JPH093566A - Production of metallic porous body - Google Patents

Production of metallic porous body

Info

Publication number
JPH093566A
JPH093566A JP7151458A JP15145895A JPH093566A JP H093566 A JPH093566 A JP H093566A JP 7151458 A JP7151458 A JP 7151458A JP 15145895 A JP15145895 A JP 15145895A JP H093566 A JPH093566 A JP H093566A
Authority
JP
Japan
Prior art keywords
powder
porous body
heat treatment
substrate
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7151458A
Other languages
Japanese (ja)
Other versions
JP3413311B2 (en
Inventor
Yasuo Kamigata
康雄 上方
Takeshi Yoshida
健 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP15145895A priority Critical patent/JP3413311B2/en
Publication of JPH093566A publication Critical patent/JPH093566A/en
Application granted granted Critical
Publication of JP3413311B2 publication Critical patent/JP3413311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE: To produce a metallic porous body almost free from closed pores and having satisfactory gas permeability and high strength. CONSTITUTION: Metal powder is stuck to the surface of urethane foam and heat treatment is carried out in a gaseous atmosphere contg. hydrogen as reducing gas for the powder and moisture and/or carbon dioxide as oxidizing gas for carbon to produce the objective porous body. In other way, metal powder of Cr, Ti or Al is stuck to the surface of urethane foam and heat treatment is carried out in a nonoxidizing atmosphere to produce the objective porous body. By such an easy method as heat treatment in the specified gaseous atmosphere, the objective metallic porous body having high porosity and high strength and contg. a chemically active metal such as Cr, Ti or Al is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、フィルター、触媒担
体、電池集電体などに使用される金属多孔質体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal porous body used for a filter, a catalyst carrier, a battery current collector and the like.

【0002】[0002]

【従来の技術】金属粉体の焼結による金属多孔質体の製
造方法は特公昭61−53417号公報に開示されてお
り、この方法は基体となるウレタンフォームなどの三次
元網目構造をもつ発泡性樹脂を、金属粉と増粘性高分子
と溶剤を混合し調製したスラリーに浸し、発泡性樹脂の
骨格に金属粉を塗着させ、その後水素雰囲気中で熱処理
することにより発泡性樹脂を分解焼失及び金属粉の焼結
を行うことにより、発泡性樹脂基体の形状を転写した金
属多孔質体を得るものである。
2. Description of the Related Art A method for producing a metal porous body by sintering metal powder is disclosed in Japanese Patent Publication No. 61-53417, and this method is foaming having a three-dimensional network structure such as urethane foam as a base. Resin is soaked in a slurry prepared by mixing metal powder, thickening polymer and solvent, the metal powder is applied to the skeleton of the foamable resin, and then heat-treated in a hydrogen atmosphere to decompose and burn off the foamable resin. By sintering the metal powder and the metal powder, a metal porous body in which the shape of the foamable resin substrate is transferred is obtained.

【0003】[0003]

【発明が解決しようとする課題】前記のような焼結によ
る金属多孔質体の製造方法は一般に高分子有機物の溶液
に粉体を懸濁させてスラリーを作製し、発泡性樹脂基体
に塗着する方法であるが、塗着したスラリーの表面張力
によって発泡性樹脂基体の骨格部に比べ骨格の接合部に
粉体が集まり易く、一様に粉体を塗布することは困難で
ある。この現象は出来上がった金属多孔質体の強度に重
大な影響を及ぼす。すなわち、一定量の粉体を塗着した
場合、骨格に細い部分ができやすく強度が小さくなる。
従って強度を大きくするためには、塗着するスラリーの
量を多くして骨格を太くすることが必要であり、多孔度
が大きく、且つ強度の大きいものが得にくいという問題
あった。
In the method for producing a metal porous body by sintering as described above, generally, a powder is suspended in a solution of a high molecular weight organic substance to prepare a slurry, which is applied to a foamable resin substrate. However, it is difficult to uniformly apply the powder because the powder tends to collect at the joint portion of the skeleton as compared with the skeleton portion of the foamable resin substrate due to the surface tension of the applied slurry. This phenomenon seriously affects the strength of the finished porous metal body. That is, when a certain amount of powder is applied, a thin portion is likely to be formed on the skeleton, and the strength is reduced.
Therefore, in order to increase the strength, it is necessary to increase the amount of the slurry to be applied to thicken the skeleton, and there is a problem that it is difficult to obtain a material having high porosity and high strength.

【0004】さらに、スラリーを使用する問題点とし
て、発泡性樹脂基体の網目構造を塞いだ薄い膜状の部分
(閉口部)を作り易いという欠点があげられる。これは
スラリーが膜を張り易いために生じる現象でスラリーの
粘度に大きく依存するがスラリー中の高分子を取り除い
て粉体と溶媒の混合物に基体を含浸させた場合でも乾燥
過程で粉体同士の凝集が起こり閉口部が発生する。この
ためフィルターとして使用した場合、圧力損失が大きく
なると言う問題があった。
Further, as a problem of using the slurry, there is a drawback that it is easy to form a thin film-like portion (closed portion) which closes the network structure of the foamable resin substrate. This is a phenomenon that occurs because the slurry tends to form a film and depends largely on the viscosity of the slurry, but even when the polymer in the slurry is removed and the substrate is impregnated with the mixture of powder and solvent, the Aggregation occurs and a closed part is generated. Therefore, when used as a filter, there is a problem that pressure loss increases.

