JPH0935692A - Square sealed battery - Google Patents

Square sealed battery

Info

Publication number
JPH0935692A
JPH0935692A JP7187439A JP18743995A JPH0935692A JP H0935692 A JPH0935692 A JP H0935692A JP 7187439 A JP7187439 A JP 7187439A JP 18743995 A JP18743995 A JP 18743995A JP H0935692 A JPH0935692 A JP H0935692A
Authority
JP
Japan
Prior art keywords
electrode plate
opening
plate group
battery
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7187439A
Other languages
Japanese (ja)
Inventor
Koichi Hoshino
耕一 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP7187439A priority Critical patent/JPH0935692A/en
Publication of JPH0935692A publication Critical patent/JPH0935692A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a square sealed battery with less welding failure caused by sloughed substance filled and coated on the surface of an electrode. SOLUTION: An electrode group 2 impregnated with alkaline electrolyte is housed in an outer jacket can with bottom 1A having a square opening part 1a, and a cover plate 3 is fit to the square opening part 1a, then welded thereto for sealing to obtain a square sealed battery. Mesa type narrow width parts 11, 11 protruding in the inner direction of the can are formed in a pair of can walls 1b, 1c facing an electrode plate positioning on the outermost side of the electrode group 2 among facing two pairs of can walls of the outer jacket can with bottom 1A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、角形密閉電池に関
し、更に詳しくは、外装缶と蓋板との溶接不良の発生が
少ない角形密閉電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prismatic sealed battery, and more particularly to a prismatic sealed battery in which welding defects between an outer can and a cover plate are less likely to occur.

【0002】[0002]

【関連する技術】ニッケル−水素二次電池やニッケル−
カドミウム電池のようなアルカリ二次電池は、全体とし
て密閉構造になっていて、その形状には円筒形と角形と
がある。ここで、例えば、角形密閉タイプのニッケル−
水素二次電池につき、その構造を図1に基づいて説明す
る。
[Related technology] Nickel-hydrogen secondary battery and nickel-
An alkaline secondary battery such as a cadmium battery has a sealed structure as a whole, and its shape has a cylindrical shape and a prismatic shape. Here, for example, rectangular closed type nickel-
The structure of the hydrogen secondary battery will be described with reference to FIG.

【0003】この電池は、図1の分解斜視図で示すよう
に、内部に極板群2を収容した直方体状をなす外装缶1
と、外装缶1の開口部1aに嵌合装着され、その開口部
1aを密閉する蓋板3とを備えている。外装缶1は、ニ
ッケルメッキを施した鋼製の直方体状の有底缶であり、
平面視したときの形状が矩形である開口部1aを備えて
いて、負極の外部端子も兼ねている。
As shown in the exploded perspective view of FIG. 1, this battery has a rectangular parallelepiped outer can 1 having an electrode plate group 2 accommodated therein.
And a lid plate 3 which is fitted and mounted in the opening 1a of the outer can 1 and seals the opening 1a. The outer can 1 is a rectangular parallelepiped bottomed can made of nickel-plated steel,
The opening 1a has a rectangular shape when seen in a plan view, and also serves as an external terminal of the negative electrode.

【0004】この有底外装缶1は、通常、ニッケルメッ
キを施した鋼板に対して、深絞り加工を行って、まず、
有底楕円筒体を成形し、その後、徐々に角形に変形させ
て缶体とし、最後に、缶体の高さを所定の寸法にするた
めに、前記缶体の上部を切断する。このとき、外装缶の
底面から所定高さの位置において、その切り口が当該外
装缶の底面と平行になるようにカッターで切断される。
This bottomed outer can 1 is usually prepared by deep drawing a steel plate plated with nickel and
An elliptic cylinder with a bottom is formed, then gradually deformed into a rectangular shape to obtain a can body, and finally, the upper portion of the can body is cut in order to make the height of the can body a predetermined size. At this time, at a position at a predetermined height from the bottom surface of the outer can, it is cut by a cutter so that its cut end is parallel to the bottom surface of the outer can.

【0005】極板群2は、正極板(ニッケル極)21と
負極板(水素吸蔵合金電極)22とを、電気絶縁性のセ
パレータ23を互いの間に介在させた状態で複数枚重ね
合わせた構造になっている。正極板(ニッケル極)21
としては、例えば、スポンジ状のニッケルシートのよう
な多孔質の導電シートに正極活物質として動作する水酸
化ニッケルを主体とする活物質合剤を充填塗布したもの
が通常用いられている。
In the electrode plate group 2, a plurality of positive electrode plates (nickel electrodes) 21 and negative electrode plates (hydrogen storage alloy electrodes) 22 are superposed with an electrically insulating separator 23 interposed therebetween. It is structured. Positive electrode plate (nickel electrode) 21
As such, for example, a porous conductive sheet such as a sponge-like nickel sheet in which an active material mixture mainly composed of nickel hydroxide that operates as a positive electrode active material is filled and applied is usually used.

【0006】負極板(水素吸蔵合金電極)22として
は、例えば、パンチングニッケルシートやニッケルネッ
トのような多孔質の導電シートに、水素吸蔵合金粉末と
ニッケル粉末のような導電材粉末とポリビニリデンフル
オライドのような結着剤粉末とを所定割合で混合した混
合物を充填塗布したものが通常用いられている。セパレ
ータ23としては、例えば、電気絶縁性を有する多孔質
の合成樹脂からなるシートが通常用いられている。尚、
このセパレータは、弾力性を備えている。
As the negative electrode plate (hydrogen storage alloy electrode) 22, for example, a porous conductive sheet such as punched nickel sheet or nickel net, conductive material powder such as hydrogen storage alloy powder and nickel powder, and polyvinylidene fluoride are used. A mixture obtained by filling and mixing a mixture of a binder powder such as a ride powder at a predetermined ratio is usually used. As the separator 23, for example, a sheet made of a porous synthetic resin having electric insulation is usually used. still,
This separator has elasticity.

