a drive circuit for an AC superconducting magnet capable of downsizing a power supply without significantly increasing the required power supply voltage and power capacity. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上述した課題を解決する
ために、本発明は、交流電源と進相用コンデンサと駆動
用コイルとを直列接続してなる1次側回路と、超電導コ
イルと進相用コンデンサとを直列接続してなる2次側回
路とを具備し、前記2次側回路は低損失の超電導回路で
あり、前記駆動用コイルおよび前記超電導コイルは近接
配置されて超電導トランスを構成し、前記各進相用コン
デンサのキャパシタンスおよび前記各コイルのインダク
タンスは前記1次側回路と前記2次側回路とが共振する
よう設定されることを特徴としている。
In order to solve the above-mentioned problems, the present invention provides a primary side circuit in which an AC power source, a phase advancing capacitor and a driving coil are connected in series, a superconducting coil and an advancing coil. A secondary side circuit in which a phase capacitor is connected in series, the secondary side circuit is a low-loss superconducting circuit, and the driving coil and the superconducting coil are arranged in proximity to each other to form a superconducting transformer. However, the capacitance of each of the phase advancing capacitors and the inductance of each of the coils are set so that the primary side circuit and the secondary side circuit resonate.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態について説明する。図1は本発明の一実施形
態による交流用超電導マグネットの駆動回路の構成を示
す回路図であり、この図に示される駆動回路は、1次側
回路と2次側回路とに分離されて構成されている。一般
に、トランスによって電圧をn倍に昇圧すると電流は1
/nに減衰してしまうものと考えられているが、本実施
形態では、1次側回路と2次側回路とで共振をとり、か
つ2次側回路での損失(抵抗)を極めて小とすることに
より、電圧増幅率および電流増幅率を同時に1より大と
している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing a configuration of a drive circuit for an AC superconducting magnet according to an embodiment of the present invention. The drive circuit shown in this figure is divided into a primary side circuit and a secondary side circuit. Has been done. Generally, if the voltage is boosted n times by a transformer, the current becomes 1
It is considered that the primary side circuit and the secondary side circuit resonate with each other and the loss (resistance) in the secondary side circuit is extremely small in this embodiment. By doing so, the voltage amplification factor and the current amplification factor are made greater than 1 at the same time.

【0010】図1に示される駆動回路の1次側回路にお
いて、7は起電力E[V]の交流電源、8はキャパシタ
ンスC1の進相用コンデンサ、9は巻数n1かつインダ
クタンスL1[H]の駆動用コイル、10は抵抗値R1
の抵抗(1次側回路での損失)であり、これらが直列接
続されて1次側の回路が形成されている。また、2次側
回路において、11は巻数n2かつインダクタンスL2
[H]の超電導コイル(交流用超電導マグネット)、1
2はキャパシタンスC2の進相用コンデンサであり、こ
れらと抵抗値R2の抵抗(2次側回路での損失)13が
直列接続されて2次側回路が構成されている。
In the primary side circuit of the drive circuit shown in FIG. 1, 7 is an AC power source of electromotive force E [V], 8 is a phase advancing capacitor of capacitance C1, 9 is a winding number n1 and inductance L1 [H]. Drive coil, 10 is resistance value R1
Resistance (loss in the primary side circuit), which are connected in series to form a primary side circuit. In the secondary side circuit, 11 is the number of turns n2 and the inductance L2.
[H] superconducting coil (AC superconducting magnet), 1
Reference numeral 2 denotes a phase advancing capacitor having a capacitance C2, and a resistor (loss in the secondary side circuit) 13 having a resistance value R2 is connected in series to form a secondary side circuit.

【0011】上記2次側回路の抵抗13の抵抗値R2が
できるだけ低くなるよう回路を構成するのが望ましい。
また、L1<L2となるようインダクタンスL1は設定
されている。さらに、上記1次側回路の駆動用コイル9
と2次側の超電導コイル11は、両者間に相互インダク
タンスM[H]が生じるよう近接配置され、超電導トラ
ンスを構成している。また、1次側回路の共振周波数と
2次側回路の共振周波数とが同一となるよう、キャパシ
ンタンスC1,C2およびリアクタンスL1,L2が以
下の(1)式を満たすよう設定されている。
It is desirable to configure the circuit so that the resistance value R2 of the resistor 13 of the secondary circuit is as low as possible.
The inductance L1 is set so that L1 <L2. Further, the driving coil 9 of the primary side circuit
The superconducting coil 11 on the secondary side and the superconducting coil 11 on the secondary side are arranged close to each other so that mutual inductance M [H] is generated between them, and form a superconducting transformer. Further, the capacitances C1 and C2 and the reactances L1 and L2 are set so as to satisfy the following expression (1) so that the resonance frequency of the primary side circuit and the resonance frequency of the secondary side circuit are the same.