【0005】一方、水素雰囲気での熱処理では、基体に
発泡樹脂を使用するため、発泡性樹脂が熱分解して炭素
を生成し、金属多孔質体中に残留する。炭素が残留する
と一般に金属と反応し脆い炭素合金を形成するため、強
度の大きい金属多孔質体が得られないという問題があっ
た。
On the other hand, in the heat treatment in the hydrogen atmosphere, since the foamed resin is used as the substrate, the foamable resin is thermally decomposed to generate carbon, which remains in the porous metal body. When carbon remains, it generally reacts with a metal to form a brittle carbon alloy, and there is a problem that a porous metal body having high strength cannot be obtained.

【0006】本発明はこのような点に鑑みてなされたも
ので、閉口部が少なく通気性が良く、しかも強度が大き
い金属多孔質体の製造方法を提供するものである。
The present invention has been made in view of the above circumstances, and provides a method for producing a metal porous body having a small number of closed portions, good air permeability, and high strength.

【0007】[0007]

【課題を解決するための手段】本願の第一の発明は、基
体となる多孔性樹脂の骨格表面に、粘着性を付与し、粉
体を被着させた後、粉体に対しては還元性、炭素に対し
ては酸化性であるガス雰囲気中で熱処理を行い金属多孔
質体を製造する。
[Means for Solving the Problems] The first invention of the present application is to provide an adhesive property to the skeleton surface of a porous resin which is a base material, to which a powder is applied, and then to reduce the powder. And a metal porous body are manufactured by heat treatment in a gas atmosphere that is oxidative to carbon and carbon.

【0008】本願の第二の発明は、基体となる多孔性樹
脂の骨格表面に、粘着性を付与した後、Cr、Ti、A
lの中から選ばれる金属またはそれらの金属を含有する
合金の少なくとも一種を含む粉体を被着させ、非酸化性
の雰囲気中で熱処理を行い金属多孔質体を製造する。
The second invention of the present application is to provide Cr, Ti, A after the tackiness is imparted to the skeleton surface of the porous resin serving as the substrate.
A powder containing at least one of metals selected from the group 1 or alloys containing these metals is deposited and heat-treated in a non-oxidizing atmosphere to produce a metal porous body.

【0009】本願の発明に於いて、基体となる多孔性樹
脂はウレタンフォームなどの連続気泡構造を有する発泡
性樹脂、または不織布、織布等であり、形状は使用目的
に応じて適宜選択される。
In the invention of the present application, the porous resin serving as a substrate is a foaming resin having an open cell structure such as urethane foam, or a non-woven fabric or a woven fabric, and the shape is appropriately selected according to the purpose of use. .

【0010】基体の骨格表面には粉体の被着を容易に
し、剥離を防止する目的から粘着性を付与する。粘着性
はアクリル系、ゴム系等の粘着剤溶液またはフェノール
樹脂、エポキシ樹脂、フラン樹脂等接着性の樹脂溶液を
塗布することにより付与される。また、プラズマ処理等
により基体そのものに粘着性を付与することも可能であ
る。
The skeleton surface of the substrate is provided with tackiness for the purpose of facilitating the deposition of powder and preventing peeling. The tackiness is imparted by applying an acrylic or rubber adhesive solution or an adhesive resin solution such as a phenol resin, an epoxy resin, or a furan resin. Further, it is possible to give tackiness to the substrate itself by plasma treatment or the like.

【0011】基体の骨格表面に粘着性を付与した後、粉
体中で基体を揺動させる、あるいは基体に粉体をスプレ
イする等の方法により、基体の骨格表面に粉体を被着さ
せる。これにより乾燥状態の粉体を直接基体の骨格表面
に被着させることができる。粉体は瞬時に基体の骨格表
面に固定され、スラリー法のように乾燥過程で基体の骨
格表面を粉体が移動することがないため基体骨格の接合
部に粉体が集まることはない。また粉体の被着は基体の
骨格表面で起こり、粘着性層の厚みに依存しないため、
粉体の被着量は基体全域で均一になり一定重量の粉体を
被着させた場合、強度の大きい金属多孔質体が得られ
る。さらに粉体は粘着性の付与された部分にのみ選択的
に被着し、また溶媒を使用しないので粉体同士の凝集も
生じないのでスラリー法のように閉口部を形成すること
はない。
After imparting tackiness to the skeleton surface of the substrate, the powder is deposited on the skeleton surface of the substrate by a method such as rocking the substrate in the powder or spraying the powder onto the substrate. Thereby, the dry powder can be directly applied to the skeleton surface of the substrate. The powder is instantly fixed on the skeleton surface of the substrate, and unlike the slurry method, the powder does not move on the skeleton surface of the substrate during the drying process, so that the powder does not collect at the joint portion of the substrate skeleton. Also, since the powder deposition occurs on the skeleton surface of the substrate and does not depend on the thickness of the adhesive layer,
The amount of powder deposited is uniform over the entire substrate, and when a constant weight of powder is deposited, a porous metal body having high strength can be obtained. Further, the powder is selectively adhered only to the portion to which tackiness is imparted, and since no solvent is used, agglomeration of the powder particles does not occur, so that a closed portion is not formed unlike the slurry method.