【0007】前記極板群2を組立てる際には、まず、セ
パレータ23を二つ折りにして封筒状に成形し、その中
に、正極板21を挿入し、セパレータ23と正極板21
との結合体を形成する。そして、負極板22が最外側に
位置するように前記結合体と負極板22とを交互に重ね
合わせたのち、外装缶1の内部形状に適合するように全
体として直方体状に成形する。したがって、極板群2を
外装缶1に収容すると、収容された極板群2の最外側に
位置する負極板の側面と外装缶の缶壁の内面との間に
は、殆ど隙間が生じない状態になる。
When assembling the electrode plate group 2, first, the separator 23 is folded in two and formed into an envelope shape, and the positive electrode plate 21 is inserted thereinto to separate the separator 23 and the positive electrode plate 21.
Form a bond with. Then, the combined body and the negative electrode plate 22 are alternately stacked so that the negative electrode plate 22 is located on the outermost side, and then the whole is molded into a rectangular parallelepiped shape so as to fit the inner shape of the outer can 1. Therefore, when the electrode plate group 2 is housed in the outer can 1, there is almost no gap between the side surface of the outermost negative electrode plate of the housed electrode plate 2 and the inner surface of the can wall of the outer can. It becomes a state.

【0008】ここで、各正極板21は、正極集電体4及
びリード板31aを介して後述する正極端子31に接続
され、また、各負極板22は、導電性シート(図示しな
い)により各々が接続されて電気的に一つにまとめら
れ、この状態で、例えば、極板群の最外側に位置する負
極板を外装缶に接触させることにより、負極端子(外装
缶)と接続される。
Here, each positive electrode plate 21 is connected to a positive electrode terminal 31 described later via the positive electrode current collector 4 and the lead plate 31a, and each negative electrode plate 22 is made of a conductive sheet (not shown). Are electrically connected to each other, and in this state, for example, the outermost negative electrode plate of the electrode plate group is brought into contact with the outer can to be connected to the negative electrode terminal (outer can).

【0009】蓋板3は、中央に正極端子31を備え、平
面視形状が外装缶の開口部1aに適合するような矩形状
をなすニッケルメッキを施した鋼製の板であり、その下
面の所定位置には前記正極端子に接続されている正極リ
ード板31aが配設されている。当該密閉型ニッケル−
水素二次電池の製造の手順の一例としては、まず、極板
群2を、一度短辺方向に圧縮する。すると、各極板の間
に介在するセパレータ23が収縮し、極板群の短辺方向
の寸法が僅かに小さくなる。この状態で、極板群2を外
装缶1の開口部1aから外装缶1内へ挿入する。
The lid plate 3 is a nickel-plated steel plate having a positive electrode terminal 31 in the center thereof and having a rectangular shape in plan view that fits into the opening 1a of the outer can. A positive electrode lead plate 31a connected to the positive electrode terminal is arranged at a predetermined position. The sealed nickel-
As an example of the procedure for manufacturing the hydrogen secondary battery, first, the electrode plate group 2 is once compressed in the short side direction. Then, the separator 23 interposed between the electrode plates contracts, and the dimension of the electrode plate group in the short side direction is slightly reduced. In this state, the electrode plate group 2 is inserted into the outer can 1 through the opening 1 a of the outer can 1.

【0010】ついで、極板群2を収容した外装缶1内
に、アルカリ電解液が注入され、その後、外装缶1の開
口部1aに蓋板3が嵌合装着される。そして、外装缶1
の開口部1aと蓋板3とが合致した部分(以下、嵌合部
という)に対し、通常、微細加工に適したパルス式レー
ザー溶接が施され、外装缶1と蓋板3との封口溶接がな
され、密閉構造の角形電池が形成される。
Next, the alkaline electrolyte is injected into the outer can 1 containing the electrode plate group 2, and then the lid plate 3 is fitted and attached to the opening 1a of the outer can 1. And the outer can 1
The portion where the opening 1a and the lid plate 3 of (1) and the lid plate 3 match (hereinafter, referred to as a fitting portion) is usually subjected to pulse laser welding suitable for microfabrication, and the sealing welding of the outer can 1 and the lid plate 3 is performed. Then, a prismatic battery having a closed structure is formed.

【0011】[0011]

【発明が解決しようとする課題】ところで、外装缶の高
さを所定寸法に合わせるため、当該外装缶の上部をカッ
ターで切断すると、切断された外装缶1の切り口、つま
り、開口部1aの内縁1eが、図2に示すように、略直
角となる。そして、このような外装缶1の中へ極板群2
を挿入するときに、例えば、図2で示したように極板群
2が少し傾いた状態で、挿入されると、開口部1aの内
縁1eと極板群2の側面とが接触することがある。ま
た、挿入の途中で、収縮していたセパレータがその弾力
性により原寸法に戻ってしまった場合にも、開口部1a
の内縁1eと外装缶2とが接触することがある。
By the way, when the upper part of the outer can is cut by a cutter in order to adjust the height of the outer can to a predetermined size, the cut end of the outer can 1, which has been cut, that is, the inner edge of the opening 1a. 1e has a substantially right angle as shown in FIG. Then, the electrode plate group 2 is placed in such an outer can 1.
When inserting, for example, when the electrode plate group 2 is slightly tilted as shown in FIG. 2, the inner edge 1e of the opening 1a and the side surface of the electrode plate group 2 may come into contact with each other. is there. Even if the contracted separator returns to its original size due to its elasticity during insertion, the opening 1a
The inner edge 1e of the above may come into contact with the outer can 2.

【0012】このように、外装缶1の開口部1aの内縁
1eと極板群2とが接触すると、当該極板群2の最外側
に位置する負極板22の表面に充填塗布されている水素
吸蔵合金粉末等を含む混合物が掻き取られることにな
る。そして、掻き取られた水素吸蔵合金粉末等を含む混
合物は、開口部1aに付着し、そのまま残留する。蓋板
3を当該開口部1aに嵌合装着すると、形成された嵌合
部においては、局部的に母材(外装缶及び蓋板)と異な
る金属が存在することになり、そのため、封口溶接時に
は、局部的に異種金属同士の溶接となり、溶接されない
個所が生じ、嵌合部において溶接不良が起こることがあ
る。
As described above, when the inner edge 1e of the opening 1a of the outer can 1 and the electrode plate group 2 come into contact with each other, the hydrogen filled and applied to the surface of the negative electrode plate 22 located on the outermost side of the electrode plate group 2 is charged. The mixture containing the occlusion alloy powder will be scraped off. Then, the mixture containing the hydrogen storage alloy powder and the like scraped off adheres to the opening 1a and remains as it is. When the lid plate 3 is fitted and attached to the opening 1a, a metal different from the base material (the outer can and the lid plate) locally exists in the formed fitting portion. Therefore, at the time of sealing welding. In some cases, the dissimilar metals are locally welded to each other, and some portions are not welded, and welding failure may occur in the fitting portion.