【数1】 [Equation 1]

【0012】上述した構成の駆動回路を網目回路解析す
ると、以下の(2)〜(5)式が得られる。
When a mesh circuit analysis is performed on the drive circuit having the above-mentioned configuration, the following equations (2) to (5) are obtained.

【数2】 [Equation 2]

【数3】 (Equation 3)

【数4】 (Equation 4)

【数5】 (Equation 5)

【0013】図1に示される駆動回路が完全共振する場
合、すなわち、ωL1=1/ωC1、かつ、ωL2=1
/ωC2である場合、ΔおよびI1は以下の(6),
(7)式で表される。
When the drive circuit shown in FIG. 1 completely resonates, that is, ωL1 = 1 / ωC1 and ωL2 = 1.
When / ωC2, Δ and I1 are given by the following (6),
It is expressed by equation (7).

【数6】 (Equation 6)

【数7】 (Equation 7)

【0014】さらに、上記(6),(7)式に基づい
て、電流増幅率を表す以下の(8)式が導出される。
Further, the following equation (8) representing the current amplification factor is derived based on the equations (6) and (7).

【数8】 (Equation 8)

【0015】また、駆動用コイル9に印加される電圧を
VL1、超電導コイル11に印加される電圧をVL2とする
と、これらは以下の(9),(10)式で表される。
When the voltage applied to the driving coil 9 is VL1 and the voltage applied to the superconducting coil 11 is VL2, these are expressed by the following equations (9) and (10).

【数9】 [Equation 9]

【数10】 (Equation 10)

【0016】さらに、上記(9),(10)式に基づい
て、電圧増幅率を表す以下の(11)式が導出される。
Further, the following equation (11) representing the voltage amplification factor is derived based on the above equations (9) and (10).

【数11】 [Equation 11]

【0017】ここで、駆動用コイル9に流れる電流をI
1[A]、超電導コイル11に流れる電流をI2[A]
とすると、上記(8)式および(11)式から、R2→
0の極限では、 I1 = 0, I2 = jE/(ωM),
VL1 = E, VL2 = −L2E/M となり、R2→∞の極限では、 I1 = E/R1, I2 = 0,VL1 = jω
L1I1, VL2 = −jωMI1 となることが分かる。
Here, the current flowing through the driving coil 9 is I
1 [A], the current flowing in the superconducting coil 11 is I2 [A]
Then, from the above equations (8) and (11), R2 →
In the limit of 0, I1 = 0, I2 = jE / (ωM),
VL1 = E, VL2 = −L2E / M, and in the limit of R2 → ∞, I1 = E / R1, I2 = 0, VL1 = jω
It can be seen that L1I1, VL2 = -jωMI1.

【0018】ところで、超電導コイル11の特性によ
り、図1に示される駆動回路の2次側の抵抗R2は極め
て小となる。すなわち、R2→0の極限に近い状態とな
る。これに加えて、図1の駆動回路では、(1)式の共
振条件が成立するようキャパシタンスC1,C2および
インダクタンスL1,L2が設定されている。したがっ
て、本実施形態の駆動回路では、電流増幅率I2/I1
は1より大となる。また、一般にM<(L1・L2)
1/2 であり、かつ本実施形態ではL1<L2であるた
め、電圧増幅率VL2/VL1も1より大となる。上述した
ことから、交流電源7に求められる電圧および容量は、
従来、超電導コイル11を駆動するために必要とされた
電圧および電流に比較して小でよいことが分かる。
By the way, due to the characteristics of the superconducting coil 11, the resistance R2 on the secondary side of the drive circuit shown in FIG. 1 becomes extremely small. That is, the state is close to the limit of R2 → 0. In addition to this, in the drive circuit of FIG. 1, the capacitances C1 and C2 and the inductances L1 and L2 are set so that the resonance condition of the expression (1) is satisfied. Therefore, in the drive circuit of the present embodiment, the current amplification factor I2 / I1
Is greater than 1. Also, in general, M <(L1 ・ L2)
Since it is 1/2 and L1 <L2 in this embodiment, the voltage amplification factor VL2 / VL1 is also larger than 1. From the above, the voltage and capacity required for the AC power supply 7 are
It can be seen that the voltage and current required to drive the superconducting coil 11 in the past can be small compared with the voltage and current.