【0012】以下本願の第一の発明について説明する。
粉体の材質は水素で還元可能なNi、Cu、Fe、C
o、Ag、Mo、W等の純金属、これらの合金、または
これらの酸化物の少なくとも一種が使用される。粉体の
粒径は基体の骨格表面に被着可能な範囲であれば良く、
0.01ミクロン〜100ミクロンの範囲にあることが
望ましい。また、粉体の形状は特に制限されるものでは
ない。また、粘着性を付与する工程と、粉体を被着させ
るる工程を繰り返すことにより任意の骨格厚さを持つ金
属多孔質体を得ることができる。
The first invention of the present application will be described below.
The material of the powder is Ni, Cu, Fe, C which can be reduced with hydrogen.
At least one of pure metals such as o, Ag, Mo, and W, alloys thereof, and oxides thereof is used. The particle size of the powder may be within a range that can be attached to the skeleton surface of the base,
It is desirable to be in the range of 0.01 to 100 microns. Further, the shape of the powder is not particularly limited. In addition, a porous metal body having an arbitrary skeleton thickness can be obtained by repeating the step of imparting tackiness and the step of depositing powder.

【0013】粉体被着後且つ熱処理前の基体を液体で濡
らし、その後乾燥することにより粉体を緻密に基体骨格
に被着させることが可能となる。このため熱処理により
強度の大きい金属多孔質体が得られる。これは基体の骨
格表面にある粉体を液体で濡らし、乾燥過程で液体の表
面張力により粉体を凝集させるものである。粉体を濡ら
す方法は基体の液体への浸漬、基体への液体の噴霧等に
より行われる。液体の種類は基体と粉体の粘着力を低下
させない材料であればよいが、水が最も実用的である。
またこの液体中にメチルセルロース,ポリビニルアルコ
ール等の増粘性の高分子、または金属塩を添加してもよ
い。
After the powder is deposited and before the heat treatment, the substrate is wetted with a liquid and then dried, whereby the powder can be densely deposited on the substrate skeleton. Therefore, a porous metal body having high strength can be obtained by heat treatment. This is to wet the powder on the skeleton surface of the substrate with a liquid and to agglomerate the powder by the surface tension of the liquid in the drying process. The method for wetting the powder is performed by immersing the substrate in a liquid, spraying the liquid on the substrate, or the like. Any type of liquid may be used as long as it does not reduce the adhesive force between the substrate and the powder, but water is the most practical.
Further, a thickening polymer such as methyl cellulose or polyvinyl alcohol, or a metal salt may be added to this liquid.

【0014】好ましくは基体を液体で濡らし乾燥後、熱
処理を行う。熱処理雰囲気は、粉体については還元力を
持ち金属に還元可能で、炭素については一酸化炭素など
の揮発性のガスに酸化し多孔質体より除去する作用を持
つ酸化性ガスの雰囲気で行う。そのために、熱処理雰囲
気ガスに例えば水素とともに酸化性ガスを添加する。酸
化性ガスとしては一般に水、二酸化炭素が使用される。
水は炭素と反応して一酸化炭素と、水素を生じ、二酸化
炭素は炭素と反応して一酸化炭素を生じる。これにより
炭素を多孔質体中より熱処理中に除去することが可能に
なり、脆弱な炭素合金の生成を防止できる。
Preferably, the substrate is wetted with a liquid and dried, and then heat treated. The heat treatment atmosphere is an oxidizing gas atmosphere which has a reducing power for powder and can be reduced to a metal, and carbon has an action of oxidizing a volatile gas such as carbon monoxide to remove it from the porous body. Therefore, an oxidizing gas is added to the heat treatment atmosphere gas together with hydrogen, for example. Generally, water and carbon dioxide are used as the oxidizing gas.
Water reacts with carbon to produce carbon monoxide and hydrogen, and carbon dioxide reacts with carbon to produce carbon monoxide. This makes it possible to remove carbon from the porous body during the heat treatment, and prevent the formation of a brittle carbon alloy.

【0015】酸化性ガスの添加量は実用的な炭素の酸化
反応速度が得られる濃度以上で、粉体の酸化を生じない
濃度以下であることが必要である。水の場合は使用する
粉体により異なるがガス体積比で0.1≦(H2O体積
/H2体積)≦10であることが好ましく、二酸化炭素
の場合も粉体により異なるがガス体積比で0.1≦(C
2体積/H2体積)≦10であることが好ましい。これ
らの雰囲気ガスはアルゴン、窒素等の不活性ガスで希釈
してもよい。
It is necessary that the amount of the oxidizing gas added is at least a concentration at which a practical carbon oxidation reaction rate can be obtained and at a concentration at which the powder is not oxidized. In the case of water, it is preferable that the gas volume ratio is 0.1 ≦ (H 2 O volume / H 2 volume) ≦ 10 although it varies depending on the powder used, and in the case of carbon dioxide, the gas volume ratio also varies depending on the powder. 0.1 ≦ (C
It is preferable that O 2 volume / H 2 volume) ≦ 10. These atmosphere gases may be diluted with an inert gas such as argon or nitrogen.