【0013】このような溶接不良が生じると、得られる
電池は密閉不良となり、アルカリ電解液が漏出する等の
問題が起こり、電池の不良品の発生率は高くなり、電池
製造における歩留まりは低下する。本発明は、角形密閉
電池における上記した問題を解決し、電極板表面に充填
塗布されている物質が掻き取られることに起因する溶接
不良の発生が少ない角形密閉電池の提供を目的とする。
When such defective welding occurs, the resulting battery has a poor sealing, problems such as leakage of alkaline electrolyte occur, the rate of defective batteries increases, and the yield in battery manufacturing decreases. . SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-described problems in a prismatic sealed battery and to provide a prismatic sealed battery in which welding defects caused by scraping off the substance applied to the surface of the electrode plate are less likely to occur.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、矩形開口部を有する有底外装缶の中
に、アルカリ電解液に浸漬した状態で極板群が収容さ
れ、前記矩形開口部はそこに嵌合され、且つ、溶接され
た蓋板で密閉されている角形密閉電池において、前記有
底外装缶の相対向する二対の缶壁のうち前記極板群の最
も外側に位置する極板と対向する一対の缶壁には、缶内
方向に突出するメサ型の狭幅部が形成されていることを
特徴とする角形密閉電池が提供される。
In order to achieve the above object, according to the present invention, an electrode plate group is housed in a bottomed outer can having a rectangular opening in a state of being immersed in an alkaline electrolyte. In the rectangular sealed battery in which the rectangular opening is fitted and sealed with a welded cover plate, the outermost side of the electrode plate group out of the two pairs of facing can walls of the bottomed outer can. Provided is a prismatic sealed battery, characterized in that a pair of can walls facing the electrode plate located at is formed with a mesa-shaped narrow portion protruding inward of the can.

【0015】本発明による角形密閉電池は、外装缶の缶
壁の内面に狭幅部を形成しているので、外装缶に極板群
を挿入する際に、極板群は、当該狭幅部により外装缶の
開口部の内縁と接触しないように案内されて、外装缶内
に挿入されていくので、負極板表面の水素吸蔵合金粉末
等が開口部の内縁で掻き取られることが防止され、水素
吸蔵合金粉末等が開口部に残留することを防ぐことがで
きる。
In the prismatic sealed battery according to the present invention, since the narrow width portion is formed on the inner surface of the can wall of the outer can, when the electrode plate group is inserted into the outer can, the electrode plate group has the narrow width portion. By being guided so as not to come into contact with the inner edge of the opening of the outer can and being inserted into the outer can, it is prevented that the hydrogen storage alloy powder or the like on the surface of the negative electrode plate is scraped off at the inner edge of the opening. It is possible to prevent hydrogen storage alloy powder and the like from remaining in the openings.

【0016】[0016]

【発明の実施の形態】図3に本発明における角形密閉電
池の一例の外観を示す。この角形密閉電池は、長辺側の
一対の缶壁1b,1cの一部が、缶内方向に突出し、缶
壁1b,1cの間には、他の部分よりも間隔が狭まって
いるメサ型の狭幅部11,11が形成されている外装缶
1Aを採用したことを除いては、従来の角形密閉電池と
変わることはない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows the appearance of an example of a prismatic sealed battery according to the present invention. In this prismatic sealed battery, a part of the pair of can walls 1b and 1c on the long side protrudes inward of the can, and the space between the can walls 1b and 1c is narrower than other parts. It is the same as the conventional prismatic sealed battery except that the outer can 1A in which the narrow portions 11, 11 are formed is adopted.

【0017】外装缶1Aの狭幅部11,11は、図4に
示すように、通常、平面視形状が、缶壁面の形状と略相
似形である矩形状をなし、断面形状は、図3のV−V線
に沿う断面図である図5に示すように、缶壁1b,1c
の互いに対向する位置で、当該缶壁の内側が缶内方向に
メサ型にせりだした形状をなしている。この狭幅部1
1,11は、上端部11aが緩やかな曲面あるいはテー
パ状となっており、その下に連続して平坦面11bを備
えている。
As shown in FIG. 4, the narrow portions 11 and 11 of the outer can 1A usually have a rectangular shape in plan view which is substantially similar to the shape of the wall surface of the can, and its cross-sectional shape is shown in FIG. 5, which is a cross-sectional view taken along the line V-V of FIG.
At the positions opposite to each other, the inside of the can wall has a mesa-shaped protrusion toward the inside of the can. This narrow part 1
The upper end 11a of each of the first and the first parts 11 and 11 has a gentle curved surface or a tapered shape, and is provided with a flat surface 11b continuously thereunder.