【0019】[0019]

【実施例】次に、上記実施形態による駆動回路を実際に
構成した一実施例について説明する。本実施例では、交
流用超電導マグネット(超電導コイル11)を内径34
×10-3[m]、外形60×10-3[m]、長さ90×
10-3[m]、線材径φ0.70×10-3[m]、およ
び巻数n2=980[回]となるよう構成し、駆動用コ
イル9を径64×10-3[m]、長さ72×10
-3[m]、線材径φ0.70×10-3[m]、巻数n1
=98回となるよう構成する。
EXAMPLE Next, an example in which the drive circuit according to the above embodiment is actually configured will be described. In the present embodiment, the alternating-current superconducting magnet (superconducting coil 11) has an inner diameter of 34
× 10 −3 [m], outer shape 60 × 10 −3 [m], length 90 ×
10 −3 [m], wire diameter φ0.70 × 10 −3 [m], and number of turns n2 = 980 [turns], and the driving coil 9 has a diameter of 64 × 10 −3 [m] and length. 72 × 10
-3 [m], wire diameter φ0.70 × 10 -3 [m], number of turns n1
= 98 times.

【0020】なお、他の回路定数は、以下の通りであ
る。 L1 = 0.29×10-3[H] , L2 = 12.
74×10-3[H],M = 1.55×10-3[H]
,R1 = 1.026[Ω] , R2 =
0.176[Ω],C1 = 22.85×10
-3[F], C2 = 582.4×10-6[F],E
= 2.98[V]。
Other circuit constants are as follows. L1 = 0.29 × 10 −3 [H], L2 = 12.
74 × 10 −3 [H], M = 1.55 × 10 −3 [H]
, R1 = 1.026 [Ω], R2 =
0.176 [Ω], C1 = 22.85 × 10
-3 [F], C2 = 582.4 x 10 -6 [F], E
= 2.98 [V].

【0021】上述した回路定数の駆動回路を実際に構成
し、1次側回路および2次側回路の各コイルに印加され
る電流値I1,I2および電圧値VL1,VL2を測定した
結果を以下に示す。 I1 = 1.71[A], I2 = 5.00[A],
VL1 = 2.87[V], VL2 = 23.6[V]。 この結果から、電流増幅率I2/I1=2.92、電圧
増幅率VL2/VL1=8.22が得られた。
The results of measuring the current values I1 and I2 and the voltage values VL1 and VL2 applied to the coils of the primary side circuit and the secondary side circuit by actually configuring the drive circuit having the above-mentioned circuit constants are shown below. Show. I1 = 1.71 [A], I2 = 5.00 [A],
VL1 = 2.87 [V], VL2 = 23.6 [V]. From this result, the current amplification factor I2 / I1 = 2.92 and the voltage amplification factor VL2 / VL1 = 8.22 were obtained.

【0022】なお、前述した回路定数の駆動回路におけ
る電流増幅率の計算値は3.23、電圧増幅率の計算値
は8.21であり、実際に得られた各増幅率は、計算値
よりやや低くなっている。これは、2次側の回路におけ
る回路要素の接続に伴う接触抵抗の発生が抵抗値R2の
増大を招いたことが原因と考えられる。したがって、接
触抵抗による抵抗値R2の増大を考慮して回路定数を設
定するようにすれば、所望の増幅率を達成することがで
きる。
The calculated value of the current amplification factor is 3.23 and the calculated value of the voltage amplification factor is 8.21 in the drive circuit having the above-mentioned circuit constants. It is getting a little low. It is considered that this is because the occurrence of contact resistance due to the connection of the circuit elements in the secondary side circuit increased the resistance value R2. Therefore, if the circuit constant is set in consideration of the increase in the resistance value R2 due to the contact resistance, the desired amplification factor can be achieved.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
1次側回路の駆動用コイルおよび2次側回路の超電導コ
イルは近接配置されて超電導トランスを構成し、各回路
の進相用コンデンサのキャパシタンスおよびコイルのイ
ンダクタンスは前記1次側回路と前記2次側回路とが共
振するよう設定される。さらに、2次側回路は超電導回
路であり、その損失は極めて小となる。したがって、超
電導トランスの電流増幅率および電圧増幅率は1より大
となり、電源に要求される電圧および容量は、従来のも
のに比較して小となる。よって、電源を小型化すること
ができるという効果がある。
As described above, according to the present invention,
The driving coil of the primary side circuit and the superconducting coil of the secondary side circuit are arranged close to each other to form a superconducting transformer, and the capacitance of the phase advancing capacitor and the inductance of the coil of each circuit are the primary side circuit and the secondary side. It is set to resonate with the side circuit. Further, the secondary side circuit is a superconducting circuit, and its loss is extremely small. Therefore, the current amplification factor and the voltage amplification factor of the superconducting transformer are higher than 1, and the voltage and capacity required for the power supply are smaller than those of the conventional ones. Therefore, there is an effect that the power supply can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態による交流用超電導マグ
ネットの駆動回路の概略構成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of a drive circuit for an AC superconducting magnet according to an embodiment of the present invention.