【0016】熱処理温度は使用する粉体により異なる
が、一般に絶対温度で示した金属の融点(Tm)の7割
から9.5割の温度範囲行う。高温で熱処理を行うほど
金属粉体間の焼結が進み強度の大きい金属多孔質体が得
られるため、Tmの8割以上の温度で行うことが好まし
い。
Although the heat treatment temperature varies depending on the powder used, it is generally carried out in a temperature range of 70% to 9.5% of the melting point (T m ) of the metal shown in absolute temperature. It is preferable to perform the heat treatment at a temperature of 80% or more of T m , because the higher the heat treatment is, the more the sintering between the metal powders proceeds, and the metal porous body having high strength is obtained.

【0017】以下本願の第二の発明について説明する。
粉体の材質は水素で還元不可能なCr、Ti、Alの中
から選ばれる純金属、それらの金属を含む合金あるいは
これらの混合物が使用される。これらの粉体は酸化物を
生じやすい化学的に非な金属材料を含んでおり、一旦酸
化物を生じると、ガス雰囲気中で金属に還元できないと
言う問題がある。このためこれらの粉体を使用した場
合、金属多孔質体を得るためには製造工程において粉体
の酸化を防止する必要が生じる。粉体の粒径は基体の骨
格表面に被着可能な範囲であれば良く、0.01ミクロ
ン〜100ミクロンの範囲にあることが望ましい。ま
た、粉体の形状は特に制限されるものではない。また、
粘着性を付与する工程と、粉体を被着させるる工程を繰
り返すことにより任意の骨格厚さを持つ金属多孔質体を
得ることができる。
The second invention of the present application will be described below.
As the material of the powder, a pure metal selected from Cr, Ti, and Al that cannot be reduced by hydrogen, an alloy containing these metals, or a mixture thereof is used. These powders include a chemically non-metallic material that easily forms an oxide, and once an oxide is formed, there is a problem that it cannot be reduced to a metal in a gas atmosphere. Therefore, when these powders are used, it is necessary to prevent the powders from being oxidized in the manufacturing process in order to obtain the metal porous body. The particle size of the powder may be in the range that can be adhered to the skeleton surface of the substrate, and is preferably in the range of 0.01 to 100 microns. Further, the shape of the powder is not particularly limited. Also,
By repeating the step of imparting tackiness and the step of depositing powder, it is possible to obtain a metal porous body having an arbitrary skeleton thickness.

【0018】粉体被着後且つ熱処理前の基体を液体で濡
らし、その後乾燥することにより粉体を緻密に基体骨格
に被着させることが可能となる。このため熱処理後によ
り強度の大きい金属多孔質体が得られる。これは基体の
骨格表面にある粉体を液体で濡らし、乾燥過程で液体の
表面張力により粉体を凝集させるものである。粉体を濡
らす方法は基体の液体への浸漬、基体への液体の噴霧等
により行われる。液体の種類は基体と粉体の粘着力を低
下させない材料であればよいが、水が最も実用的であ
る。またこの液体中にメチルセルロース,ポリビニルア
ルコール等の増粘性の高分子、または金属塩を添加して
もよい。
After the powder is deposited and before the heat treatment, the substrate is wetted with a liquid and then dried, whereby the powder can be densely deposited on the substrate skeleton. Therefore, after heat treatment, a metal porous body having high strength can be obtained. This is to wet the powder on the skeleton surface of the substrate with a liquid and to agglomerate the powder by the surface tension of the liquid in the drying process. The method for wetting the powder is performed by immersing the substrate in a liquid, spraying the liquid on the substrate, or the like. Any type of liquid may be used as long as it does not reduce the adhesive force between the substrate and the powder, but water is the most practical. Further, a thickening polymer such as methyl cellulose or polyvinyl alcohol, or a metal salt may be added to this liquid.

【0019】好ましくは基体を液体で濡らし乾燥後、熱
処理を行う。熱処理は粉体の焼結を目的としたものであ
り、粉体の酸化を防止する目的から非酸化性の雰囲気中
で行う。非酸化性の雰囲気とは酸素、二酸化炭素、水等
の酸化剤を含まない雰囲気であり、還元性ガス雰囲気、
不活性ガス雰囲気及び真空雰囲気がある。還元性ガス雰
囲気は水素、一酸化炭素等の還元作用のあるガスを含む
雰囲気であり、不活性ガス雰囲気は、熱処理する金属と
反応性の無い、アルゴン、窒素等の雰囲気である。真空
雰囲気は一般に圧力0.1Pa以下の高真空雰囲気であ
る。
Preferably, the substrate is wetted with a liquid and dried, and then heat treated. The heat treatment is intended for sintering the powder, and is performed in a non-oxidizing atmosphere for the purpose of preventing the powder from being oxidized. The non-oxidizing atmosphere is an atmosphere containing no oxidizing agent such as oxygen, carbon dioxide, and water, and a reducing gas atmosphere,
There are an inert gas atmosphere and a vacuum atmosphere. The reducing gas atmosphere is an atmosphere containing a gas having a reducing action such as hydrogen and carbon monoxide, and the inert gas atmosphere is an atmosphere having no reactivity with the metal to be heat-treated, such as argon and nitrogen. The vacuum atmosphere is generally a high vacuum atmosphere having a pressure of 0.1 Pa or less.