【0018】このような狭幅部11,11を備えた外装
缶1Aを採用して、従来の製造手順通りに角形密閉電池
を製造すると、外装缶1Aに極板群2を挿入するとき
に、図6に示すように、極板群2が少し傾いた状態で、
挿入されたとしても、極板群2は、二点鎖線で示すよう
に、開口部1aの内縁1eよりも内側に形成された狭幅
部11に案内され、缶壁に平行な状態に矯正されながら
外装缶内へ挿入されていくので、最外側の負極板22と
開口部1aの内縁1eとが接触することは抑制される。
また、極板群2の挿入の際、狭幅部11が極板群2を短
辺方向に押圧する形になるので、極板群2がセパレータ
23の弾力性により原寸法に戻ることが抑えられる。よ
って、極板群2が、挿入中に原寸法に戻り、開口部1a
の内縁1eと接触することは極めて少なくなる。以上の
ように、外装缶1Aを採用すると、開口部1aの内縁1
eと極板群2との接触が避けられるので、極板群2の最
外側に位置する負極板22の表面の水素吸蔵合金粉末等
を含む混合物が、開口部1aの内縁1eにより掻き取ら
れることは抑制される。ここで、狭幅部11の上端部1
1aは、直角ではなく、緩やかな曲面となっているの
で、極板群2の案内に好適であるとともに、極板群2の
挿入中に当該上端部11aで極板群2の最外側に位置す
る負極板22から水素吸蔵合金粉末等を含む混合物を掻
き取ることは極めて少なくなる。
When the rectangular sealed battery is manufactured according to the conventional manufacturing procedure by using the outer can 1A having the narrow portions 11 and 11, the electrode plate group 2 is inserted into the outer can 1A. As shown in FIG. 6, with the electrode plate group 2 slightly tilted,
Even when inserted, the electrode plate group 2 is guided by the narrow portion 11 formed inside the inner edge 1e of the opening 1a as shown by the chain double-dashed line, and is corrected into a state parallel to the can wall. However, since it is inserted into the outer can, contact between the outermost negative electrode plate 22 and the inner edge 1e of the opening 1a is suppressed.
Further, when the electrode plate group 2 is inserted, the narrow portion 11 presses the electrode plate group 2 in the short side direction, so that the electrode plate group 2 is prevented from returning to its original size due to the elasticity of the separator 23. To be Therefore, the electrode plate group 2 returns to the original size during insertion, and the opening 1a
The contact with the inner edge 1e of is extremely reduced. As described above, when the outer can 1A is adopted, the inner edge 1 of the opening 1a is
Since the contact between e and the electrode plate group 2 is avoided, the mixture containing the hydrogen storage alloy powder and the like on the surface of the negative electrode plate 22 located on the outermost side of the electrode plate group 2 is scraped off by the inner edge 1e of the opening 1a. Things are suppressed. Here, the upper end portion 1 of the narrow portion 11
Since 1a is not a right angle but a gentle curved surface, it is suitable for guiding the electrode plate group 2 and is positioned on the outermost side of the electrode plate group 2 at the upper end portion 11a during insertion of the electrode plate group 2. The mixture containing the hydrogen-absorbing alloy powder and the like is hardly scraped off from the negative electrode plate 22.

【0019】このように、外装缶1Aにおいては、極板
群2と開口部1aの内縁1eとを接触させないで、当該
極板群2を外装缶1A内に収容することができるので、
開口部1aに水素吸蔵合金粉末等を含む混合物が残留し
ない状態で、蓋板の封口溶接が行える。よって、溶接不
良の少ない良好な角形密閉電池を得ることができる。外
装缶1Aにおいて狭幅部11を形成する手順としては、
例えば、図7に示すように、外装缶の長辺側の相対向す
る缶壁1b,1cを、所定の矩形状をなす押圧治具5,
5で矢印P方向に押圧して缶壁1b,1cを缶内方向に
所定量突出させ、当該缶壁1b,1cの内側に、外装缶
の内側方向にせりだしたメサ型の狭幅部11,11を形
成する。
As described above, in the outer can 1A, the electrode plate group 2 can be accommodated in the outer can 1A without contacting the electrode plate group 2 and the inner edge 1e of the opening 1a.
The sealing welding of the lid plate can be performed in a state where the mixture containing the hydrogen storage alloy powder or the like does not remain in the opening 1a. Therefore, it is possible to obtain a good rectangular sealed battery with few welding defects. As a procedure for forming the narrow width portion 11 in the outer can 1A,
For example, as shown in FIG. 7, the can walls 1b and 1c facing each other on the long side of the outer can are pressed into a pressing jig 5 having a predetermined rectangular shape.
5, the can walls 1b and 1c are pushed inward by a predetermined amount by pressing them in the direction of arrow P, and the mesa-shaped narrow portion 11 protruding inside the can walls 1b and 1c toward the inside of the outer can. , 11 are formed.

【0020】ここで、缶壁1b(1c)の高さ寸法Hに
対する狭幅部11の高さ寸法hの割合が60%以上にな
ると、缶壁を缶内方向へ突出させる際に外装缶の歪みが
大きくなってしまい、また、前記割合が40%以下にな
ると、高さ寸法が小さい狭幅部11になるため、極板群
2を外装缶の下部まで、缶壁に平行な状態で案内するこ
とが困難になってしまう。このようなことから、缶壁の
高さ寸法Hに対する狭幅部11の高さ寸法hの割合は、
40〜60%の範囲に設定することが好ましい(図4参
照)。
When the ratio of the height dimension h of the narrow portion 11 to the height dimension H of the can wall 1b (1c) is 60% or more, the outer can of the outer can is projected when the can wall is projected inward. When the strain becomes large and the ratio becomes 40% or less, the narrow width portion 11 having a small height dimension is formed, so the electrode plate group 2 is guided to the lower portion of the outer can in a state parallel to the can wall. It becomes difficult to do. Therefore, the ratio of the height dimension h of the narrow portion 11 to the height dimension H of the can wall is
It is preferable to set in the range of 40 to 60% (see FIG. 4).