【図2】 従来の交流用超電導マグネットの駆動回路の
一例を示す回路図である。
FIG. 2 is a circuit diagram showing an example of a drive circuit for a conventional AC superconducting magnet.

【図3】 従来の交流用超電導マグネットの駆動回路の
一例を示す回路図である。
FIG. 3 is a circuit diagram showing an example of a drive circuit for a conventional AC superconducting magnet.

【符号の説明】[Explanation of symbols]

7……交流電源、8,12……進相用コンデンサ、9…
…駆動用コイル、10……抵抗(1次側回路での損
失)、11……超電導コイル(交流用超電導マグネッ
ト)、13……抵抗(2次側回路での損失)。
7 ... AC power supply, 8, 12 ... Phase advancing capacitor, 9 ...
... drive coil, 10 ... resistance (loss in primary side circuit), 11 ... superconducting coil (superconducting magnet for AC), 13 ... resistance (loss in secondary side circuit).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 交流電源と進相用コンデンサと駆動用コ
イルとを直列接続してなる1次側回路と、 超電導コイルと進相用コンデンサとを直列接続してなる
2次側回路とを具備し、 前記2次側回路は低損失の超電導回路であり、 前記駆動用コイルおよび前記超電導コイルは近接配置さ
れて超電導トランスを構成し、 前記各進相用コンデンサのキャパシタンスおよび前記各
コイルのインダクタンスは前記1次側回路と前記2次側
回路とが共振するよう設定されることを特徴とする交流
用超電導マグネットの駆動回路。
1. A primary side circuit including an AC power source, a phase advancing capacitor, and a driving coil connected in series, and a secondary side circuit including a superconducting coil and a phase advancing capacitor connected in series. The secondary side circuit is a low-loss superconducting circuit, the driving coil and the superconducting coil are arranged close to each other to form a superconducting transformer, and the capacitance of each phase advancing capacitor and the inductance of each coil are A drive circuit for an AC superconducting magnet, wherein the primary side circuit and the secondary side circuit are set to resonate.
JP18751095A 1995-07-24 1995-07-24 Drive circuit for ac superconducting magnet Pending JPH0935931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18751095A JPH0935931A (en) 1995-07-24 1995-07-24 Drive circuit for ac superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18751095A JPH0935931A (en) 1995-07-24 1995-07-24 Drive circuit for ac superconducting magnet

Publications (1)

Publication Number Publication Date
JPH0935931A true JPH0935931A (en) 1997-02-07

Family

ID=16207335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18751095A Pending JPH0935931A (en) 1995-07-24 1995-07-24 Drive circuit for ac superconducting magnet

Country Status (1)

Country Link
JP (1) JPH0935931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105513774A (en) * 2016-01-26 2016-04-20 云南电网有限责任公司电力科学研究院 Transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105513774A (en) * 2016-01-26 2016-04-20 云南电网有限责任公司电力科学研究院 Transformer

Similar Documents

Publication Publication Date Title
Shirakawa et al. Thin film cloth-structured inductor for magnetic integrated circuit
JP2008103716A (en) Common-mode filtering device and variable speed driving device provided with such filtering device
CA1185335A (en) Integrated multi-stage electrical filter
Park et al. 5m-off-long-distance inductive power transfer system using optimum shaped dipole coils
KR20160057379A (en) Transformer
US5107411A (en) Interference free, pulse type transformer
JPH0935931A (en) Drive circuit for ac superconducting magnet
US5586017A (en) Power generator comprising a transformer
US6483279B1 (en) Device for attenuating parasitic voltages
US6426610B1 (en) Controlled ferroresonant constant current source
JPH0416005B2 (en)
de Miranda et al. Alternative configuration of open-bifilar coil for self-resonant wireless power transfer system
CN111404209A (en) Novel low-frequency high-power wireless power transmission system device
CN220156406U (en) Three-phase LLC resonant circuit and resonant converter
Fontana Coreless transformers with high coupling factor
de Queiroz A generalized approach to the design of multiple resonance networks
JPH10164861A (en) Resonance inverter circuit
JPS63193499A (en) Quadrupole particle accelerator
JPS5896424A (en) Proximity switch
US5666047A (en) Dielectric transformer
JPH0898437A (en) Noncontact power supply
RU2038682C1 (en) Capacitor storage charging device
JPH0278196A (en) X-ray generating device
JPH0748000Y2 (en) Ultrasonic motor drive power supply
US2568510A (en) Frequency divider