【0020】非酸化性の雰囲気中で熱処理を行うことに
より、酸化物を生じることなく焼結を行うことが可能に
なり、強度の大きい金属多孔質体を得ることができる。
一方、非酸化性の雰囲気中で熱処理を行うため、基体と
して使用する多孔性樹脂が分解して炭素を生じる。炭素
は焼結の進行を阻害するため、炭素を除去することがで
きれば、さらに強度の大きい金属多孔質体が得られるこ
とが期待できる。しかし、金属の酸化物を生じることな
く炭素を除去することは困難である。そこで炭素の影響
についてCr、Ti、Alを含有する粉体で検討したと
ころ、多孔性樹脂が分解して生じる程度の炭素量であれ
ば残留しても、実用上問題のない強度が得られることが
分かった。これはこれらの材料の炭素固溶量が大きいた
めと考えられる。
By carrying out the heat treatment in a non-oxidizing atmosphere, it becomes possible to carry out sintering without producing oxides, and it is possible to obtain a porous metal body having high strength.
On the other hand, since the heat treatment is performed in a non-oxidizing atmosphere, the porous resin used as the substrate decomposes to generate carbon. Since carbon inhibits the progress of sintering, if the carbon can be removed, it can be expected that a metal porous body having even higher strength can be obtained. However, it is difficult to remove carbon without producing metal oxides. Therefore, when the powder containing Cr, Ti, and Al was examined for the effect of carbon, it was found that even if the amount of carbon remained was such that the porous resin was decomposed, there was no problem in practical use. I understood. It is considered that this is because the amount of carbon solid solution of these materials is large.

【0021】熱処理温度は金属により異なり、使用する
金属の絶対温度で示した融点(Tm)の7割から9.5割
の温度範囲行う。高温で熱処理を行うほど金属粉体間の
焼結が進み強度の大きい金属多孔質体が得られるため、
mの8割以上で行うのが好ましい。
The heat treatment temperature varies depending on the metal, and the temperature is in the range of 70% to 9.5% of the melting point (T m ) indicated by the absolute temperature of the metal used. As the heat treatment is performed at a higher temperature, the sintering between the metal powders progresses and a porous metal body with high strength is obtained.
It is preferably performed at 80% or more of T m .

【0022】[0022]

【実施例】【Example】

実施例1 基体となる多孔性樹脂として、厚み3mmのポリウレタン
フォーム(商品名エバーライトSF、(株)ブリジスト
ン製)を使用した。このポリウレタンフォームをメチル
エチルケトンを溶媒とする樹脂分5重量%のアクリル系
の粘着剤溶液に浸漬した後、余分な溶液をロールを通し
て除去し粘着剤を塗布することにより、基体骨格表面に
粘着性を付与した。100℃で10分乾燥し溶媒を除去
した後、平均粒径5μmのカルボニルNi粉中に基体を
挿入し揺動させることによりNi粉を被着させた。水に
浸漬し乾燥後、1150℃で20分間、水:20容量
%、水素:60容量%、窒素:20容量%の混合ガスを
流した雰囲気中で熱処理した。これによりNi粉が焼結
してポリウレタンフォームを転写した形状をもつNiの
多孔質体aを得た。表1に多孔質体aの特性を示す。
Example 1 A 3 mm thick polyurethane foam (trade name Everlite SF, manufactured by Bridgestone Corporation) was used as the porous resin to be the substrate. This polyurethane foam is dipped in an acrylic adhesive solution with a resin content of 5% by weight using methyl ethyl ketone as a solvent, and then the excess solution is removed through a roll and the adhesive is applied to impart adhesiveness to the substrate skeleton surface. did. After drying at 100 ° C. for 10 minutes to remove the solvent, the Ni powder was deposited by inserting the substrate into carbonyl Ni powder having an average particle size of 5 μm and rocking. After immersion in water and drying, heat treatment was performed at 1150 ° C. for 20 minutes in an atmosphere in which a mixed gas of water: 20% by volume, hydrogen: 60% by volume, nitrogen: 20% by volume was flowed. As a result, a Ni porous body a having a shape in which the Ni powder was sintered and the polyurethane foam was transferred was obtained. Table 1 shows the characteristics of the porous body a.

【0023】実施例2 水に浸漬し乾燥後、1150℃で20分間、二酸化炭
素:20容量%、水素:60容量%、窒素:20容量%
の混合ガスを流した雰囲気中で熱処理した以外は実施例
1と同様にしてNiの多孔質体bを得た。表1に多孔質
体bの特性を示す。
Example 2 After soaking in water and drying, at 1150 ° C. for 20 minutes, carbon dioxide: 20% by volume, hydrogen: 60% by volume, nitrogen: 20% by volume
A Ni porous body b was obtained in the same manner as in Example 1 except that the heat treatment was performed in the atmosphere in which the mixed gas of 3 was flowed. Table 1 shows the characteristics of the porous body b.