【0021】また、缶壁1b(1c)の横寸法w0 に対
する狭幅部11の横寸法w1 の割合が50%以上になる
と、缶壁を缶内方向へ突出させる際に外装缶の歪みが大
きくなってしまい、また、前記割合が20%以下になる
と、狭幅部11の横寸法が小さくなり、平坦面11bの
面積(極板群との当接面積)が小さくなってしまい、極
板群2の収容の際、当接個所において応力が集中し、そ
の部分の水素吸蔵合金等を含む混合物が剥離するおそれ
がある。このようなことから、缶壁の横寸法w 0 に対す
る狭幅部の横寸法w1 の割合は20〜50%の範囲に設
定することが好ましい(図4参照)。尚、缶壁に狭幅部
を形成する際、狭幅部11の横寸法w1方向の中心は、
缶壁の長辺方向の中心位置と略一致させる。
Further, the lateral dimension w of the can wall 1b (1c)0Against
Lateral dimension w of the narrow portion 111Ratio of 50% or more
When the can wall is projected inward, the outer can will be greatly distorted.
And the above ratio will be 20% or less
Then, the lateral dimension of the narrow portion 11 becomes small, and the flat surface 11b
The area (contact area with the electrode group) becomes small,
When the plate group 2 is accommodated, stress concentrates at the contact point,
The mixture containing the hydrogen storage alloy, etc. in the part of may be separated
There is. From this, the lateral dimension w of the can wall 0Against
Lateral dimension w1The ratio of 20% to 50%
Preferably (see FIG. 4). In addition, the narrow part on the can wall
When forming, the lateral dimension w of the narrow portion 111The center of the direction is
Make it approximately coincide with the center position of the long side of the can wall.

【0022】また、狭幅部11の上端部11aが開口部
1aからあまり下方に位置していると、極板群2は、狭
幅部11に案内される前に開口部1aの内縁1eと接触
してしまう可能性がある。また、狭幅部の上端部11a
が開口部1aにあまり近いと、狭幅部を形成する際に、
開口部1aを変形させてしまい、設計寸法通りの開口部
を得ることができなくなる。このようなことから、開口
部1aから狭幅部11の上端部11aまでの寸法A(図
4,7参照)は、開口部1aが変形してしまう寸法より
も長く、極板群2を案内できなくなる寸法よりも短い範
囲内に設定する。
If the upper end 11a of the narrow width portion 11 is located too far below the opening 1a, the electrode plate group 2 will be separated from the inner edge 1e of the opening 1a before being guided by the narrow width portion 11. There is a possibility of contact. Also, the upper end portion 11a of the narrow portion
Is too close to the opening 1a, when forming the narrow portion,
The opening 1a is deformed, and it becomes impossible to obtain the opening as designed. For this reason, the dimension A from the opening 1a to the upper end 11a of the narrow portion 11 (see FIGS. 4 and 7) is longer than the dimension at which the opening 1a is deformed, and the electrode plate group 2 is guided. Set it within the range shorter than the dimension that makes it impossible.

【0023】更に、相対する狭幅部11,11間の寸法
B(図7参照)が小さすぎると、極板群2(短辺方向に
圧縮したときの)を外装缶1内へ挿入できなくなる。ま
た、前記寸法Bが大きすぎると、極板群2との間にガタ
つきが生じ、極板群2を外装缶内へ挿入する際、極板群
2の側面と開口部1aの内縁1eとが接触することも起
こり得る。したがって、相対する狭幅部11間の寸法B
は、短辺方向に圧縮したときの極板群2の短辺寸法以上
で、且つ、極板群2を案内できなくなる長さ未満に設定
する。
Further, if the dimension B (see FIG. 7) between the opposed narrow portions 11 is too small, the electrode plate group 2 (when compressed in the short side direction) cannot be inserted into the outer can 1. . Further, if the dimension B is too large, rattling occurs between the electrode plate group 2 and the side surface of the electrode plate group 2 and the inner edge 1e of the opening 1a when the electrode plate group 2 is inserted into the outer can. It is possible that they come into contact with each other. Therefore, the dimension B between the narrow portions 11 facing each other
Is set to be equal to or greater than the short side dimension of the electrode plate group 2 when compressed in the short side direction and less than the length that makes it impossible to guide the electrode plate group 2.

【0024】ここで、通常用いられている角形密閉電池
の外装缶は、厚さ0.4mmのニッケルメッキを施した
鋼製の板からなり、縦16mm、横6mmの開口部を有
し、高さが46mmの有底缶体である。当該外装缶に対
し、本発明における狭幅部を形成する場合、狭幅部の寸
法は、高さ寸法hを20〜25mm、横寸法w1 を5〜
6mm、相対する狭幅部11間の寸法Bを5.0〜5.
5mmとすることが好ましい。そして、開口部1aから
狭幅部11の上端部11aまでの寸法Aは、1.5〜
3.0mmとすることが好ましく、より好ましくは2.
0mmとする。
Here, the outer can of a commonly used prismatic sealed battery is made of a 0.4 mm thick nickel-plated steel plate, has an opening of 16 mm in length and 6 mm in width, and has a high height. It is a bottomed can having a size of 46 mm. When the narrow portion in the present invention is formed on the outer can, the dimensions of the narrow portion are such that the height dimension h is 20 to 25 mm and the lateral dimension w 1 is 5.
6 mm, the dimension B between the opposing narrow width portions 11 is 5.0 to 5.
Preferably, it is 5 mm. The dimension A from the opening 1a to the upper end 11a of the narrow portion 11 is 1.5 to
It is preferably 3.0 mm, more preferably 2.
0 mm.

【0025】尚、本発明においては、狭幅部として、外
装缶の缶壁を外側から押圧し、それにより、缶壁の内側
をメサ型にせりださせたものについてのみ説明したが、
当該狭幅部としては、前記メサ型のせりだし部と同形状
の別の部材を外装缶の缶壁の内側に接合する、あるい
は、外装缶の缶壁の厚みを局部的に厚くして前記メサ型
のせりだし部を形成しても構わない。このような場合、
狭幅部としては、上述した条件を満足するような寸法に
設定する。
In the present invention, as the narrow portion, only the case in which the can wall of the outer can is pressed from the outside so that the inside of the can wall is protruded into a mesa shape has been described.
As the narrow portion, another member having the same shape as the mesa-shaped protruding portion is joined to the inside of the can wall of the outer can, or the thickness of the can wall of the outer can is locally thickened, and A mesa-shaped protrusion may be formed. In such a case,
The narrow width portion is set to have dimensions that satisfy the above-mentioned conditions.