【0024】比較例1 基体となる多孔性樹脂として実施例1のポリウレタンフ
ォームを用いた。このポリウレタンフォームを、実施例
1と同様のカルボニルNi粉:50重量%、メチルセル
ロース:2重量%、水:48重量%からなる組成のNi
粉スラリーに浸漬し、余剰のNi粉スラリーを除去する
ことにより、基体骨格表面にNi粉を塗着した。100
℃で30分乾燥し水分を除去した後、1150℃で20
分間、水素:75容量%、窒素:25容量%の混合ガス
を流した雰囲気中で熱処理した。これによりNi粉が焼
結してポリウレタンフォームを転写した形状をもつNi
の多孔質体cを得た。表1に多孔質体cの特性を示す。
Comparative Example 1 The polyurethane foam of Example 1 was used as the porous resin to be the substrate. This polyurethane foam had the same composition as in Example 1 except that carbonyl Ni powder: 50% by weight, methylcellulose: 2% by weight, water: 48% by weight.
The Ni powder was applied to the surface of the base skeleton by immersing it in the powder slurry and removing the excess Ni powder slurry. 100
After drying at 30 ° C for 30 minutes to remove water, it is kept at 1150 ° C for 20 minutes.
Heat treatment was performed in an atmosphere in which a mixed gas of hydrogen: 75% by volume and nitrogen: 25% by volume was allowed to flow for one minute. As a result, Ni powder is sintered and Ni having a shape in which polyurethane foam is transferred
To obtain a porous body c. Table 1 shows the characteristics of the porous body c.

【0025】比較例2 水に浸漬し乾燥後、1150℃で20分間、水:20容
量%、水素:60容量%、窒素:20容量%の混合ガス
を流した雰囲気中で熱処理した以外は比較例1と同様に
してNiの多孔質体dを得た。表1に多孔質体dの特性
を示す。
Comparative Example 2 A comparison was made except that after immersing in water and drying, heat treatment was carried out at 1150 ° C. for 20 minutes in an atmosphere in which a mixed gas of water: 20% by volume, hydrogen: 60% by volume, nitrogen: 20% by volume was flown. In the same manner as in Example 1, a Ni porous body d was obtained. Table 1 shows the characteristics of the porous body d.

【0026】比較例3 水に浸漬し乾燥後、1150℃で20分間、水素:75
容量%、窒素:25容量%の混合ガスを流した雰囲気で
熱処理する以外は実施例1と同様にしてNiの多孔質体
eを得た。この混合ガスは、粉体に対しては還元性であ
り炭素に対しては不活性である。表1に多孔質体eの特
性を示す。
Comparative Example 3 After soaking in water and drying, hydrogen was added at 1150 ° C. for 20 minutes and hydrogen: 75
A porous body e of Ni was obtained in the same manner as in Example 1 except that the heat treatment was performed in an atmosphere in which a mixed gas of 25% by volume of nitrogen and 25% by volume of nitrogen was flowed. This mixed gas is reducing for powder and inactive for carbon. Table 1 shows the characteristics of the porous body e.

【0027】 表1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 見かけ密度 圧力損失 引張強度 炭素含有量 (g/cm3) (mmAq) (kgf/cm2) (ppm) ─────────────────────────────────── 多孔質体a 0.36 2.6 11.8 11 多孔質体b 0.37 2.6 11.5 15 多孔質体c 0.38 4.8 1.5 1600 多孔質体d 0.38 5.1 4.4 10 多孔質体e 0.37 2.6 2.4 2400 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 表1に於いて、圧力損失は風速1m/分のときの値であ
る。実施例1、2と比較例1、2を比較すると、本願の
第一の発明では粉体スラリーを塗布する方法に比べて圧
力損失の小さい、通気性のよい多孔質体が得られること
が分かる。また、実施例1、2と比較例3、5を比較す
ると、本願の第一の発明では酸化性のガスを含む水素ガ
ス雰囲気中でで熱処理することにより、炭素含有量が少
なく強度の大きい多孔質体が得られることがわかる。
Table 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Apparent density Pressure loss Tensile strength Carbon content ( g / cm 3 ) (mmAq) (kgf / cm 2 ) (ppm) ────────────────────────────────── ── Porous body a 0.36 2.6 11.8 11 Porous body b 0.37 2.6 11.5 15 Porous body c 0.38 4.8 1.5 1600 Porous body d 0.38 5.1 4.4 10 Porous body e 0.37 2.6 2.4 2400 ━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━ In Table 1, the pressure loss is the value when the wind speed is 1 m / min. Comparing Examples 1 and 2 with Comparative Examples 1 and 2, it can be seen that in the first invention of the present application, a porous body having a small pressure loss and good air permeability can be obtained as compared with the method of applying the powder slurry. . In addition, comparing Examples 1 and 2 with Comparative Examples 3 and 5, in the first invention of the present application, heat treatment in a hydrogen gas atmosphere containing an oxidizing gas results in a porous material having a low carbon content and high strength. It can be seen that a body is obtained.