【0026】[0026]

【実施例】【Example】

実施例1 ニッケルメッキを施した厚さ0.4mmの鋼板に対し、
深絞り加工を行い、開口部が、縦16mm、横6mmの
矩形をなし、高さが55mmの直方体状の有底缶体を成
形した。ついで、カッターにより、缶体の高さを46m
mに切りそろえた。
Example 1 For a 0.4 mm thick steel plate plated with nickel,
Deep drawing was performed to form a rectangular parallelepiped bottomed can body having an opening having a rectangular shape with a length of 16 mm and a width of 6 mm and a height of 55 mm. Then, with a cutter, raise the height of the can to 46 m.
Cut to m.

【0027】次に、前記缶体の長辺側の缶壁1b,1c
に対し、図6に示すように、缶壁1b,1cを押圧面が
矩形状をなしている治具5,5で矢印P方向に押圧し
て、当該缶壁1b,1cを缶内方向に突出させ、缶壁1
b,1cの内側に、メサ型の狭幅部11を形成した。こ
の狭幅部11は、高さ寸法hが23.5mm、横寸法w
1 が5.5mmの矩形状をなしており、対向する狭幅部
11,11間の寸法Bは5.0mmである。尚、この狭
幅部11は、外装缶1の開口部1aから狭幅部11の上
端部までの寸法Aが2.0mmとなる位置に形成した。
このようにして長辺部の缶壁の内側に狭幅部を有する缶
体を外装缶1Aとした。
Next, the can walls 1b and 1c on the long side of the can body.
On the other hand, as shown in FIG. 6, the pressing surfaces of the can walls 1b and 1c are
Press in the direction of arrow P with jigs 5 and 5 that are rectangular.
So that the can walls 1b and 1c project inwardly of the can,
A mesa-shaped narrow portion 11 was formed inside b and 1c. This
The narrow portion 11 has a height dimension h of 23.5 mm and a lateral dimension w.
1Has a rectangular shape with a width of 5.5 mm
The dimension B between 11 and 11 is 5.0 mm. In addition, this narrow
The width portion 11 extends from the opening portion 1a of the outer can 1 to the narrow width portion 11 above.
It was formed at a position where the dimension A up to the end was 2.0 mm.
In this way, a can having a narrow portion inside the can wall of the long side
The body was used as an outer can 1A.

【0028】次に、正極板(ニッケル極)と負極板(水
素吸蔵合金電極)とを、電気絶縁性のセパレータを互い
の間に介在させて重ね合わせ、極板群を製造した。尚、
当該極板群は、長辺寸法15.5mm,短辺寸法6.5
mm,高さ42mmの直方体状に成形した。ついで、得
られた極板群を、短辺方向に圧縮し、短辺寸法を5.0
mmにした状態で、前記外装缶の開口部より、外装缶内
部へ挿入した。そして、引き続き、電解液として、KO
Hを主成分とするアルカリ水溶液1.10ccを当該外
装缶に注入した。
Next, a positive electrode plate (nickel electrode) and a negative electrode plate (hydrogen storage alloy electrode) were laminated with an electrically insulating separator interposed therebetween to produce an electrode plate group. still,
The electrode plate group has a long side dimension of 15.5 mm and a short side dimension of 6.5.
mm, and a height of 42 mm. Then, the obtained electrode plate group is compressed in the short side direction to obtain the short side dimension of 5.0.
In the state of mm, it was inserted into the outer can through the opening of the outer can. Then, as an electrolytic solution, KO
1.10 cc of an alkaline aqueous solution containing H as a main component was injected into the outer can.

【0029】最後に、中央に正極端子を有し、蓋板の寸
法が、縦16.0mm,横6.0mm,厚さ0.4mm
である蓋板を前記外装缶の開口部に嵌合装着した。そし
て、当該嵌合部の全周にわたりレーザー溶接を行い、角
形密閉タイプのニッケル−水素二次電池を製造した。
尚、上記電池は、1000個製造した。得られた電池に
対して、レーザー溶接不良の発生率を求めた。その結果
を表1に示した。
Finally, the positive electrode terminal is provided at the center, and the size of the cover plate is 16.0 mm in length, 6.0 mm in width, and 0.4 mm in thickness.
Then, the lid plate was fitted and attached to the opening of the outer can. Then, laser welding was performed over the entire circumference of the fitting portion to manufacture a prismatic closed type nickel-hydrogen secondary battery.
It should be noted that 1000 batteries were manufactured. The occurrence rate of laser welding failure was determined for the obtained battery. The results are shown in Table 1.

【0030】ここで、レーザー溶接不良の発生率は、以
下のようにして求めた。まず、上記のようにして製造し
た電池を、温度60℃,相対湿度80%の雰囲気中に保
持し、30日間放置した。ついで、30日経過後の電池
の嵌合部に対して、フェノールフタレイン溶液を滴下
し、当該溶液の変色を観察することにより漏液の有無を
確認した。つまり、このフェノールフタレイン溶液が赤
色に変化した場合、アルカリ電解液が嵌合部に存在する
ことになるので、前記溶液が赤色に変化した電池は、漏
液が発生したものとした。そして、製造した電池の全体
に対する、漏液が発生した電池の割合を求め、この割合
をレーザー溶接不良の発生率とした。 実施例2 開口部1aから狭幅部11の上端部までの寸法Aを3.
0mmとしたことを除いては実施例1と同様にしてニッ
ケル−水素二次電池を1000個製造した。
Here, the occurrence rate of laser welding defects was determined as follows. First, the battery manufactured as described above was kept in an atmosphere having a temperature of 60 ° C. and a relative humidity of 80% and left for 30 days. Next, the presence or absence of leakage was confirmed by dropping the phenolphthalein solution into the fitting part of the battery after 30 days and observing the discoloration of the solution. That is, when the phenolphthalein solution turned red, the alkaline electrolyte was present in the fitting portion, so that the battery in which the solution turned red was considered to have leaked. Then, the ratio of the battery in which the liquid leakage occurred to the whole of the manufactured batteries was obtained, and this ratio was taken as the incidence of laser welding failure. Example 2 The dimension A from the opening 1a to the upper end of the narrow portion 11 is set to 3.
1000 nickel-hydrogen secondary batteries were manufactured in the same manner as in Example 1 except that the thickness was 0 mm.