【0028】実施例3 基体となる多孔性樹脂として、厚み3mmのポリウレタン
フォーム(商品名エバーライトSF、(株)ブリジスト
ン製)を使用した。このポリウレタンフォームをメチル
エチルケトンを溶媒とする樹脂分5重量%のアクリル系
の粘着剤溶液に浸漬した後、余分な溶液をロールを通し
て除去し粘着剤を塗布することにより、基体骨格表面に
粘着性を付与した。100℃で10分乾燥し溶媒を除去
した後、平均粒径5μmのSUS304粉(Cr:18
重量%、Ni:8重量%、Fe:74重量%合金)中に
基体を挿入し揺動させることによりSUS304粉を被
着させた。水に浸漬し乾燥後、1100℃で20分間、
水素:75容量%、窒素:25容量%の混合ガスを流し
た還元雰囲気中で熱処理した。これによりSUS304
粉が焼結してポリウレタンフォームを転写した形状をも
つSUS304の多孔質体fを得た。炭素含有量は3.
2重量%であった。表2に多孔質体fの特性を示す。
Example 3 Polyurethane foam (trade name: Everlite SF, manufactured by Bridgestone Co., Ltd.) having a thickness of 3 mm was used as the porous resin to be the substrate. This polyurethane foam is dipped in an acrylic adhesive solution with a resin content of 5% by weight using methyl ethyl ketone as a solvent, and then the excess solution is removed through a roll and the adhesive is applied to impart adhesiveness to the substrate skeleton surface. did. After drying at 100 ° C. for 10 minutes to remove the solvent, SUS304 powder having an average particle size of 5 μm (Cr: 18
Wt%, Ni: 8 wt%, Fe: 74 wt% alloy), and the SUS304 powder was adhered by inserting the substrate and rocking. After soaking in water and drying, 1100 ° C for 20 minutes,
Heat treatment was performed in a reducing atmosphere in which a mixed gas of hydrogen: 75% by volume and nitrogen: 25% by volume was flown. This makes SUS304
A porous body f of SUS304 having a shape in which the powder was sintered and a polyurethane foam was transferred was obtained. Carbon content is 3.
It was 2% by weight. Table 2 shows the characteristics of the porous body f.

【0029】比較例4 基体となる多孔性樹脂として実施例のポリウレタンフォ
ームを用いた。このポリウレタンフォームを、実施例と
同一のSUS304粉:50重量%、メチルセルロー
ス:2重量%、水:48重量%からなる組成のSUS3
04粉スラリーに浸漬し、余剰のSUS304粉スラリ
ーを除去することにより、基体骨格表面にSUS304
粉を塗着した。100℃で30分乾燥し水分を除去した
後、1100℃で20分間、水素:75v容量%、窒
素:25容量%の混合ガスを流した雰囲気中で熱処理し
た。これによりSUS304粉が焼結してポリウレタン
フォームを転写した形状をもつSUS304の多孔質体
gを得た。炭素含有量は3.5重量%であった。表2に
多孔質体gの特性を示す。
Comparative Example 4 The polyurethane foam of the example was used as the porous resin to be the substrate. This polyurethane foam was made of the same SUS304 powder as in the example: 50% by weight, methylcellulose: 2% by weight, water: 48% by weight.
It is immersed in 04 powder slurry and the excess SUS304 powder slurry is removed.
I applied the powder. After drying at 100 ° C. for 30 minutes to remove water, heat treatment was performed at 1100 ° C. for 20 minutes in an atmosphere in which a mixed gas of hydrogen: 75 v% by volume and nitrogen: 25% by volume was flowed. As a result, SUS304 powder was sintered to obtain a porous body g of SUS304 having a shape in which polyurethane foam was transferred. The carbon content was 3.5% by weight. Table 2 shows the characteristics of the porous body g.

【0030】 表2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 見かけ密度 圧力損失 引張強度 (g/cm3) (mmAq) (kgf/cm2) ───────────────────────────── 多孔質体f 0.33 2.6
8.8 多孔質体g 0.35 4.5
2.9 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
表2に於いて、圧力損失は風速1m/分のときの値であ
る。実施例と比較例を比較すると、実施例では圧力損失
が小さい、通気性のよい多孔質体が得られることが分か
る。また、実施例では強度の大きい多孔質体が得られる
ことが分かる。
Table 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Apparent density Pressure loss Tensile strength (g / cm 3 ) (mmAq) ( kgf / cm 2 ) ───────────────────────────── Porous body f 0.33 2.6
8.8 Porous body g 0.35 4.5
2.9 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
In Table 2, the pressure loss is the value when the wind speed is 1 m / min. Comparing the example and the comparative example, it is found that a porous body having a small pressure loss and good air permeability can be obtained in the example. Further, it can be seen that in the example, a porous body having high strength can be obtained.

【0031】[0031]