【0031】得られた電池に対して、実施例1と同様に
してレーザー溶接不良の発生率を求めた。その結果を表
1に併記した。 実施例3 開口部1aから狭幅部11の上端部までの寸法Aを1.
5mmとしたことを除いては実施例1と同様にしてニッ
ケル−水素二次電池を1000個製造した。
For the obtained battery, the incidence of laser welding failure was determined in the same manner as in Example 1. The results are also shown in Table 1. Example 3 The dimension A from the opening 1a to the upper end of the narrow portion 11 is 1.
1000 nickel-hydrogen secondary batteries were manufactured in the same manner as in Example 1 except that the thickness was 5 mm.

【0032】得られた電池に対して、実施例1と同様に
してレーザー溶接不良の発生率を求めた。その結果を表
1に併記した。 比較例1 外装缶に狭幅部を形成しないことを除いては実施例1と
同様にしてニッケル−水素二次電池を1000個製造し
た。
For the battery thus obtained, the incidence of laser welding defects was determined in the same manner as in Example 1. The results are also shown in Table 1. Comparative Example 1 1000 nickel-hydrogen secondary batteries were manufactured in the same manner as in Example 1 except that the narrow portion was not formed in the outer can.

【0033】得られた電池に対して、実施例1と同様に
してレーザー溶接不良の発生率を求めた。その結果を表
1に併記した。 比較例2 開口部1aから狭幅部11の上端部までの寸法Aを4.
0mmとしたことを除いては実施例1と同様にしてニッ
ケル−水素二次電池を1000個製造した。
For the obtained battery, the incidence of laser welding failure was determined in the same manner as in Example 1. The results are also shown in Table 1. Comparative Example 2 The dimension A from the opening 1a to the upper end of the narrow width portion 11 is set to 4.
1000 nickel-hydrogen secondary batteries were manufactured in the same manner as in Example 1 except that the thickness was 0 mm.

【0034】得られた電池に対して、実施例1と同様に
してレーザー溶接不良の発生率を求めた。その結果を表
1に併記した。
With respect to the obtained battery, the incidence of laser welding failure was determined in the same manner as in Example 1. The results are also shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】表1の結果から明らかなように、実施例
1,2,3の電池は、レーザー溶接不良の発生率が0%
となっている。このことは、外装缶の開口部に蓋板を封
口溶接する際、当該嵌合部に水素吸蔵合金粉末等を含む
混合物が存在せず、良好な溶接を行うことができたた
め、溶接不良のない良品が得られたことを示している。
すなわち、缶壁の内側の所定位置に狭幅部を形成したの
で、極板群は当該狭幅部に案内されて外装缶内へ挿入さ
れていき、極板群の最外部に位置する負極板と開口部の
内縁との接触を避けることができ、それにより、水素吸
蔵合金粉末等を含む混合物が負極板から掻き取られるこ
とが防止されたからである。
As is clear from the results shown in Table 1, the batteries of Examples 1, 2, and 3 had a laser welding defect occurrence rate of 0%.
It has become. This means that when the lid plate is sealed and welded to the opening of the outer can, there is no mixture containing the hydrogen storage alloy powder in the fitting portion, and good welding can be performed, so that there is no welding failure. It shows that a good product was obtained.
That is, since the narrow width portion is formed at a predetermined position inside the can wall, the electrode plate group is guided into the narrow width portion and inserted into the outer can, and the negative electrode plate positioned at the outermost part of the electrode plate group. This makes it possible to avoid contact between the inner edge of the opening and the inner edge of the opening, thereby preventing the mixture containing the hydrogen storage alloy powder and the like from being scraped from the negative electrode plate.

【0037】それに対し、比較例1の電池は、本発明の
電池に比べ、レーザー溶接不良の発生率が高くなってい
る。これは、比較例1の電池においては、従来の外装缶
を採用しているので、開口部の内縁に負極板が接触し、
水素吸蔵合金粉末等を含む混合物が掻き取られ、嵌合部
に水素吸蔵合金粉末等を含む混合物が存在し、当該水素
吸蔵合金等が封口溶接の際、悪影響を与え、溶接されな
い部分が生じたためである。
On the other hand, the battery of Comparative Example 1 has a higher incidence of laser welding defects than the battery of the present invention. This is because the battery of Comparative Example 1 uses the conventional outer can, so that the negative electrode plate comes into contact with the inner edge of the opening.
The mixture containing the hydrogen storage alloy powder etc. was scraped off, the mixture containing the hydrogen storage alloy powder etc. was present in the fitting part, and the hydrogen storage alloy etc. adversely affected the sealing welding, and there was a part that was not welded. Is.

【0038】また、比較例2の電池もレーザー溶接不良
の発生率が高くなっている。これは、開口部1aの内縁
1eから狭幅部11の上端部までの寸法Aが大きく、狭
幅部11が缶壁の下部に位置したため、極板群が、当該
狭幅部により案内される前に、開口部の内縁と接触して
しまい、水素吸蔵合金粉末等を含む混合物が開口部の内
縁で掻き取られ、嵌合部に前記混合物が存在し、封口溶
接の際、溶接されない部分が生じたためである。
The battery of Comparative Example 2 also has a high incidence of laser welding failure. This is because the dimension A from the inner edge 1e of the opening 1a to the upper end of the narrow portion 11 is large and the narrow portion 11 is located in the lower portion of the can wall, so the electrode plate group is guided by the narrow portion. Before, it comes into contact with the inner edge of the opening, the mixture containing hydrogen storage alloy powder, etc. is scraped off at the inner edge of the opening, the mixture is present in the fitting part, and at the time of sealing welding, there is a part that is not welded. Because it happened.

【0039】[0039]

【発明の効果】請求項1の角形密閉電池は、外装缶の缶
壁の内側に狭幅部を形成しているので、外装缶に極板群
を挿入する際、極板群が少し傾いた状態で挿入されて
も、極板群は、前記狭幅部により外装缶と平行な状態に
矯正されるので、外装缶の開口部の内縁と極板群の最外
側に位置する負極板とが接触することは防止される。よ
って、負極板から水素吸蔵合金粉末等を含む混合物が掻
き取られることは抑制され、嵌合部に水素吸蔵合金粉末
等を含む混合物が存在することに起因する溶接不良の発
生は抑えられる。そのため、密閉不良による不良品の発
生は極めて少なくなり、電池製造における歩留まりは向
上する。
In the prismatic sealed battery according to the first aspect of the invention, since the narrow portion is formed inside the can wall of the outer can, when the electrode plate group is inserted into the outer can, the electrode plate group is slightly inclined. Even when inserted in a state, the electrode plate group is corrected to be in a state parallel to the outer can by the narrow portion, so that the inner edge of the opening of the outer can and the negative electrode plate located on the outermost side of the electrode plate are. Contact is prevented. Therefore, the mixture containing the hydrogen storage alloy powder or the like is suppressed from being scraped from the negative electrode plate, and the occurrence of welding defects due to the presence of the mixture containing the hydrogen storage alloy powder or the like in the fitting portion is suppressed. Therefore, the occurrence of defective products due to defective sealing is extremely reduced, and the yield in battery manufacturing is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】角形密閉電池の構成を示す分解斜視図である。FIG. 1 is an exploded perspective view showing the configuration of a prismatic sealed battery.

【図2】外装缶に極板群を挿入する際の様子を示す断面
図である。
FIG. 2 is a cross-sectional view showing how an electrode plate group is inserted into an outer can.

【図3】本発明における角形密閉電池の構成を示す斜視
図である。
FIG. 3 is a perspective view showing a configuration of a prismatic sealed battery according to the present invention.

【図4】本発明における角形密閉電池の外装缶を示す斜
視図である。
FIG. 4 is a perspective view showing an outer can of a prismatic sealed battery according to the present invention.

【図5】図3のV−V線に沿う断面図である。FIG. 5 is a sectional view taken along the line VV of FIG. 3;

【図6】本発明における外装缶に極板群を挿入する際の
様子を示す断面図である。
FIG. 6 is a cross-sectional view showing how an electrode plate group is inserted into an outer can according to the present invention.

【図7】本発明における外装缶の構成を示す断面図であ
る。
FIG. 7 is a cross-sectional view showing a structure of an outer can according to the present invention.

【符号の説明】 1 外装缶(従来の) 1A 外装缶(本発明の) 1a 開口部 1b,1c 缶壁 11 狭幅部 11a 上端部 11b 平坦面 2 極板群 3 蓋板 31 正極端子DESCRIPTION OF SYMBOLS 1 outer can (conventional) 1A outer can (invention) 1a opening 1b, 1c can wall 11 narrow width 11a upper end 11b flat surface 2 electrode plate group 3 lid plate 31 positive electrode terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 矩形開口部を有する有底外装缶の中に、
アルカリ電解液に浸漬した状態で極板群が収容され、前
記矩形開口部はそこに嵌合され、且つ、溶接された蓋板
で密閉されている角形密閉電池において、 前記有底外装缶の相対向する二対の缶壁のうち前記極板
群の最も外側に位置する極板と対向する一対の缶壁に
は、缶内方向に突出するメサ型の狭幅部が形成されてい
ることを特徴とする角形密閉電池。
1. A bottomed outer can having a rectangular opening,
In a prismatic closed battery in which a plate group is accommodated in a state of being immersed in an alkaline electrolyte, the rectangular opening is fitted therein, and which is sealed with a welded cover plate, the relative of the bottomed outer can. Of the two pairs of can walls facing each other, a pair of can walls facing the outermost electrode plate of the electrode plate group has a mesa-shaped narrow portion protruding inward of the can. The feature is a prismatic sealed battery.
JP7187439A 1995-07-24 1995-07-24 Square sealed battery Pending JPH0935692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7187439A JPH0935692A (en) 1995-07-24 1995-07-24 Square sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7187439A JPH0935692A (en) 1995-07-24 1995-07-24 Square sealed battery

Publications (1)

Publication Number Publication Date
JPH0935692A true JPH0935692A (en) 1997-02-07

Family

ID=16206089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7187439A Pending JPH0935692A (en) 1995-07-24 1995-07-24 Square sealed battery

Country Status (1)

Country Link
JP (1) JPH0935692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251340A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Rectangular battery
JP2015167184A (en) * 2014-03-04 2015-09-24 住友電気工業株式会社 Outer sheath for electrochemical device and electric double layer capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251340A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Rectangular battery
JP2015167184A (en) * 2014-03-04 2015-09-24 住友電気工業株式会社 Outer sheath for electrochemical device and electric double layer capacitor

Similar Documents

Publication Publication Date Title
US8227107B2 (en) Cylindrical secondary battery having structure in which electrode assembly is connected with sealing cover via combination of current collector plate and current collector lead
EP2157633A1 (en) Secondary battery
US6833010B2 (en) Prismatic battery module and method for manufacturing the same
JP6550848B2 (en) Prismatic secondary battery
US20090029244A1 (en) Battery, and battery manufacturing method
JP4284719B2 (en) Battery with spiral electrode and method for manufacturing the same
JP2000243433A (en) Cylindrical alkaline storage battery and its manufacture
US20220294089A1 (en) Terminal component and electricity storage device
JP2003187779A (en) Battery
JPH0935692A (en) Square sealed battery
JP3898153B2 (en) Sealed secondary battery
JP3744788B2 (en) Sealed battery and manufacturing method thereof
CN114824685A (en) Terminal member, secondary battery, and method for manufacturing terminal member
JPH09147902A (en) Square sealed cell
JP7161373B2 (en) secondary battery
JP2002246009A (en) Alkaline storage battery
JPH09134729A (en) Nonaqueous electrolyte battery
JP2997997B2 (en) Stepped insulating ring and method for manufacturing cylindrical nickel-metal hydride secondary battery using the same
KR100354250B1 (en) Electrode of sealed battery
US20220302559A1 (en) Secondary battery
JP2949567B2 (en) Prismatic sealed battery
JP3906001B2 (en) Alkaline storage battery and method of manufacturing the same
JPH0773860A (en) Manufacture of square alkaline battery
JP2000195496A (en) Alkaline storage battery
JP2567647B2 (en) Square sealed battery