【発明の効果】本願の第一の発明によれば、基体となる
多孔性樹脂の骨格表面に、粘着性を付与し、粉体を被着
させた後、粉体に対しては還元性、炭素に対しては酸化
性のガス雰囲気中で熱処理するという簡便な方法によ
り、高多孔性で強度が大きい金属多孔質体を得ることが
できる。本願の第二の発明によれば、基体となる多孔性
樹脂の骨格表面に、粘着性を付与し、粉体を被着させた
後、還元性または不活性、真空雰囲気中で熱処理すると
いう簡便な方法により、高多孔性で強度が大きいCr、
Ti、Al等の化学的に活性な金属を含む金属多孔質体
を得ることができる。
According to the first invention of the present application, the skeleton surface of the porous resin serving as the substrate is made to have tackiness, and after the powder is adhered, the powder is reducible, A porous metal body having high porosity and high strength can be obtained by a simple method of heat treating carbon in an oxidizing gas atmosphere. According to the second invention of the present application, the skeleton surface of the porous resin serving as the substrate is provided with tackiness, and after the powder is adhered, the heat treatment is performed in a reducing atmosphere or an inert atmosphere in a vacuum atmosphere. Various methods, high porosity and high strength Cr,
A metal porous body containing a chemically active metal such as Ti or Al can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基体となる多孔性樹脂の骨格表面に、粘
着性を付与し、粉体を被着させた後、粉体に対しては還
元性、炭素に対しては酸化性であるガス雰囲気中で熱処
理を行うことを特徴とする金属多孔質体の製造方法。
1. A gas which is adhesive to the skeleton surface of a porous resin serving as a substrate and is coated with a powder, and then a reducing agent for the powder and an oxidizing agent for the carbon. A method for producing a porous metal body, which comprises performing heat treatment in an atmosphere.
【請求項2】 粉体に対しての還元性ガスとして水素、
炭素に対しての酸化性ガスとして水及び/又は二酸化炭
素を含むガス雰囲気中で熱処理を行う請求項1記載の金
属多孔質体の製造方法。
2. Hydrogen as a reducing gas for powder,
The method for producing a metal porous body according to claim 1, wherein the heat treatment is performed in a gas atmosphere containing water and / or carbon dioxide as an oxidizing gas for carbon.
【請求項3】 基体となる多孔性樹脂の骨格表面に、粘
着性を付与した後、Cr、Ti、Alの中から選ばれる
金属またはそれらの金属を含有する合金の少なくとも一
種を含む粉体を被着させ、非酸化性の雰囲気中で熱処理
を行うことを特徴とする金属多孔質体の製造方法。
3. A powder containing at least one of a metal selected from Cr, Ti, and Al or an alloy containing these metals, after adhesion is imparted to the skeleton surface of a porous resin serving as a substrate. A method for producing a porous metal body, which comprises depositing and performing heat treatment in a non-oxidizing atmosphere.
【請求項4】 粉体被着後且つ熱処理前、被着された粉
体を液体で濡らす請求項1〜3各項記載の金属多孔質体
の製造方法。
4. The method for producing a porous metal body according to claim 1, wherein the deposited powder is wetted with a liquid after the powder deposition and before the heat treatment.
JP15145895A 1995-06-19 1995-06-19 Method for producing metal porous body Expired - Fee Related JP3413311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15145895A JP3413311B2 (en) 1995-06-19 1995-06-19 Method for producing metal porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15145895A JP3413311B2 (en) 1995-06-19 1995-06-19 Method for producing metal porous body

Publications (2)

Publication Number Publication Date
JPH093566A true JPH093566A (en) 1997-01-07
JP3413311B2 JP3413311B2 (en) 2003-06-03

Family

ID=15519003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15145895A Expired - Fee Related JP3413311B2 (en) 1995-06-19 1995-06-19 Method for producing metal porous body

Country Status (1)

Country Link
JP (1) JP3413311B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107012353A (en) * 2017-04-21 2017-08-04 新疆大学 A kind of inexpensive tackifier and foaming agent for preparing foamed aluminium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107012353A (en) * 2017-04-21 2017-08-04 新疆大学 A kind of inexpensive tackifier and foaming agent for preparing foamed aluminium

Also Published As

Publication number Publication date
JP3413311B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
US5881353A (en) Method for producing porous bodies
KR100865431B1 (en) Open porous metallic foam body and method for manufacturing
KR100768805B1 (en) Porous liquid absorbing-and-holding member, process for production thereof, and alcohol absorbing-and-holding member
WO2020049815A1 (en) Metal porous body, fuel cell, and production method for metal porous body
JP3413311B2 (en) Method for producing metal porous body
KR102612696B1 (en) Method for producing an open pore molded body formed of metal with a modified surface and a molded body manufactured using the method
US20200263306A1 (en) Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method
EP4325601A3 (en) Cathode material for lithium-sulfur battery and lithium-sulfur battery including same
CN114395912B (en) Method for manufacturing antibacterial fiber
US3634144A (en) Process for preparing lithium-filled foraminous metal bodies
JP3218845B2 (en) Method for manufacturing three-dimensional copper network structure
JP3407813B2 (en) Method for manufacturing three-dimensional network structure
JP3180553B2 (en) Method for manufacturing three-dimensional network structure
US4783436A (en) Carrier material for catalysts method for producing it and platinum group metal catalyst supported on the carrier
CN112955269B (en) Method for producing an open-pore metal body with an oxide layer and metal body produced by this method
RU2772522C2 (en) Method for producing an open-pore shaped body which has a modified surface and is made of metal, and a shaped body obtained by said method
JP3375011B2 (en) Method for manufacturing porous body
JPS62263974A (en) Production of porous metallic nickel substrate
JP3247814B2 (en) Method for producing porous metal body
JPH076765A (en) Manufacture of porous current collector for battery
CN101563482B (en) Porous titanium having low contact resistance
JPH0949037A (en) Production of metallic porous body
CN116273056A (en) Film/fiber-supported metal nanoparticle and synthesis method thereof
JPH01184206A (en) Manufacture of plate-shaped porous sintered compact
JPS58139743A (en) Production of metallic nickel catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees