JPH0933975A - Correction optical device - Google Patents
Correction optical deviceInfo
- Publication number
- JPH0933975A JPH0933975A JP20676995A JP20676995A JPH0933975A JP H0933975 A JPH0933975 A JP H0933975A JP 20676995 A JP20676995 A JP 20676995A JP 20676995 A JP20676995 A JP 20676995A JP H0933975 A JPH0933975 A JP H0933975A
- Authority
- JP
- Japan
- Prior art keywords
- optical axis
- correction
- plane
- gravity
- correcting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Adjustment Of Camera Lenses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、カメラ等の光学機
器に搭載され、振動に起因する像振れを補正する為の補
正光学装置の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a correction optical device mounted on an optical device such as a camera for correcting image blur caused by vibration.
【0002】[0002]
【従来の技術】現在のカメラは露出決定やピント合せ等
の撮影にとって重要な作業は全て自動化されているた
め、カメラ操作に未熟な人でも撮影失敗を起す可能性は
非常に少なくなっている。2. Description of the Related Art In a current camera, all operations important for photographing, such as exposure determination and focusing, are automated, so that even an inexperienced person in camera operation is very unlikely to fail in photographing.
【0003】また、最近では、カメラに加わる手振れを
防ぐシステムも研究されており、撮影者の撮影失敗を誘
発する要因は殆ど無くなってきている。In recent years, a system for preventing a camera shake from being applied to a camera has been studied, and a factor which causes a photographer to fail in photographing has almost disappeared.
【0004】ここで、手振れを防ぐシステムについて簡
単に説明する。Here, a system for preventing camera shake will be briefly described.
【0005】撮影時のカメラの手振れは、周波数として
通常1Hz乃至12Hzの振動であるが、シャッタのレ
リーズ時点においてこのような手振れを起していても像
振れの無い写真を撮影可能とする為の基本的な考えとし
て、上記手振れによるカメラの振動を検出し、その検出
値に応じて補正レンズを変位させてやらなければならな
い。従って、カメラの振れが生じても像振れを生じない
写真を撮影できることを達成するためには、第1にカメ
ラの振動を正確に検出し、第2に手振れによる光軸変化
を補正することが必要となる。The camera shake at the time of photographing is generally a vibration of 1 Hz to 12 Hz as a frequency. At the time of release of the shutter, even if such camera shake occurs, it is possible to take a picture without image shake. As a basic idea, it is necessary to detect the camera shake caused by the camera shake and to displace the correction lens according to the detected value. Therefore, in order to achieve the ability to take a picture without causing image shake even if camera shake occurs, first, it is necessary to accurately detect the camera vibration and secondly correct the optical axis change due to camera shake. Will be needed.
【0006】この振動(カメラ振れ)の検出は、原理的
にいえば、角加速度,角速度,角変位等を検出する振動
検出手段と、該センサの出力信号を電気的或は機械的に
積分して角変位を出力するカメラ振れ検出手段とをカメ
ラに搭載することによって行うことができる。そして、
この検出情報に基づいて撮影光軸を偏心させる補正光学
機構を駆動させることにより、像振れ抑制が可能とな
る。In principle, this vibration (camera shake) is detected by means of vibration detecting means for detecting angular acceleration, angular velocity, angular displacement, etc., and by integrating the output signal of the sensor electrically or mechanically. The camera shake detecting means for outputting the angular displacement can be mounted on the camera. And
The image blur can be suppressed by driving the correction optical mechanism that decenters the photographing optical axis based on the detection information.
【0007】ここで、振動検出手段を用いた防振システ
ムについて、図7を用いてその概要を説明する。Here, an outline of an anti-vibration system using vibration detecting means will be described with reference to FIG.
【0008】図7の例は、図示矢印81方向のカメラ縦
振れ81p及び横振れ81yに由来する像振れを抑制す
るシステムの図である。The example of FIG. 7 is a diagram of a system for suppressing an image blur caused by a camera vertical shake 81p and a horizontal shake 81y in a direction indicated by an arrow 81.
【0009】同図中、82はレンズ鏡筒、83p,83
yは各々カメラ縦振れ振動、カメラ横振れ振動を検出す
る振動検出手段で、それぞれの振動検出方向を84p,
84yで示してある。85は補正(光学)手段(86
p,86yは各々補正手段85に推力を与えるコイル、
86p,86yは補正手段85の位置を検出する位置検
出素子)であり、該補正手段85には後述する位置制御
ループを設けており、振動検出手段83p,83yの出
力を目標値として駆動され、像面88での安定を確保す
る。In the figure, reference numeral 82 denotes a lens barrel, 83p, 83
y is a vibration detecting means for detecting a camera vertical vibration and a camera horizontal vibration, respectively.
This is indicated by 84y. 85 is a correction (optical) means (86
p and 86y are coils for applying thrust to the correction means 85,
86p and 86y are position detection elements for detecting the position of the correction means 85), and the correction means 85 is provided with a position control loop described later, and is driven with the outputs of the vibration detection means 83p and 83y as target values, The stability on the image plane 88 is secured.
【0010】図8はかかる目的に好的に用いられる補正
手段の構造を示す分解斜視図であり、以下図9〜図16
を参照しつつ、この構造について説明する。FIG. 8 is an exploded perspective view showing the structure of a correction means that is preferably used for this purpose.
This structure will be described with reference to FIG.
【0011】地板71(図10に拡大図あり)の背面突
出耳71a〔3ケ所(1ケ所は隠れて見えない)〕は不
図示の鏡筒に嵌合し、公知の鏡筒コロ等が孔71bにネ
ジ止めされ、鏡筒に固定される。The rear protruding ears 71a [3 places (1 place is hidden and not visible)] of the main plate 71 (enlarged view in FIG. 10) are fitted to a lens barrel (not shown), and a known lens barrel roller or the like is bored. It is screwed to 71b and fixed to the lens barrel.
【0012】磁性体であり光択メッキが施された第2ヨ
ーク72は、孔72aを貫通するネジで地板71の孔7
1cにネジ止めされる。又、第2ヨーク72にはネオジ
ウムマグネット等の永久磁石(シフト用マグネット)7
3が磁気的に吸着されている。尚、各永久磁石73の磁
化方向は図8に図示した矢印73aの方向である。The second yoke 72, which is a magnetic material and has been subjected to selective plating, is provided with a screw penetrating the hole 72a to form a hole 7 in the main plate 71.
1c. The second yoke 72 has a permanent magnet (shift magnet) 7 such as a neodymium magnet.
3 are magnetically attracted. Note that the magnetization direction of each permanent magnet 73 is the direction of the arrow 73a shown in FIG.
【0013】レンズ74がCリング等で固定された支持
枠75(図11に拡大図あり)にはコイル76p,76
y(シフト用コイル)がパッチン接着(強引に押し込ま
れて接合された状態を意味する)され(図11は未接
着)、又、IRED等の投光素子77p,77yも支持
枠75の背面に接着され、スリット75ap,75ay
を通してその射出光が後述するPSD等の位置検出素子
78p,78yに入射する。Coils 76p, 76 are provided on a support frame 75 (enlarged view in FIG. 11) to which a lens 74 is fixed by a C ring or the like.
y (shift coil) is patch-bonded (meaning a state in which it is forcedly pushed and bonded) (FIG. 11 is not bonded), and the light projecting elements 77p and 77y such as IRED are also attached to the back surface of the support frame 75. Bonded and slits 75ap, 75ay
The emitted light is incident on the position detection elements 78p and 78y such as PSD described later through.
【0014】図9は補正手段の組立後の横断面図であ
り、該図を用いて補正手段の組立について説明する。FIG. 9 is a cross-sectional view of the correction means after assembly, and the assembly of the correction means will be described with reference to this drawing.
【0015】支持枠75の孔75b´にボールベアリン
グ等の支持球79b(3ケ所)を例えばフッソ系のグリ
スを塗布して仮止めする。この状態で、図8に戻って、
支持枠75の軸受部75dにL字形の軸711(非磁性
のステンレス材)をグリスを塗布して挿入し、他端を地
板71に形成された軸受部71d(同様にグリス塗布)
に挿入し、3ケ所の支持球79bを共に第2ヨーク72
に乗せて支持枠75を地板71内に収める。Support balls 79b (three places) such as ball bearings are temporarily fixed to the holes 75b 'of the support frame 75 by applying, for example, fluorine-based grease. In this state, return to FIG.
The L-shaped shaft 711 (nonmagnetic stainless material) is applied to the bearing portion 75d of the support frame 75 by applying grease, and the other end of the bearing portion 71d is formed on the base plate 71 (similarly applying grease).
Into the second yoke 72
And put the support frame 75 in the main plate 71.
【0016】この後、支持枠75の孔75bにチャージ
バネ710,ボールベアリング等の支持球79aの順に
組み入れる。After that, the charge spring 710 and the support ball 79a such as a ball bearing are assembled in the hole 75b of the support frame 75 in this order.
【0017】次に、支持枠75の軸受部75dには例え
ばフッソ系のグリスを塗布し、ここにL字形の軸711
(非磁性のステンレス材)を挿入し(図8参照)、L字
軸711の他端は地板71に形成された軸受部71d
(同様にグリスを塗布し)に挿入する。Next, for example, fluorine-based grease is applied to the bearing portion 75d of the support frame 75, and the L-shaped shaft 711 is applied here.
(Non-magnetic stainless steel) is inserted (see FIG. 8), and the other end of the L-shaped shaft 711 is a bearing 71 d formed on the base plate 71.
(Apply grease in the same way) and insert.
【0018】次に、図8に示す第1ヨーク712の位置
決め孔712a(3ケ所)を地板71の図10に示すピ
ン71f(3ケ所)に嵌合させ、同じく図10に示す受
け面71e(5ケ所)にて第1ヨーク712を受けて地
板71に対し磁気的に結合する(永久磁石73の磁力に
より)。Next, the positioning holes 712a (3 places) of the first yoke 712 shown in FIG. 8 are fitted to the pins 71f (3 places) shown in FIG. 10 of the base plate 71, and the receiving surface 71e (also shown in FIG. 10). The first yoke 712 is received at five locations and magnetically coupled to the base plate 71 (by the magnetic force of the permanent magnet 73).
【0019】これにより、第1ヨーク712の背面が支
持球79aと当接し、図9に示す様に支持枠75は第1
ヨーク712と第2ヨーク72にて挟持され、光軸方向
の位置決めが為される。As a result, the back surface of the first yoke 712 abuts on the support ball 79a, and the support frame 75 is moved to the first position as shown in FIG.
It is sandwiched between the yoke 712 and the second yoke 72 to perform positioning in the optical axis direction.
【0020】支持球79a,79bと第1ヨーク71
2,第2ヨーク72の互いの当接面にもフッソ系グリス
が塗布してあり、支持枠75は地板71に対して光軸と
直交する平面内にて自由に摺動可能である。Support balls 79a, 79b and first yoke 71
2. Fluoro-based grease is also applied to the contact surfaces of the second yoke 72 with each other, and the support frame 75 is freely slidable with respect to the base plate 71 in a plane orthogonal to the optical axis.
【0021】尚、チャージバネ710は第1ヨーク72
に挟まれチャージされ、レンズ74は第2ヨーク72側
に片寄せされ、位置を安定化させられている。The charge spring 710 is the first yoke 72.
The lens 74 is charged by being sandwiched between the two, and the lens 74 is biased toward the second yoke 72 side to stabilize the position.
【0022】上記L字軸711は支持枠75が地板71
に対し矢印713p,713y方向にのみ摺動可能に支
持していることになり、これにより支持枠75の地板7
1に対する光軸回りの相対的回転(ローリング)を規制
している。In the L-shaped shaft 711, the support frame 75 has a base plate 71.
On the other hand, it means that it is slidably supported only in the directions of arrows 713p and 713y, whereby the base plate 7 of the support frame 75 is supported.
Relative rotation (rolling) around the optical axis with respect to 1 is regulated.
【0023】尚、前記L字軸711と軸受部71d,7
5dの嵌合ガタは光軸方向には大きく設定しており、支
持球79a,79bと第1ヨーク712,第2ヨーク7
2の挾持による光軸方向規制と重複嵌合してしまうこと
を防いでいる。Incidentally, the L-shaped shaft 711 and the bearing portions 71d, 7
The fitting backlash of 5d is set to be large in the optical axis direction, and the support balls 79a and 79b, the first yoke 712, and the second yoke 7 are provided.
This prevents overlapping with the optical axis direction regulation due to the clamping of 2.
【0024】前記第1ヨーク712の表面には絶縁用シ
ート714が被せられ、その上に複数のICを有するハ
ード基板715(位置検出素子78p,78y、出力増
幅用IC,コイル76p,76y駆動用IC等)が位置
決め孔715a(2ケ所)を地板71の図10に示すピ
ン71h(2ケ所)に嵌合され、孔715b,第1ヨー
ク712の孔712bとともに地板71の孔71gにネ
ジ結合される。An insulating sheet 714 is covered on the surface of the first yoke 712, and a hard substrate 715 having a plurality of ICs thereon (position detecting elements 78p and 78y, output amplifying ICs, coils 76p and 76y for driving). ICs) are fitted in the positioning holes 715a (two places) to the pins 71h (two places) shown in FIG. 10 of the main plate 71, and are screwed to the holes 715b, the holes 712b of the first yoke 712, and the holes 71g of the main plate 71. It
【0025】ここで、ハード基板715には位置検出素
子78p,78yが工具にて位置決めされて半田付けさ
れ、又信号伝達用のフレキシブル基板716も面716
aがハード基板715の背面に破線で囲む範囲715c
(図8参照)に熱により圧着される。Here, the position detecting elements 78p and 78y are positioned on the hard board 715 by a tool and soldered, and the flexible board 716 for signal transmission also has a surface 716.
a is a range 715c surrounded by a broken line on the back surface of the hard substrate 715
(See FIG. 8).
【0026】前記フレキシブル基板716から光軸と直
交する平面方向に一対の腕716bp,716byが延
出しており、各々支持枠75の引っ掛け部75ep,7
5ey(図11参照)に引っ掛けられ、投光素子77
p,77yの端子及びコイル76p,76yの端子が半
田付けされる。A pair of arms 716bp and 716by extend from the flexible board 716 in a plane direction orthogonal to the optical axis, and hook portions 75ep and 7ep of the support frame 75 are respectively formed.
5ey (see FIG. 11), and the light emitting element 77
The terminals p and 77y and the terminals of the coils 76p and 76y are soldered.
【0027】これにより、IRED等の投光素子77
p,77y、コイル76p,76yの駆動はハード基板
715よりフレキシブル基板716を介在して行われる
ことになる。Thus, the light projecting element 77 such as IRED
The driving of p, 77y and the coils 76p, 76y is performed from the hard substrate 715 via the flexible substrate 716.
【0028】前記フレキシブル基板716の腕部716
bp,716by(図8参照)には各々屈折部716c
p,716cyを有しており、この屈折部の弾性により
支持枠75が光軸と直交する平面内に動き回る事に対す
る該腕部716bp,716byの負荷を低減してい
る。The arm portion 716 of the flexible substrate 716.
bp and 716by (see FIG. 8) are each provided with a bending portion 716c.
p, 716 cy, and the elasticity of the refraction reduces the load on the arms 716 bp, 716 by when the support frame 75 moves around in a plane perpendicular to the optical axis.
【0029】前記第1ヨーク712は型抜きによる突出
面712cを有し、該突出面712cは絶縁シート71
4の孔714aを通り、ハード基板715と直接接触し
ている。この接触面のハード基板715側にはアース
(GND:グランド)パターンが形成されており、ハー
ド基板715を地板にネジ結合する事で第1ヨーク71
2はアースされ、アンテナになってハード基板715に
ノイズを与える事を無くしている。The first yoke 712 has a protruding surface 712c formed by die cutting, and the protruding surface 712c is the insulating sheet 71.
4 through the hole 714a and is in direct contact with the hard substrate 715. A ground (GND: ground) pattern is formed on the hard board 715 side of this contact surface, and the first yoke 71 is screwed to the ground board to connect the hard board 715 to the ground plate.
Numeral 2 is grounded to prevent an antenna from giving noise to the hard substrate 715.
【0030】図8に示すマスク717は地板71のピン
71hに位置決めされ、前記ハード基板715上に両面
テープにて固定される。The mask 717 shown in FIG. 8 is positioned on the pin 71h of the base plate 71 and fixed on the hard substrate 715 with a double-sided tape.
【0031】前記地板71には永久磁石貫通孔71i
(図8,図10参照)が開けられており、ここから第2
ヨーク72の背面が露出している。そして、この貫通孔
71iに永久磁石718(ロック用マグネット)が組み
込まれ、第2ヨーク72と磁気結合している(図9参
照)。The base plate 71 has a permanent magnet through hole 71i.
(See FIGS. 8 and 10) is opened, and the second from here
The back surface of the yoke 72 is exposed. The permanent magnet 718 (locking magnet) is incorporated in the through hole 71i, and is magnetically coupled to the second yoke 72 (see FIG. 9).
【0032】ロックリング719(図8,図9,図12
参照)にはコイル720(ロック用コイル)が接着さ
れ、又ロックリング719の耳部719aの背面には軸
受719b(図13参照)があり、アマーチャピン72
1(図8参照)にアマーチュアゴム722を通し、該ア
マーチュアピン721を軸受719bに通した後、該ア
マーチュアピン721にアマーチュアバネ723を通
し、アマーチュア724に嵌入してカシメ固定する。Lock ring 719 (FIGS. 8, 9 and 12)
(Refer to FIG. 13), the coil 720 (locking coil) is bonded, and the bearing 719b (see FIG. 13) is provided on the back surface of the ear 719a of the lock ring 719.
1 (see FIG. 8), the armature rubber 722 is passed through, the armature pin 721 is passed through the bearing 719b, and then the armature spring 723 is passed through the armature pin 721, and the armature 724 is fitted and fixed by caulking.
【0033】従って、アマーチュア724はアマーチュ
アバネ723のチャージ力に逆らってロックリング71
9に対し矢印725方向に摺動出来る。Therefore, the armature 724 opposes the charging force of the armature spring 723 and acts on the lock ring 71.
9 can slide in the direction of arrow 725.
【0034】図13は組立終了後の補正手段を、図8の
背面方向から見た平面図であり、この図において、ロッ
クリング719の外径切り欠き部719c(3ケ所)を
地板71の内径突起71j(3ケ所)に合せてロックリ
ング719を地板71に押し込み、その後ロックリング
を時計方向に回して抜け止めを行う公知のバヨネット結
合により、ロックリング719は地板71に取り付いて
いる。FIG. 13 is a plan view of the correcting means after the assembly is completed, as viewed from the back side of FIG. 8. In this figure, the outer diameter cutouts 719c (three places) of the lock ring 719 are connected to the inner diameter of the main plate 71. The lock ring 719 is attached to the main plate 71 by a known bayonet connection in which the lock ring 719 is pushed into the main plate 71 in accordance with the projections 71j (three places), and then the lock ring is rotated clockwise to prevent the lock ring from coming off.
【0035】従って、ロックリング719は地板71に
対し光軸回りに回転可能である。しかし、ロックリング
719が回転して再びその切り欠き719cが突起71
jと同位相になり、バヨネット結合が外れてしまうのを
防ぐ為にロックゴム726(図8,図13参照)を地板
71に圧入して、該ロックリング719がロックゴム7
26に規制される切り欠き部719dの角度θ(図13
参照)しか回転出来ない様に回転規制している。Therefore, the lock ring 719 is rotatable about the optical axis with respect to the base plate 71. However, the lock ring 719 rotates, and the notch 719 c again
In order to prevent the bayonet connection from being disengaged, the lock rubber 726 (see FIGS. 8 and 13) is press-fitted into the main plate 71 so that the lock ring 719 is locked.
The angle θ of the notch 719d regulated by the angle 26 (see FIG. 13)
(See Reference).
【0036】磁性体のロック用ヨーク727(図8参
照)にも永久磁石718(ロック用マグネット)が取り
付けられ、その孔727a(2ケ所)を地板71のピン
71k(図13参照)に嵌合して嵌め込み、孔727b
(2ケ所)と71n(2ケ所)によりねじ結合してい
る。A permanent magnet 718 (locking magnet) is also attached to the magnetic locking yoke 727 (see FIG. 8), and its holes 727a (two places) are fitted to the pins 71k (see FIG. 13) of the main plate 71. And then fit, hole 727b
(2 places) and 71n (2 places).
【0037】地板71側の永久磁石718とロック用ヨ
ーク727側の永久磁石718、及び、第2のヨーク7
2,ロック用ヨーク727により、公知の閉磁路を形成
している。The permanent magnet 718 on the main plate 71 side, the permanent magnet 718 on the locking yoke 727 side, and the second yoke 7
2. A known closed magnetic path is formed by the locking yoke 727.
【0038】又、前記ロックゴム726はロック用ヨー
ク727がネジ結合される事で抜け止めされる。尚、図
13においては上記の説明の為にロックヨーク727は
省いて図示している。Further, the lock rubber 726 is prevented from coming off by screwing a lock yoke 727. In FIG. 13, the lock yoke 727 is omitted for the above description.
【0039】前記ロックリング719のフック719e
と地板71のフック71m間(図13参照)にはロック
バネ728が掛けられており、ロックリング719を時
計まわりに付勢している。吸着ヨーク729(図8,図
13参照)には吸着コイル730が差し込まれ、地板7
1の孔729aによりネジ結合される。Hook 719e of the lock ring 719
A lock spring 728 is hung between the hook 71m of the base plate 71 and the hook 71m (see FIG. 13), and urges the lock ring 719 clockwise. The suction coil 730 is inserted into the suction yoke 729 (see FIGS. 8 and 13), and
It is screwed together by one hole 729a.
【0040】コイル720の端子及び吸着コイル730
の端子は、例えば4本縒り線のテトロン被覆線のツイス
トペア構成にしてフレキシブル基板716の幹部716
dに半田付けされる。Terminal of coil 720 and adsorption coil 730
The terminal of the flexible substrate 716 has a twisted pair configuration of, for example, a four-stranded tetron covered wire.
Soldered to d.
【0041】前記ハード基板715上のIC731p,
731yは各々位置検出端子78p,78yの出力増幅
用のICであるが、その内部構成は図19の様になって
いる(IC731p,731yは同構成の為、ここでは
731pのみ示す)。The IC 731p on the hard substrate 715,
731y is an IC for amplifying the output of the position detection terminals 78p and 78y, respectively, and its internal configuration is as shown in FIG. 19 (since the ICs 731p and 731y have the same configuration, only 731p is shown here).
【0042】図14において、電流−電圧変換アンプ7
31ap,731bpは投光素子77pにより位置検出
素子78p(抵抗R1,R2より成る)に生じる光電流
78i1p,78i2pを電圧に変換し、差動アンプ7
31cpは各電流−電圧変換アンプ731ap,731
bpの差出力を求め増幅している。In FIG. 14, the current-voltage conversion amplifier 7
31 ap and 731 bp convert the photocurrents 78i1p and 78i2p generated in the position detecting element 78p (consisting of the resistors R1 and R2) by the light projecting element 77p into a voltage, and the differential amplifier 7
31cp is each current-voltage conversion amplifier 731ap, 731
The difference output of bp is obtained and amplified.
【0043】投光素子77p,77yの射出光は、前述
した通り、スリット75ap,75ayを経由して位置
検出素子78p,78y上に入射するが、支持枠75が
光軸と垂直な平面内で移動すると位置検出素子78p,
78yへの入射位置が変化する。The light emitted from the light projecting elements 77p and 77y is incident on the position detecting elements 78p and 78y via the slits 75ap and 75ay as described above, but the support frame 75 is in a plane perpendicular to the optical axis. When it moves, the position detecting element 78p,
The position of incidence on 78y changes.
【0044】前記位置検出素子78pは矢印78ap方
向(図8参照)に感度を持っており、又スリット75a
pは矢印78apとは直交する方向(78ay方向)に
光束が拡がり、矢印78ap方向には光束が絞られる形
状をしている為、支持枠75が矢印713p方向に動い
た時のみ該位置検出素子78pの光電流78i1 p,7
8i2 pのバランスは変化し、差動アンプ731cpは
支持枠75の矢印713p方向に応じた出力をする。The position detecting element 78p has sensitivity in the direction of the arrow 78ap (see FIG. 8), and the slit 75a
Since p has a shape in which the light beam spreads in a direction (78ay direction) orthogonal to the arrow 78ap and the light beam is narrowed in the direction of the arrow 78ap, the position detecting element is only used when the support frame 75 moves in the arrow 713p direction. 78p photocurrent 78i 1 p, 7
The balance of 8i 2 p changes, and the differential amplifier 731cp outputs according to the direction of the arrow 713p of the support frame 75.
【0045】又位置検出素子78yは矢印78ay方向
(図8参照)に検出感度を持ち、スリット75ayは矢
印78ayとは直交する方向(78ap方向)に延出す
る形状の為に、支持枠75が矢印713y方向に動いた
時のみ該位置検出素子78yは出力を変化させる。Further, the position detecting element 78y has detection sensitivity in the direction of arrow 78ay (see FIG. 8), and the slit 75ay has a shape extending in the direction (78ap direction) orthogonal to the arrow 78ay. The position detection element 78y changes the output only when it moves in the direction of the arrow 713y.
【0046】加算アンプ731dpは電流−電圧変換ア
ンプ731ap,731bpの出力の和(位置検出素子
78pの受光量総和)を求め、この信号を受ける駆動ア
ンプ731epはこれに従って投光素子77pを駆動す
る。The adding amplifier 731dp obtains the sum of the outputs of the current-voltage converting amplifiers 731ap and 731bp (the total amount of light received by the position detecting element 78p), and the drive amplifier 731ep receiving this signal drives the light projecting element 77p accordingly.
【0047】上記投光素子77pは温度等に極めて不安
定にその投光量が変化する為、それに伴い位置検出素子
78pの光電流78i1 p,78i1 pの絶対量(78
i1p+78i2 p)が変化する。その為、支持枠75
の位置を示す(78i1 p−78i2 p)である差動ア
ンプ731cpの出力も変化してしまう。Since the light projecting element 77p changes its light projecting amount extremely unstablely with respect to temperature and the like, the absolute amount (78) of the photocurrents 78i 1 p, 78i 1 p of the position detecting element 78p is accordingly changed.
i 1 p + 78i 2 p) changes. Therefore, the support frame 75
The output of the differential amplifier 731cp a showing the position (78i 1 p-78i 2 p ) also changes.
【0048】しかし、上記の様に受光量の総和が一定と
なる様に前述の駆動回路によって投光素子77pを制御
すれば、差動アンプ731cpの出力変化が無くなる。However, if the light projecting element 77p is controlled by the above-mentioned drive circuit so that the total amount of received light becomes constant as described above, there will be no change in the output of the differential amplifier 731cp.
【0049】図8に示すコイル76p,76yは永久磁
石73,第1のヨーク712,第2のヨーク72で形成
される閉磁路内に位置し、コイル76pに電流を流す事
で支持枠75は矢印713p方向に駆動され(公知のフ
レミングの左手の法則)、コイル76yに電流を流す事
で支持枠75は矢印713y方向に駆動される。The coils 76p and 76y shown in FIG. 8 are located in a closed magnetic circuit formed by the permanent magnet 73, the first yoke 712 and the second yoke 72, and the support frame 75 is formed by passing a current through the coil 76p. The support frame 75 is driven in the arrow 713p direction (known Fleming's left-hand rule), and the support frame 75 is driven in the arrow 713y direction by passing a current through the coil 76y.
【0050】一般に位置検出素子78p,78yの出力
をIC731p,731yで増幅し、その出力でコイル
76p,76yを駆動すると、支持枠75が駆動されて
位置検出素子78p,78yの出力が変化する構成とな
る。In general, the outputs of the position detecting elements 78p and 78y are amplified by ICs 731p and 731y, and when the coils 76p and 76y are driven by the outputs, the support frame 75 is driven to change the outputs of the position detecting elements 78p and 78y. Becomes
【0051】ここで、コイル76p,76yの駆動方向
(極性)を位置検出素子78p,78yの出力が小さく
なる方向に設定すると(負帰還)、該コイル76p,7
6yの駆動力により位置検出素子78p,78yの出力
がほぼ零になる位置で支持枠75は安定する。Here, when the driving direction (polarity) of the coils 76p and 76y is set to a direction in which the outputs of the position detecting elements 78p and 78y become smaller (negative feedback), the coils 76p and 7y.
The support frame 75 is stabilized at a position where the outputs of the position detecting elements 78p and 78y become substantially zero by the driving force of 6y.
【0052】この様に位置検出出力を負帰還して駆動を
行う手法を位置制御手法と云い、例えば外部から目標値
(例えば手振れ角度信号)をIC731p,731yに
混合させると、支持枠75は目標値に従って極めて忠実
に駆動される。Such a method of performing negative feedback of the position detection output for driving is called a position control method. For example, when a target value (for example, a camera shake angle signal) is mixed into the ICs 731p and 731y from the outside, the support frame 75 is set to the target. Drives very faithfully according to value.
【0053】実際には差動アンプ731cp,731c
yの出力はフレキシブル基板716を経由して不図示の
メイン基板に送られ、そこでアナログ−ディジタル変換
(A/D変換)が行われ、マイコンに取り込まれる。Actually, the differential amplifiers 731cp and 731c
The output of y is sent to the main substrate (not shown) via the flexible substrate 716, where analog-digital conversion (A / D conversion) is performed and the result is captured by the microcomputer.
【0054】マイコン内では適宜目標値(手振れ角度信
号)と比較増幅され、公知のディジタルフィルタ手法に
よる位相進み補償(位置制御をより安定させる為)が行
われた後、再びフレキシブル基板716を通り、IC7
32(コイル76p,76y駆動用)に入力する。IC
732は入力される信号を基に前記コイル76p,76
yを公知のPWM(パルス幅変調)駆動を行い、支持枠
75を駆動する。In the microcomputer, the target value (camera shake angle signal) is appropriately compared and amplified, and phase advance compensation (to stabilize the position control) by a known digital filter method is performed, and then the flexible board 716 is passed again. IC7
32 (for driving the coils 76p and 76y). IC
732 indicates the coils 76p and 76 based on the input signal.
y is driven by a known PWM (pulse width modulation) to drive the support frame 75.
【0055】支持枠75は前述した様に矢印713p,
713y方向に摺動可能であり、上述した位置制御手法
により位置を安定させている訳であるが、カメラ等の民
生用光学機器においては電源消耗防止の観点からも常に
該支持枠75を制御しておく事は出来ない。As described above, the support frame 75 has the arrow 713p,
It is slidable in the 713y direction, and the position is stabilized by the position control method described above. However, in consumer optical devices such as cameras, the support frame 75 is always controlled from the viewpoint of preventing power consumption. I can't keep it.
【0056】また、支持枠75は非制御状態時には光軸
と直交する平面内にて自由に動き回る事が出来る様にな
る為、その時のストローク端での衝突の音発生や損傷に
対しても対策しておく必要がある。Further, since the support frame 75 can freely move around in the plane orthogonal to the optical axis in the non-controlled state, countermeasures against noise generation and damage at the stroke end at that time are taken. You need to do it.
【0057】図11及び図13に示す様に支持枠75の
背面には3ケ所の放射状に突出した突起75fを設けて
あり、図13に示す様に突起75fの先端がロックリン
グ719の内周面719gに嵌合している。従って、支
持枠75は地板71に対して全ての方向に拘束されてい
る。As shown in FIGS. 11 and 13, three protrusions 75f radially protruding are provided on the back surface of the support frame 75, and the tips of the protrusions 75f are the inner circumference of the lock ring 719 as shown in FIG. It is fitted to the surface 719g. Therefore, the support frame 75 is restrained in all directions with respect to the main plate 71.
【0058】図15(a),(b)はロックリング71
9と支持枠75の動作の関係を示す平面図であり、図1
3の平面図から要部のみ抜出した図である。尚、説明を
解り易くする為に実際の組立状態とは若干レイアウトを
変化させている。又、図15(a)のカム719f(3
ケ所)は、図9,図12に示す通り、ロックリング71
9の円筒の母線方向全域に渡って設けられている訳では
ないので図15の方向からは実際には見えないが、説明
の為に図示している。The lock ring 71 is shown in FIGS.
9 is a plan view showing the relationship between the operation of the support frame 9 and the support frame 75.
FIG. 3 is a diagram in which only essential parts are extracted from the plan view of FIG. Note that the layout is slightly changed from the actual assembled state to make the description easy to understand. In addition, the cam 719f (3
As shown in FIGS. 9 and 12, the lock ring 71
Since it is not provided over the entire area of the cylinder 9 in the generatrix direction, it cannot be seen from the direction of FIG. 15, but is shown for the sake of explanation.
【0059】図9に示した通り、コイル720(720
aは図示しないフレキシブル基板等でロックリング71
9の外周を通り、端子719hよりフレキシブル基板7
16の幹部716d上の端子716eに接続される4本
縒り線の引き出し線)は永久磁石718で挟まれた閉磁
路内に入っており、コイル720に電流を流す事でロッ
クリング719を光軸回りに回転させるトルクを発生す
る。As shown in FIG. 9, the coil 720 (720
a is a not-shown flexible substrate or the like and a lock ring 71.
9, the flexible substrate 7 from the terminal 719h.
The four-stranded wire connected to the terminal 716 e on the stem 716 d of the sixteen is in a closed magnetic path sandwiched by permanent magnets 718, and the current flows through the coil 720 to cause the lock ring 719 to move the optical axis. Generates torque to rotate around.
【0060】このコイル720の駆動も不図示のマイコ
ンからフレキシブル基板716を介してハード基板71
5上の駆動用IC733に入力する指令信号で制御さ
れ、IC733はコイル720をPWM駆動する。The coil 720 is also driven by a hard board 71 via a flexible board 716 from a microcomputer (not shown).
5 is controlled by a command signal input to the driving IC 733 on the IC 5, and the IC 733 performs PWM driving of the coil 720.
【0061】図15(a)において、コイル720に通
電するとロックリング719に反時計回りのトルクが発
生する様にコイル720の巻き方向が設定されており、
これによりロックリング719はロックバネ728のバ
ネ力に逆らって反時計方向に回転する。In FIG. 15A, the winding direction of the coil 720 is set so that a counterclockwise torque is generated in the lock ring 719 when the coil 720 is energized.
Accordingly, the lock ring 719 rotates counterclockwise against the spring force of the lock spring 728.
【0062】尚、ロックリング719は、コイル720
に通電前はロックバネ728の力によりロックゴム72
6に当接して安定している。The lock ring 719 is composed of the coil 720.
Before power is supplied to the lock rubber 72, the force of the lock spring 728 is used.
6 and stable.
【0063】ロックリング719が回転すると、アマー
チュア724が吸着ヨーク729に当接してアマーチュ
アバネ723を縮め、吸着ヨーク729とアマーチュア
724の位置関係をイコライズしてロックリング719
は図15(b)の様に回転を止める。When the lock ring 719 rotates, the armature 724 comes into contact with the attraction yoke 729 to contract the armature spring 723, and the positional relationship between the attraction yoke 729 and the armature 724 is equalized to lock the lock ring 719.
Stops the rotation as shown in FIG.
【0064】図16はロックリング駆動のタイミングチ
ャートである。FIG. 16 is a timing chart of the lock ring drive.
【0065】図16の矢印719iでコイル720に通
電(720bに示すPWM駆動)すると同時に吸着マグ
ネット730にも通電(730a)する。その為、吸着
ヨーク729にアマーチュア724が当接し、イコライ
ズされた時点でアマーチュア724は吸着ヨーク729
に吸着される。The coil 720 is energized (PWM drive indicated by 720b) at the same time as the arrow 719i in FIG. 16 and at the same time the energization magnet 730 is energized (730a). Therefore, the armature 724 comes into contact with the suction yoke 729 and, when equalized, the armature 724 is moved to the suction yoke 729.
Is adsorbed on.
【0066】次に、図16の720cに示す時点でコイ
ル720への通電を止めると、ロックリング719はロ
ックバネ728の力で時計回りに回転しようとするが、
上述した様にアマーチュア724が吸着ヨーク729に
吸着されている為、回転は規制される。この時、支持枠
75の突起75fはカム719fと対向する位置に在る
(カム719fが回転して来る)為、支持枠75は突起
75fとカム719fの間のクリアランス分だけ動ける
様になる。Next, when the coil 720 is de-energized at the time indicated by 720c in FIG. 16, the lock ring 719 tries to rotate clockwise by the force of the lock spring 728.
Since the armature 724 is adsorbed by the adsorption yoke 729 as described above, the rotation is restricted. At this time, since the protrusion 75f of the support frame 75 is located at a position facing the cam 719f (the cam 719f rotates), the support frame 75 can move by the clearance between the protrusion 75f and the cam 719f.
【0067】この為、重力G〔図15(b)参照〕の方
向に支持枠75が落下する事になるが、図16の矢印7
19iの時点で支持枠75も制御状態にする為、落下す
る事は無い。For this reason, the support frame 75 falls in the direction of gravity G [see FIG. 15 (b)].
Since the support frame 75 is also in the control state at the time of 19i, it does not fall.
【0068】支持枠75は非制御時はロックリング71
9の内周で拘束されているが、実際には突起75fと内
周壁719gの嵌合ガタ分だけガタを有する。即ち、こ
のガタ分だけ支持枠75は重力G方向に落ちており、支
持枠75の中心と地板71の中心がズレている事にな
る。The support frame 75 is the lock ring 71 when not controlled.
9, but actually has a play corresponding to the fitting play between the projection 75f and the inner peripheral wall 719g. That is, the support frame 75 falls in the direction of gravity G by this amount of backlash, and the center of the support frame 75 and the center of the main plate 71 are displaced.
【0069】その為、矢印719iの時点から例えば1
秒費やしてゆっくり地板71の中心(光軸の中心)に移
動させる制御をしている。Therefore, from the time point of arrow 719i, for example, 1
It takes a second to slowly move to the center of the base plate 71 (center of the optical axis).
【0070】これは急激に中心に移動させるとレンズ7
4を通して像の揺れを撮影者が感じて不快である為であ
り、この間に露光が行われても、支持枠75の移動によ
る像劣化が生じない様にする為である。(例えば1/8
秒で支持枠を5μm移動させる) 詳しくは、図16の矢印719i時点での位置検出素子
78p,78yの出力を記憶し、その値を目標値として
支持枠75の制御を始め、その後1秒間費やしてあらか
じめ設定した光軸中心の時の目標値に移動してゆく(図
16の75g参照)。When this is suddenly moved to the center, the lens 7
This is because the photographer feels the image shake through 4 and is uncomfortable, and even if exposure is performed during this period, the image deterioration due to the movement of the support frame 75 does not occur. (Eg 1/8
(The support frame is moved by 5 μm in seconds.) Specifically, the outputs of the position detection elements 78p and 78y at the time point of arrow 719i in FIG. 16 are stored, the control of the support frame 75 is started with the value as a target value, and then the second frame is spent for 1 second. And moves to a target value when the center of the optical axis is preset (see 75g in FIG. 16).
【0071】ロックリング719が回転され(アンロッ
ク状態)た後、振動検出手段からの目標値を基にして
(前述した支持枠75の中心位置移動動作に重なって)
支持枠75が駆動され、防振が始まる事になる。After the lock ring 719 is rotated (unlocked state), based on the target value from the vibration detecting means (overlapped with the above-mentioned center position movement operation of the support frame 75).
The support frame 75 is driven, and the image stabilization starts.
【0072】ここで、防振を終わる為に矢印719jの
時点で防振オフにすると、振動検出手段からの目標値が
補正手段に入力されなくなり、支持枠75は中心位置に
制御されて止まる。この時に吸着コイル730への通電
を止める(730b)。すると、吸着ヨーク729によ
るアマーチュア724の吸着力が無くなり、ロックリン
グ719はロックバネ728により時計回りに回転さ
れ、図15(a)の状態に戻る。この時、ロックリング
719はロックゴム726に当接して回転規制される為
に回転終了時の該ロックリング719の衝突音は小さく
抑えられる。Here, when the image stabilization is turned off at the time of arrow 719j to end the image stabilization, the target value from the vibration detection means is not input to the correction means, and the support frame 75 is controlled to the center position and stops. At this time, the power supply to the attraction coil 730 is stopped (730b). Then, the attraction force of the armature 724 by the attraction yoke 729 disappears, and the lock ring 719 is rotated clockwise by the lock spring 728 to return to the state of FIG. At this time, the lock ring 719 is in contact with the lock rubber 726 and its rotation is restricted, so that the collision sound of the lock ring 719 at the end of the rotation can be suppressed small.
【0073】その後(例えば20msec後)、補正手
段への制御を断ち、図16のタイミングチャートは終了
する。After that (for example, after 20 msec), the control of the correction means is cut off, and the timing chart of FIG. 16 ends.
【0074】図17は防振システムの概要を示すブロッ
ク図である。FIG. 17 is a block diagram showing the outline of the image stabilization system.
【0075】図17において、91は図8の振動検出手
段83p,83yであり、振動ジャイロ等の角速度を検
出する振れ検出センサと該振れ検出センサ出力のDC成
分をカットした後に積分して角変位を得るセンサ出力演
算手段より構成される。In FIG. 17, reference numeral 91 denotes the vibration detecting means 83p and 83y of FIG. 8, which is a shake detecting sensor for detecting an angular velocity of a vibration gyro and the DC component of the output of the shake detecting sensor is cut and integrated to obtain an angular displacement. The sensor output calculation means for obtaining
【0076】この振動検出手段91からの角変位信号は
目標値設定手段92に入力される。この目標値設定手段
92は可変差動増幅器92aとサンプルホールド回路9
2bより構成されており、サンプルホールド回路92b
は常にサンプル中の為に可変差動増幅器92aに入力さ
れる両信号は常に等しく、その出力はゼロである。しか
し、後述する遅延手段93からの出力で前記サンプルホ
ールド回路92bがホールド状態になると、可変差動増
幅器92aはその時点をゼロとして連続的に出力を始め
る。The angular displacement signal from the vibration detecting means 91 is input to the target value setting means 92. The target value setting means 92 is a variable differential amplifier 92 a and a sample hold circuit 9.
2b, and a sample hold circuit 92b
Is always being sampled, the two signals inputted to the variable differential amplifier 92a are always equal and the output thereof is zero. However, when the sample-and-hold circuit 92b is put into a hold state by an output from a delay unit 93, which will be described later, the variable differential amplifier 92a starts outputting continuously with the time being zero.
【0077】可変差動増幅器92aの増幅率は防振敏感
度設定手段94の出力により可変になっている。何故な
らば、目標値設定手段92の目標値信号は補正手段を追
従させる目標値(指令信号)であるが、補正手段の駆動
量に対する像面の補正量(防振敏感度)はズーム,フォ
ーカス等の焦点変化に基づく光学特性により変化する
為、その防振敏感度変化を補う為である。The amplification factor of the variable differential amplifier 92a is variable by the output of the image stabilization sensitivity setting means 94. The reason is that the target value signal of the target value setting means 92 is a target value (command signal) for causing the correction means to follow, but the correction amount of the image plane (the image stabilization sensitivity) with respect to the driving amount of the correction means is zoom and focus. This is to compensate for the change in the image stabilization sensitivity because it changes depending on the optical characteristics based on the change in focus.
【0078】従って、防振敏感度設定手段94は、ズー
ム情報出力手段95からのズーム焦点距離情報と露光準
備手段96の測距情報に基づくフォーカス焦点距離情報
が入力され、その情報を基に防振敏感度を演算あるいは
その情報を基にあらかじめ設定した防振敏感度情報を引
き出して、目標値設定手段92の可変差動増幅器92a
の増幅率を変更させる。Therefore, the image stabilization sensitivity setting unit 94 receives the zoom focal length information from the zoom information output unit 95 and the focus focal length information based on the distance measurement information of the exposure preparation unit 96, and based on the information The variable differential amplifier 92a of the target value setting means 92 is calculated by calculating the vibration sensitivity or extracting the vibration isolation sensitivity information that is set in advance based on the information.
Change the amplification factor of.
【0079】補正駆動手段97はハード基板715上に
実装されたIC731p,731y,732であり、目
標値設定手段92からの目標値が指令信号730p,7
30yとして入力される。The correction driving means 97 are ICs 731p, 731y, 732 mounted on the hard board 715, and the target values from the target value setting means 92 are command signals 730p, 732.
It is input as 30y.
【0080】補正起動手段98はハード基板715上の
IC732とコイル76p,76yの接続を制御するス
イッチであり、通常時はスイッチ98aを端子98cに
接続させておく事でコイル76p,76yの各々の両端
を短絡しておき、論理積手段99の信号が入力されると
スイッチ98aを端子98bに接続し、補正手段910
を制御状態(未だ振れ補正は行わないが、コイル76
p,76yに電力を供給し、位置検出素子78p,78
yの信号がほぼゼロになる位置に補正手段910を安定
させておく)にする。又この時同時に論理積手段99の
出力信号は係止手段914にも入力し、これにより係止
手段は補正手段910を係止解除する。The correction starting means 98 is a switch for controlling the connection between the IC 732 on the hard board 715 and the coils 76p and 76y. Normally, by connecting the switch 98a to the terminal 98c, each of the coils 76p and 76y is connected. When both ends are short-circuited and the signal of the logical product means 99 is input, the switch 98a is connected to the terminal 98b, and the correction means 910 is connected.
Control state (the shake correction is not performed yet, but the coil 76
Power is supplied to p, 76y, and the position detection elements 78p, 78
The correction means 910 is stabilized at a position where the y signal becomes substantially zero). At the same time, the output signal of the logical product means 99 is also input to the locking means 914, whereby the locking means unlocks the correcting means 910.
【0081】尚、補正手段910はその位置検出素子7
8p,78yの位置信号を補正駆動手段97に入力し、
前述した様に位置制御を行っている。The correction means 910 is the position detecting element 7
The position signal of 8p, 78y is input to the correction driving means 97,
Position control is performed as described above.
【0082】論理積手段99はレリーズ手段911のレ
リーズ半押しSW1信号と防振切換手段912の出力信
号の両信号が入力された時に、その構成要素であるアン
ドゲード99aが信号を出力する。つまり、防振切換手
段912の防振スイッチを撮影者が操作し、且つレリー
ズ手段911でレリーズ半押しを行った時に補正手段9
10は係止解除され、制御状態になる。When the logical product means 99 receives both the release half-press SW1 signal of the release means 911 and the output signal of the image stabilization switching means 912, the AND gate 99a, which is a component thereof, outputs the signal. That is, when the photographer operates the anti-vibration switch of the anti-vibration switching means 912 and the release means 911 presses the release halfway, the correction means 9
10 is unlocked and is in control.
【0083】レリーズ手段911のSW1信号は露光準
備手段96に入力され、これにより測光,測距,レンズ
合焦駆動が行われる共に、前述した様に防振敏感度設定
手段94にフォーカス焦点距離情報が入力される。The SW1 signal of the release means 911 is input to the exposure preparation means 96, whereby photometry, distance measurement, and lens focusing drive are performed, and as described above, the image stabilization sensitivity setting means 94 is provided with focus focal length information. Is entered.
【0084】遅延手段93は論理積手段99の出力信号
を受けて、例えば1秒後に出力して前述した様に目標値
設定手段92より目標値信号を出力させる。The delay means 93 receives the output signal of the logical product means 99, outputs it after one second, for example, and causes the target value setting means 92 to output the target value signal as described above.
【0085】図示していないが、レリーズ手段911の
SW1信号に同期して振動検出手段91も起動を始め
る。そして、前述した様に積分器等、大時定回路を含む
センサ出力演算は起動から出力が安定する迄に、ある程
度の時間を要する。Although not shown, the vibration detecting means 91 also starts to operate in synchronization with the SW1 signal of the release means 911. As described above, the sensor output calculation including the large time constant circuit such as the integrator requires a certain period of time from the start until the output is stabilized.
【0086】前記遅延手段93は前記振動検出手段91
の出力が安定する迄待機した後に、補正手段910へ目
標値信号を出力する役割を演じ、振動検出手段91の出
力が安定してから防振を始める構成にしている。The delay means 93 is the vibration detecting means 91.
After waiting until the output of the vibration detector 1st stabilizes, it plays the role of outputting the target value signal to the correction means 910, and starts the vibration isolation after the output of the vibration detection means 91 stabilizes.
【0087】露光手段913はレリーズ手段911のレ
リーズ押切りSW2信号入力によりミラーアップを行
い、露光準備手段96の測光値を元に求められたシャッ
タスピードでシャッタを開閉して露光を行い、ミラーダ
ウンして撮影を終了する。The exposure means 913 performs mirror up by the release push-off SW2 signal input of the release means 911, opens and closes the shutter at the shutter speed obtained based on the photometric value of the exposure preparation means 96, and exposes the mirror down. Then, the shooting ends.
【0088】撮影終了後、撮影者がレリーズ手段911
から手を離し、SW1信号をオフにすると、論値積手段
99は出力を止め、目標値設定手段92のサンプルホー
ルド回路92bはサンプリング状態になり、可変差動増
幅器92aの出力はゼロになる。従って、補正手段91
0は補正駆動を止めた制御状態に戻る。After the photographing, the photographer releases the shutter 911.
When the hand is released and the SW1 signal is turned off, the logical product means 99 stops the output, the sample hold circuit 92b of the target value setting means 92 enters the sampling state, and the output of the variable differential amplifier 92a becomes zero. Therefore, the correction means 91
0 returns to the control state in which the correction drive is stopped.
【0089】論理積手段99の出力がオフになった事に
より、係止手段914は補正手段910を係止し、その
後に補正起動手段98のスイッチ98aは端子98cに
接続され、補正手段910は制御されなくなる。Since the output of the logical product means 99 is turned off, the locking means 914 locks the correction means 910, and then the switch 98a of the correction starting means 98 is connected to the terminal 98c, and the correction means 910 Get out of control.
【0090】振動検出手段91は、不図示のタイマによ
り、レリーズ手段911の操作が停止された後も一定時
間(例えば5秒)は動作を継続し、その後に停止する。
これは、撮影者がレリーズ操作を停止した後に引き続き
レリーズ操作を行う事は頻繁にあるわけで、その様な時
に毎回振動検出手段91を起動するのを防ぎ、その出力
安定迄の待機時間を短くする為であり、振動検出手段9
1が既に起動している時には該振動検出手段91は起動
既信号を遅延手段93に送り、その遅延時間を短くして
いる。The vibration detecting means 91 continues to operate for a fixed time (for example, 5 seconds) after the operation of the release means 911 is stopped by a timer (not shown), and then stops.
This is because the photographer frequently performs the release operation after the release operation is stopped, so that it is possible to prevent the vibration detection unit 91 from being activated every time in such a case, and to shorten the standby time until the output is stabilized. Vibration detection means 9
When 1 is already activated, the vibration detecting means 91 sends an activated signal to the delay means 93 to shorten the delay time.
【0091】[0091]
【発明が解決しようとする課題】図9に示した様な支持
球79a,79b、チャージバネ710の配置にしたの
は、組立時に図9の紙面左側を上方にして組んでゆく
為、グリスで仮止めできる支持球79bを下方にして、
組込み時にチャージバネ710及び支持球79aが上方
になり、これらが落下してしまう事を防ぐ為であり、第
1のヨーク712を取り付ける事で、支持球79a,7
9b,チャージバネ710は支持枠75から外れなくな
る。The support balls 79a and 79b and the charge spring 710 are arranged as shown in FIG. 9 because the left side of the paper surface of FIG. With the support ball 79b that can be temporarily fixed down,
This is to prevent the charge spring 710 and the support balls 79a from moving upward when assembled, and to prevent them from falling. By attaching the first yoke 712, the support balls 79a,
9b, the charge spring 710 does not come off from the support frame 75.
【0092】チャージバネ710のチャージ力は3ケ所
の合力で支持枠75及びレンズ74の重さ以上の力を出
しており、補正手段がどの姿勢になっても支持枠75及
びレンズ74を第2ヨーク72側に付勢して、光学系の
安定を図っている。The charge force of the charge spring 710 is equal to or greater than the weight of the support frame 75 and the lens 74 due to the resultant force at the three places. The yoke 72 is urged to stabilize the optical system.
【0093】しかしながら、チャージバネ710のチャ
ージ力を1ケ所でレンズ74の自重を支える位に強くす
ると、支持球79a,79bと当接する第1ヨーク71
2,第2ヨーク72間の摺動摩擦が大きくなり、スムー
ズな摺動が出来なくなる。However, if the charge force of the charge spring 710 is increased to support the own weight of the lens 74 at one location, the first yoke 71 that abuts the support balls 79a and 79b.
The sliding friction between the second yoke 72 and the second yoke 72 increases, and smooth sliding cannot be performed.
【0094】従って、チャージバネ710のチャージ力
を3ケ所での合計の力でレンズ74の自重に耐えるよう
にし、1ケ所ではレンズ74の自重では撓む程度に設定
したい。Therefore, it is desired to set the charging force of the charge spring 710 to withstand the own weight of the lens 74 with the total force at the three points, and to set the bending force at the one point so that the lens 74 bends under its own weight.
【0095】図9はロックリング719の内周壁719
gと支持枠75の突起75fの係合が外れており、支持
枠75は防振制御可能な状態にあり、支持枠75は地板
71に対して適正に挟持されている。FIG. 9 shows the inner peripheral wall 719 of the lock ring 719.
g and the projection 75f of the support frame 75 are disengaged, the support frame 75 is in a state in which vibration control is possible, and the support frame 75 is properly clamped to the main plate 71.
【0096】ここで、支持枠75がロックリング719
によりロックされている時の横断面を図18に示す。Here, the support frame 75 is the lock ring 719.
FIG. 18 shows a cross section when locked by.
【0097】このときの支持枠75とレンズ74の合計
の重心Gは、図示の位置にあり、この位置より図18の
紙面下側に重力による力を受けている。又、ロックリン
グ719が支持枠75を支える位置(係止部)は矢印6
2に示す様に重心より紙面右側に有る為、支持枠75に
は矢印61の支持球79bの摺動面を中心にして矢印6
3方向に偶力が発生する。At this time, the total center of gravity G of the support frame 75 and the lens 74 is at the position shown in the figure, and a force due to gravity is received from this position to the lower side of the paper surface of FIG. The position (locking portion) where the lock ring 719 supports the support frame 75 is indicated by the arrow 6
As shown in FIG. 2, since it is on the right side of the drawing with respect to the center of gravity, the support frame 75 has an arrow 6 centered on the sliding surface of the support ball 79b of arrow 61.
Couples are generated in three directions.
【0098】支持枠75の突起75fが3ケ所ともロッ
クリング719の内周壁719gにしっかり嵌合(噛み
込んでいる)していれば、上記の発生する偶力は支持枠
75に何ら影響を与えない。If the projections 75f of the support frame 75 are firmly fitted (engaged) with the inner peripheral wall 719g of the lock ring 719 at all three places, the above-mentioned generated couple force has no influence on the support frame 75. Absent.
【0099】しかしながら実際には支持枠75の突起7
5fとロックリング719の内周壁719g間に多少の
ガタを設けている。However, the protrusion 7 of the support frame 75 is actually used.
There is some play between the 5f and the inner peripheral wall 719g of the lock ring 719.
【0100】何故ならば、支持枠75をロックリング7
19にしっかり嵌合させると、次にロック解除する時に
ロックリング719の回転負荷が大きくなってしまうか
らである。Because the support frame 75 is attached to the lock ring 7
This is because if the lock ring 719 is firmly fitted into the lock ring 19, the rotation load of the lock ring 719 will increase when the lock is unlocked next time.
【0101】その為、図18の状態では矢印62の位置
の突起75fと内周壁719gは当接しているが(重力
による)、他の2ケ所の突起75fは内周壁719gに
接触していない。この様な時、図10に示す矢印63方
向に偶力が発生すると、この偶力によるレンズ74の傾
きを止めることは出来ない。つまり、前述した様にチャ
ージバネ710の1本当たりのチャージ力は弱い為、偶
力により撓んでしまい、支持球79aが支持枠内に沈み
込んでしまう為である。Therefore, in the state of FIG. 18, the protrusion 75f at the position of the arrow 62 and the inner peripheral wall 719g are in contact with each other (due to gravity), but the other two protrusions 75f are not in contact with the inner peripheral wall 719g. In such a case, if a couple is generated in the direction of the arrow 63 shown in FIG. 10, the tilt of the lens 74 due to this couple cannot be stopped. That is, as described above, since the charge force per charge spring 710 is weak, the charge spring 710 is bent by a couple force, and the support ball 79a sinks into the support frame.
【0102】即ち、防振オンの状態で補正手段が係止解
除され制御されている状態の光学性能と、防振オフの補
正手段係止状態の光学性能は変化する事になってしまう
問題があった。That is, there is a problem that the optical performance when the correction means is unlocked and controlled while the image stabilization is on and the optical performance when the correction means is locked when the image stabilization is off changes. there were.
【0103】(発明の目的)本発明の第1の目的は、防
振時と非防振時の光学性能の変化を無くすことのできる
補正光学装置を提供することにある。(Object of the Invention) A first object of the present invention is to provide a correction optical device capable of eliminating a change in optical performance during vibration isolation and non-vibration isolation.
【0104】本発明の第2の目的は、該装置の携帯時や
衝撃が加わることにより弾性手段が撓んで補正手段が沈
み込み、該装置の使用時に弾性手段の付勢によっては補
正手段が元の位置に完全に復帰できず、その後の防振制
御に影響を与えることを防止する事と、前記弾性手段の
付勢力を、防振制御時の補正手段の摺動を滑らかに行え
る位の弱させ設定する事の、両方を満足することのでき
る補正光学装置を提供することにある。A second object of the present invention is that when the device is carried or when a shock is applied, the elastic means bends and the correction means sinks. Of the elastic means cannot be completely returned to the position, and the urging force of the elastic means can be adjusted so that the correction means can slide smoothly during the anti-vibration control. It is an object of the present invention to provide a correction optical device capable of satisfying both of the above setting and setting.
【0105】[0105]
【課題を解決するための手段】上記第1の目的を達成す
るために、請求項1〜4記載の本発明は、光軸を偏心さ
せる補正手段の重心の位置関係で発生する偶力を受ける
制限部を設け、前記制限部によって補正手段の重心の位
置関係で発生する偶力を受け止め、前記偶力により前記
補正手段が傾き(光軸と直交な方向に対する)が生じな
いようにしている。In order to achieve the first object, the present invention according to claims 1 to 4 receives a couple generated due to the positional relationship of the center of gravity of the correcting means for eccentricizing the optical axis. A limiting unit is provided, and the limiting unit receives the couple generated due to the positional relationship of the center of gravity of the correction unit, and prevents the correction unit from tilting (with respect to the direction orthogonal to the optical axis) due to the couple.
【0106】具体的には、補正手段を光軸と直交する方
向のみ摺動可能に固定部材に対して挟持する挟持手段を
具備し、この挟持手段を、前記固定部材の光軸と直交す
る互いに離間した第1と第2の平面の間にチャージされ
て納められており、前記補正手段に固定あるいは一体化
され前記第1の平面と摺動する、前記制限部を成す固定
摺動手段,前記第2の平面と摺動すると共に前記補正手
段に対して光軸方向に可動する可動摺動手段、及び、該
可動摺動手段を前記補正手段に対して付勢する弾性手段
により構成し、光軸が偏心しないように前記補正手段を
係止する為の係止手段の係止部が重心位置に対して光軸
像面側にあり、前記補正手段を倒立振り子状態に支持す
る場合は、前記固定部材の各平面が像面側から物体側の
光軸方向に向かって、第2の平面,第1の平面の順にな
るように配設し、前記係止部が重心位置に対して光軸物
体側にあり、前記補正手段を倒立振り子状態に支持する
場合は、前記固定部材の各平面が像面側から物体側の光
軸方向に向かって、第1の平面,第2の平面の順になる
ように配設し、又は、光軸が偏心しないように前記補正
手段を係止する為の係止手段の係止部が重心位置に対し
て光軸像面側にあり、前記補正手段を吊り下げ状態に支
持する場合は、前記固定部材の各平面が像面側から物体
側の光軸方向に向かって、第1の平面,第2の平面の順
になるように配設し、前記係止部が重心位置に対して光
軸物体側にあり、前記補正手段を吊り下げ状態に支持す
る場合は、前記固定部材の各平面が像面側から物体側の
光軸方向に向かって、第2の平面,第1の平面の順にな
るように配設して、つまり、補正手段を倒立振り子状態
に支持する場合は、前記制限部を成す固定摺動手段を係
止部とは重心位置を挟んで反対側に配設し、補正手段を
吊り下げ状態に支持する場合は、前記制限部を成す固定
摺動手段を係止部側に配設して、この制限部によって補
正手段の重心の位置関係で発生する偶力発生を防止し、
前記偶力により前記補正手段が傾きが生じないようにし
ている。Specifically, it comprises a sandwiching means for sandwiching the correcting means slidably only in a direction orthogonal to the optical axis with respect to the fixing member, and the sandwiching means are mutually orthogonal to the optical axis of the fixing member. The fixed sliding means, which is charged between the first and second planes separated from each other, is fixed or integrated with the correction means and slides on the first plane, and which constitutes the limiting portion, and A movable sliding means that slides on the second plane and is movable in the optical axis direction with respect to the correction means, and an elastic means that urges the movable sliding means with respect to the correction means. When the locking portion of the locking means for locking the correcting means so that the shaft is not eccentric is on the optical axis image plane side with respect to the position of the center of gravity and the correcting means is supported in the inverted pendulum state, Each plane of the fixed member faces the optical axis from the image side to the object side. , The second plane and the first plane are arranged in this order, the locking portion is on the optical axis object side with respect to the position of the center of gravity, and when the correcting means is supported in the inverted pendulum state, The planes of the fixing member are arranged such that the first plane and the second plane are arranged in this order from the image plane side toward the object side optical axis direction, or the correction means is provided so that the optical axis is not decentered. When the locking portion of the locking means for locking the optical axis is on the optical axis image plane side with respect to the center of gravity and the correction means is supported in a suspended state, each flat surface of the fixing member is on the image plane side. From the object side to the optical axis direction on the object side, the first plane and the second plane are arranged in this order, and the locking portion is on the optical axis object side with respect to the position of the center of gravity. In the case of supporting in a suspended state, each plane of the fixing member is a second plane from the image side toward the object side in the optical axis direction. When the correction means is supported in an inverted pendulum state, the fixed sliding means forming the limiting portion is located on the opposite side of the locking portion from the center of gravity. When the correction means is provided in a suspended state, the fixed sliding means forming the limiting portion is provided on the locking portion side, and the limiting portion causes a positional relationship of the center of gravity of the correcting means. Prevent the generation of couples,
The couple is prevented from tilting due to the couple.
【0107】同じく上記第1の目的を達成するために、
請求項7,8記載の本発明は、補正手段を駆動する駆動
手段の駆動力の発生位置と補正手段の重心位置の関係、
或は、係止手段と補正手段の重心位置の関係で発生する
偶力を受ける制限部を設け、前記制限部によって補正手
段の重心の位置関係で発生する偶力を受け止め、前記偶
力により前記補正手段が傾き(光軸と直交な方向に対す
る)が生じないようにしている。Also in order to achieve the first object,
According to a seventh aspect of the present invention, the relationship between the position where the driving force of the driving unit that drives the correction unit is generated and the position of the center of gravity of the correction unit,
Alternatively, a limiting portion that receives a couple generated due to the position of the center of gravity of the locking means and the correction means is provided, and the limiting portion receives the couple generated due to the positional relationship of the center of gravity of the correction means, and the couple generates the The correction means prevents the inclination (with respect to the direction orthogonal to the optical axis) from occurring.
【0108】また、上記第2の目的を達成するために、
請求項5及び6記載の本発明は、補正手段を光軸と直交
する方向に摺動可能に挟持する挟持手段を備え、該挟持
手段により、前記補正手段を光軸物体側に付勢するよう
にしている。Further, in order to achieve the above second object,
The present invention according to claims 5 and 6 comprises a holding means for holding the correcting means slidably in a direction orthogonal to the optical axis, and the holding means urges the correcting means toward the optical axis object. I have to.
【0109】具体的には、光軸と直交する互いに離間し
た第1と第2の平面の間にチャージされて納められた挟
持手段を、補正手段に固定あるいは一体化され前記第1
の平面と摺動する固定摺動手段,前記第2の平面と摺動
すると共に前記補正手段に対して光軸方向に可動する可
動摺動手段、及び、該可動摺動手段を前記補正手段に対
して付勢する弾性手段により構成し、前記第1の平面を
光軸物体側に、前記第2の平面を光軸像面側に、それぞ
れ配設、つまり光軸物体側に固定摺動手段が来るように
配設している。Specifically, the holding means charged and housed between the first and second planes orthogonal to the optical axis and separated from each other is fixed to or integrated with the correction means.
Fixed sliding means that slides on the flat surface, movable sliding means that slides on the second flat surface and is movable in the optical axis direction with respect to the correction means, and the movable sliding means is the correction means. The first flat surface is arranged on the optical axis object side and the second flat surface is arranged on the optical axis image plane side, that is, fixed sliding means on the optical axis object side. Are arranged so that
【0110】[0110]
【発明の実施の形態】以下、本発明を図示の実施の形態
に基づいて詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail based on the illustrated embodiments.
【0111】図1は本発明の実施の第1の形態に係る補
正光学装置の分解斜視図であり、従来の図8と異なるの
は、支持球79a,79bの形状とこれらが挿入される
支持枠75の孔75bである、よって、本実施の態様に
おいては支持球79A,79Bとし、孔75bを75B
として示すことにする。図2に前記支持球79A,79
Bを拡大して示してある。FIG. 1 is an exploded perspective view of a correction optical device according to a first embodiment of the present invention. What is different from FIG. 8 of the prior art is the shape of support balls 79a and 79b and the support into which they are inserted. It is the hole 75b of the frame 75. Therefore, in this embodiment, the support balls 79A and 79B are used, and the hole 75b is formed by 75B.
Will be shown as. The supporting balls 79A, 79 are shown in FIG.
B is shown enlarged.
【0112】新たな支持球79A,79Bは例えばPO
M等で形成され、図2に示す様に、羽根部79Aa,7
9Baを互いに90度だけ位相をずらして組み込まれ
る。The new support balls 79A and 79B are, for example, PO
As shown in FIG. 2, the blade portions 79Aa, 7 are formed of M or the like.
9Ba is installed with a phase difference of 90 degrees from each other.
【0113】図3及び図4は補正手段の組立後の横断面
や支持球79A,79B、孔75Bの詳細を示す図であ
り、支持枠75の支持球75B(3ケ所)には上記支持
球79A,79B及びチャージバネ710が挿入され、
図3及び図4に示す様に、支持球79Aが支持枠75に
熱カシメされて固定される(支持球79Bはチャージバ
ネ710のバネ力に逆らって孔75Bの延出方向に摺動
可能である)。FIG. 3 and FIG. 4 are views showing the details of the cross section, the support balls 79A and 79B, and the holes 75B after the correction means is assembled. The support balls 75B (three places) of the support frame 75 have the above support balls. 79A, 79B and charge spring 710 are inserted,
As shown in FIG. 3 and FIG. 4, the support ball 79A is fixed to the support frame 75 by heat caulking (the support ball 79B is slidable in the extending direction of the hole 75B against the spring force of the charge spring 710). is there).
【0114】更に詳述すると、支持枠75の孔75Bに
矢印79c方向に支持球79B,チャージしたチャージ
バネ710,支持球79Aの順に挿入してゆき(支持球
79A,79Bは同形状部品)、最後に孔75Bの周端
部75Cを熱カシメして支持球79Aの抜け止めを行
う。尚、図4(b)のA〜Dは、孔75B内に形成され
る各当接部の深さを示している。More specifically, the support sphere 79B, the charged charge spring 710, and the support sphere 79A are sequentially inserted into the hole 75B of the support frame 75 in the direction of the arrow 79c (the support spheres 79A and 79B have the same shape). Finally, the peripheral end portion 75C of the hole 75B is thermally caulked to prevent the support ball 79A from coming off. In addition, A to D of FIG. 4B show the depth of each contact portion formed in the hole 75B.
【0115】以上の様に、支持枠75に支持球79A,
79B及びチャージバネ710が予めチャージされた状
態でセットされる為、その後の組立時に部品の落下問題
を起こす事は無い。As described above, the support frame 75 has the support balls 79A,
Since 79B and the charge spring 710 are set in a pre-charged state, there will be no problem of dropping the parts during subsequent assembly.
【0116】そして、図3及び図4から解かる様に、支
持球79Aは支持枠75に固定されている為、支持枠7
5がロックリング719に係止され、図18に示した様
な矢印63方向に偶力が働いても、その方向に支持枠7
5が、つまりレンズ74が傾れる事は無い。As can be seen from FIGS. 3 and 4, since the support ball 79A is fixed to the support frame 75, the support frame 7
5 is locked by the lock ring 719, and even if a couple acts in the direction of the arrow 63 as shown in FIG.
5, that is, the lens 74 does not tilt.
【0117】以上の様に、補正手段の重心と係止部の位
置関係で生じる偶力を受ける制限部(図3における支持
枠75に固定された支持球79A)を設けた事で、チャ
ージバネ710のチャージ力を強くしなくても支持枠7
5の傾きを防ぐことが出来、補正手段の摺動性と光学安
定性を両立させる事が出来た。As described above, the charge spring is provided by providing the limiting portion (supporting ball 79A fixed to the supporting frame 75 in FIG. 3) which receives a couple generated due to the positional relationship between the center of gravity of the correcting means and the locking portion. Support frame 7 without increasing the charging power of 710
The inclination of No. 5 could be prevented, and the slidability of the correction means and the optical stability could both be achieved.
【0118】尚、図3において、紙面左側にマスク71
7が取付けられており、この方向が撮影光軸の物体側と
なる。In FIG. 3, a mask 71 is provided on the left side of the drawing.
7 is attached, and this direction is the object side of the photographing optical axis.
【0119】その為、支持枠75は地板71に対し撮影
光軸物体側にチャージバネ710で付勢されている事に
なる。そして、この事は次に述べるメリットを生じる。Therefore, the support frame 75 is biased by the charge spring 710 toward the object side of the photographing optical axis with respect to the base plate 71. And this has the following advantages.
【0120】チャージバネ710のチャージ力の合力
は、上述した様に、支持枠75とレンズ74の自重を支
えるだけの力は有しているが、さほど余裕がある訳では
無い。その為、チャ−ジバネ710を撓ませる方向に撮
影レンズを向け、その状態でその方向に衝撃を与えると
チャージバネ710はその瞬間撓む。As described above, the total charge force of the charge springs 710 has a force sufficient to support the weight of the support frame 75 and the lens 74, but it does not have much margin. Therefore, when the photographing lens is oriented in the direction in which the charge spring 710 is bent and an impact is applied in that direction in that state, the charge spring 710 flexes at that moment.
【0121】支持枠75は防振を行わない時にはロック
リング719の内周壁719gと突起75fで接触して
おり、この部分に摩擦が生じている。The support frame 75 is in contact with the inner peripheral wall 719g of the lock ring 719 by the projection 75f when vibration isolation is not performed, and friction is generated in this portion.
【0122】故にチャージバネ710が撓んで、その
後、元に復元する時に支持枠75が十分に元の位置に戻
らない可能性もある。Therefore, there is a possibility that the charge spring 710 will bend and the support frame 75 will not return to its original position sufficiently when it is restored to its original position.
【0123】レンズを持ち歩く時の状態を考えると、カ
メラボディに装着しカメラボディのストラップを撮影者
の肩に掛けて持ち歩く事が一般的であり、この時レンズ
の撮影光軸は下側(地面側)を向いている。逆に云う
と、レンズを上向(空方向)にして持ち歩く事、及び、
使用する事は希である。Considering the state of carrying the lens around, it is common to wear it on the camera body and carry the strap of the camera body around the shoulder of the photographer, and at this time, the photographing optical axis of the lens is on the lower side (ground surface). Side). To put it the other way around, carry the lens up (toward the sky), and
It is rare to use.
【0124】図9の様な従来例においては、カメラを持
ち歩くとき、支持枠75には物体側に押し付ける力(自
重及び衝撃力)が加わり、それによりチャージバネ71
0が撓む事がある。In the conventional example as shown in FIG. 9, when the camera is carried around, a force (self-weight and impact force) is applied to the support frame 75 toward the object side, whereby the charge spring 71.
0 may bend.
【0125】この後、撮影者がレンズを水平にして被写
体を狙っても支持枠75が十分元の位置に戻っていない
(光学性能が安定していない)事もあり得る。After that, even if the photographer aims the object with the lens horizontal, the support frame 75 may not be sufficiently returned to its original position (optical performance is not stable).
【0126】ところが、図3の様に支持枠75を撮影光
軸物体側(即ち、持ち歩く時には地面側)に付勢するレ
イアウトにすると、持ち歩く時にチャージバネ710が
撓む事が無い為に上述の様な問題は生じない。However, when the layout is such that the support frame 75 is biased toward the photographing optical axis object side (that is, the ground side when carrying around) as shown in FIG. 3, the charge spring 710 does not bend when carrying around, so that the above-mentioned structure is adopted. Such problems do not occur.
【0127】(実施の第2の形態)図5は本発明の実施
の第2の形態に係る要部構成を示す図であり、今迄述べ
て来た例と事なるのは、補正手段の係止方法であり、支
持枠75の内径にロックリング719が入り込んでお
り、ロックリング719の外周壁719gと支持枠75
の突起75fが当接して係止している。(Second Embodiment) FIG. 5 is a diagram showing a configuration of a main part according to a second embodiment of the present invention. What is different from the example described so far is the correction means. This is a locking method, in which the lock ring 719 is inserted into the inner diameter of the support frame 75, and the outer peripheral wall 719g of the lock ring 719 and the support frame 75.
The projection 75f is in contact with and locked.
【0128】その為、図5の重力状態においては、矢印
42の部分でロックリング719が支持枠75を吊り下
げ状態に支持している(図18では矢印62の部分で当
接し、支持枠75は倒立振り子状態で支持されてい
る)。Therefore, in the gravitational state of FIG. 5, the lock ring 719 supports the support frame 75 in a suspended state at the portion indicated by the arrow 42 (in FIG. 18, the lock frame 719 abuts at the portion indicated by the arrow 62 to support the support frame 75). Is supported in an inverted pendulum state).
【0129】この時、矢印63方向に偶力により力を大
きく受けるのは矢印41の支持球79A(第1の平面4
4と接触して摺動する部材)であり、この支持球79A
(固定摺動手段)を支持枠75に対し固定し、反対側の
支持球79B(可動摺動手段;第2の平面43と接触し
て摺動する部材)をチャージバネ710でチャージする
事で、支持枠75の係止時の倒れを防ぐ事が出来る。At this time, it is the support ball 79A (the first flat surface 4) of the arrow 41 that receives a large force by the couple in the direction of the arrow 63.
4 which is a member which comes into contact with and slides with the support ball 79A.
By fixing the (fixed sliding means) to the support frame 75 and charging the support ball 79B (movable sliding means; a member that slides in contact with the second plane 43) on the opposite side with the charge spring 710. It is possible to prevent the support frame 75 from falling when locked.
【0130】以上の様に、補正手段が倒立振り子状態で
係止されるか、或は、吊り下げ状態で係止されるか、
又、その時の重心の位置と係止部の位置関係により、支
持枠75の地板71に対する付勢方向を決定して光学性
能を安定させることが出来、逆に云えばレンズを持ち歩
く時を考慮して支持枠75の付勢方向を決定し、その方
向を基にして重心と係止部の位置関係、及び、係止状態
(倒立振り子、若しくは吊り下げ)を決定し、光学性能
を安定させる事が出来る。As described above, whether the correction means is locked in the inverted pendulum state or in the suspended state,
In addition, the urging direction of the support frame 75 with respect to the base plate 71 can be determined by the positional relationship between the center of gravity and the position of the locking portion at that time to stabilize the optical performance. Conversely, in consideration of carrying the lens around. To determine the biasing direction of the support frame 75, determine the positional relationship between the center of gravity and the locking portion, and the locked state (inverted pendulum or hanging) based on that direction to stabilize the optical performance. Can be done.
【0131】(実施の第3の形態)今迄の実施の形態に
おいては、コイル76p,76yの推力(駆動力)の発
生位置と補正手段の重心位置はほぼ同一位置に在る事を
前提に述べて来た。(Third Embodiment) In the above-described embodiments, it is premised that the thrust (driving force) generating positions of the coils 76p and 76y and the center of gravity of the correcting means are substantially at the same position. I have stated.
【0132】しかし設計上の制約から、必ずしもコイル
76p,76y(駆動手段)の駆動力発生位置と重心位
置を一致させることが出来るとは限らない。この様な
時、駆動力の発生位置と重心の駆動力の位置関係から
も、補正手段に偶力が加わる。However, due to design restrictions, it is not always possible to match the driving force generating positions of the coils 76p and 76y (driving means) with the barycentric position. In such a case, a couple force is applied to the correction means due to the positional relationship between the driving force generation position and the center of gravity driving force.
【0133】この時の駆動手段の位置と支持枠75の付
勢方向の関係を考える。Consider the relationship between the position of the driving means and the urging direction of the support frame 75 at this time.
【0134】図6は重心に対しコイル76p(駆動手
段)は紙面左側に在り、補正手段は制御時にはコイル7
6pにより吊り下げ支持状態になる。その為、重心との
位置関係で生じる偶力51の力を最も大きく受けるの
は、矢印46の支持球79Aであり、この支持球79A
を支持枠75に固定(支持枠75を紙面左方向に付勢)
する事で、光学性能の安定を図る事が出来る。In FIG. 6, the coil 76p (driving means) is on the left side of the drawing with respect to the center of gravity, and the correction means is the coil 7 during control.
It becomes a suspension support state by 6p. Therefore, the support ball 79A indicated by the arrow 46 receives the greatest force of the couple 51 generated due to the positional relationship with the center of gravity.
Is fixed to the support frame 75 (the support frame 75 is biased to the left in the drawing)
By doing so, it is possible to stabilize the optical performance.
【0135】次に、コイル76pが図6の光軸を挟んで
下側に付いている時には補正手段は制御中、倒立振り子
支持状態となる為、矢印47の支持球79Bに大きな偶
力が加わる為、この支持球79Bを支持枠75に固定
し、同様にコイル76pが重心より右側、光軸より上に
ある時には矢印48に大きな偶力が加わり、コイル76
pが重心より右側、光軸より下にある時には矢印49の
支持球79Aに大きな偶力が加わる為、この支持球79
Aを支持枠75に固定する事で光学性能を安定化でき
る。Next, when the coil 76p is attached to the lower side of the optical axis in FIG. 6, the correcting means is in the inverted pendulum supporting state during control, and a large couple is applied to the supporting ball 79B indicated by the arrow 47. Therefore, the support ball 79B is fixed to the support frame 75, and when the coil 76p is on the right side of the center of gravity and above the optical axis, a large couple is applied to the arrow 48, and the coil 76p
When p is on the right side of the center of gravity and below the optical axis, a large couple is applied to the support ball 79A indicated by the arrow 49.
The optical performance can be stabilized by fixing A to the support frame 75.
【0136】以上、駆動手段の位置(重心より右,左、
光軸より上,下)と、係止部の位置(重心より右,左、
倒立振り子係止、吊り下げ係止)により、支持枠75の
付勢方向を変化させて光学性能の安定化を図ることが出
来るが、ここで前述した持ち歩く時の安定性を考えて、
支持枠75を地板71に対し撮影光軸物体側に付勢して
いる時の駆動手段の位置と係止手段の係止部の位置の望
ましい組合わせを求めてみる。As described above, the position of the driving means (right, left from the center of gravity,
Above and below the optical axis) and the position of the locking part (right, left from the center of gravity,
The inverted pendulum lock and the suspension lock can change the biasing direction of the support frame 75 to stabilize the optical performance, but considering the above-mentioned stability when carrying around,
A desirable combination of the position of the drive means and the position of the locking portion of the locking means when the support frame 75 is biased toward the photographing optical axis object side with respect to the main plate 71 will be obtained.
【0137】a)駆動手段の位置は重心より撮影光軸物
体側か、重心と一致した補正手段の吊り下げ支持、又
は、重心より撮影光軸像面側か、重心と一致した補正手
段の倒立振り子支持の何れかの位置。A) The position of the driving means is the object side of the photographing optical axis from the center of gravity, the suspension of the correcting means coincident with the center of gravity, or the side of the photographing optical axis image surface side of the center of gravity, or the inversion of the correcting means coincident with the center of gravity. Any position of pendulum support.
【0138】b)係止手段の係止部位置も重心より撮影
光軸物体側か、重心と一致した補正手段の吊り下げ係
止、又は、重心より撮影光軸像面側か、重心と一致した
補正手段の倒立振り子支持の何れかの位置。B) The position of the locking portion of the locking means is also on the object side of the photographing optical axis from the center of gravity, or on the hanging locking of the correcting means which coincides with the center of gravity, or on the image plane side of the photographing optical axis from the center of gravity or coincides with the center of gravity. Any position of the inverted pendulum support of the correction means.
【0139】以上のレイアウトにする事で、光学性能の
安定化を補正手段の防振性能(摺動性)を損なう事なく
実現可能となる。With the above layout, stabilization of the optical performance can be realized without impairing the vibration isolation performance (sliding property) of the correction means.
【0140】以上の実施の各形態によれば、以下の様な
効果を有するものである。According to each of the above embodiments, the following effects are obtained.
【0141】1)補正手段の重心と係止手段の係止部の
位置関係で生じる偶力を受ける制限部を設けることで、
光学性能の安定化が図れ、詳しくは係止部が重心より撮
影光軸像面側にあり補正手段を倒立振り子係止する時
(実施の第1の形態の場合)、あるいは、係止部が重心
より撮影光軸物体側にあり吊下げ係止する時(実施の第
2の形態とは逆の場合)は、補正手段を撮影光軸物体側
に付勢し、係止部が重心より撮影光軸像面側にあり補正
手段を吊下げ係止する時(実施の第2の形態の場合)、
あるいは、係止部が重心より撮影光軸物体側にあり倒立
振り子係止する時(実施の第1の形態とは逆の場合)
は、補正手段を撮影光軸像面側に付勢することで、補正
手段係止時のレンズ倒れによる光学性能の劣化を防ぐこ
とが出来た。1) By providing a limiting portion that receives a couple generated due to the positional relationship between the center of gravity of the correction means and the locking portion of the locking means,
The optical performance can be stabilized, and more specifically, when the locking portion is on the imaging optical axis image plane side from the center of gravity and the correcting means is locked by the inverted pendulum (in the case of the first embodiment), or the locking portion is When the object is on the object side of the photographing optical axis from the center of gravity and is locked by hanging (the opposite of the case of the second embodiment), the correction means is biased to the object side of the photographing optical axis, and the locking portion is photographed from the center of gravity. When the correction means is on the image plane side of the optical axis and is suspended and locked (in the case of the second embodiment),
Alternatively, when the locking portion is on the object side of the photographing optical axis with respect to the center of gravity and the inverted pendulum is locked (in the opposite case of the first embodiment)
By biasing the correcting means toward the image plane of the photographing optical axis, it was possible to prevent the deterioration of the optical performance due to the lens tilt when the correcting means is locked.
【0142】2)補正手段の重心と駆動手段の駆動位置
の関係で生じる偶力を受ける制限部を設けることで、光
学性能の安定化が図れ、詳しくは駆動手段が重心より撮
影光軸物体側にあり補正手段を吊下げ支持する時、ある
いは、駆動手段が重心より撮影光軸像面側にあり倒立振
り子支持する時は、補正手段を撮影光軸物体側に付勢
し、駆動手段が重心より撮影光軸像面側にあり吊下げ支
持、あるいは、駆動手段が重心より撮影光軸物体側にあ
り倒立振り子支持の時は、補正手段を撮影像面側に付勢
することで、補正手段制御時のレンズ倒れによる光学性
能の劣化を防ぐことが出来た。2) Stabilizing the optical performance by providing a limiting portion that receives a couple generated due to the relationship between the center of gravity of the correction means and the drive position of the drive means, and more specifically, the drive means is closer to the photographing optical axis object side than the center of gravity. When the correction means is suspended and supported, or when the drive means is on the image plane side of the photographing optical axis from the center of gravity and supports the inverted pendulum, the correction means is biased toward the photographing optical axis object side, and the drive means is moved to the center of gravity. When the photographing optical axis is closer to the image plane side, or the driving means is closer to the photographing optical axis object side than the center of gravity and the inverted pendulum is supported, the correcting means is biased toward the photographing image plane side to correct the correcting means. It was possible to prevent deterioration of optical performance due to lens tilt during control.
【0143】3)更にレンズを持ち歩くことを考慮し
て、補正手段を撮影手段物体側に付勢して挟持すること
で、光学性能を常に安定化させることが出来る。3) Further considering the carrying around of the lens, the correction means is urged toward the object side of the photographing means so as to sandwich it, whereby the optical performance can be always stabilized.
【0144】(発明と実施の形態との対応)上記の各実
施の形態において、支持球79A(又は79B)が本発
明の制限部に相当し、支持球79A,チャージバネ71
0,支持球79Bが本発明の挟持手段に相当し、地板7
1,第1ヨーク712,第2ヨーク72が本発明の固定
部材に相当し、支持枠75及びレンズ74が本発明の補
正手段に相当し、コイル76p,76yが本発明の駆動
手段に相当する。(Correspondence between Invention and Embodiment) In each of the above-described embodiments, the support ball 79A (or 79B) corresponds to the limiting portion of the present invention, and the support ball 79A and the charge spring 71 are provided.
0, the support balls 79B correspond to the holding means of the present invention, and the base plate 7
The first yoke 712 and the second yoke 72 correspond to the fixing member of the present invention, the support frame 75 and the lens 74 correspond to the correcting means of the present invention, and the coils 76p and 76y correspond to the driving means of the present invention. .
【0145】また、支持球79A(又は79B)が本発
明の固定摺動手段に、支持球79B(又は79A)が可
動摺動手段に、チャージバネが弾性手段に、それぞれ相
当する。The support ball 79A (or 79B) corresponds to the fixed sliding means of the present invention, the support ball 79B (or 79A) corresponds to the movable sliding means, and the charge spring corresponds to the elastic means.
【0146】以上が実施の形態における各構成と本発明
の各構成の対応関係であるが、本発明は、これら実施の
形態の構成に限定されるものではなく、請求項で示した
機能、又は実施の形態がもつ機能が達成できる構成であ
ればどのようなものであってもよいことは言うまでもな
い。The above is the correspondence relationship between each configuration in the embodiments and each configuration of the present invention, but the present invention is not limited to the configurations of these embodiments, and the functions shown in the claims or It goes without saying that any structure may be used as long as the function of the embodiment can be achieved.
【0147】(変形例)本発明は、振動検出手段として
は、角加速度計,加速度計,角速度計,速度計,角変位
計,変位計、更には画像振れ自体を検出する方法等、振
れが検出できるものであればどのようなものであっても
良い。(Modification) In the present invention, as the vibration detecting means, an angular accelerometer, an accelerometer, an angular velocity meter, a speedometer, an angular displacement meter, a displacement meter, or a method for detecting the image shake itself is used. Anything that can be detected may be used.
【0148】本発明は、振動検出手段と補正手段は、互
いに装着可能な複数の装置、例えばカメラとそれに装着
可能な交換レンズにそれぞれわけて設けることも可能で
ある。In the present invention, the vibration detecting means and the correcting means can be separately provided in a plurality of devices which can be attached to each other, for example, a camera and an interchangeable lens which can be attached thereto.
【0149】本発明は、請求項または実施の形態の各構
成または一部の構成が別個の装置に設けられていてもよ
い。例えば、振動検出手段がカメラ本体に、補正手段が
前記カメラに装着されるレンズ鏡筒に、それらを制御す
る制御手段が中間アダプタに設けられていてもよい。In the present invention, each structure or a part of the structures of the claims or the embodiments may be provided in a separate device. For example, the vibration detection means may be provided in the camera body, the correction means may be provided in the lens barrel mounted in the camera, and the control means for controlling them may be provided in the intermediate adapter.
【0150】また、本発明は、一眼レフカメラ,レンズ
シャッタカメラ,ビデオカメラ等のカメラに適用した場
合を述べているが、その他の光学機器や他の装置、更に
は構成ユニットとしても適用することができるものであ
る。Further, although the present invention has been described as applied to a camera such as a single-lens reflex camera, a lens shutter camera, a video camera, etc., it may be applied to other optical devices and other devices, and also as a constituent unit. Is something that can be done.
【0151】[0151]
【発明の効果】以上説明したように、本発明によれば、
制限部によって補正手段の重心の位置関係で発生する偶
力を受け止め、前記偶力により前記補正手段が傾き(光
軸と直交な方向に対する)が生じないようにしている。As described above, according to the present invention,
The limiting unit receives the couple generated due to the positional relationship of the center of gravity of the correction unit, and prevents the correction unit from tilting (with respect to the direction orthogonal to the optical axis) due to the couple.
【0152】よって、防振時と非防振時の光学性能の変
化を無くすことができる。Therefore, it is possible to eliminate the change in optical performance between the image stabilization and the image stabilization.
【0153】また、本発明によれば、補正手段を光軸と
直交する方向に摺動可能に挟持する挟持手段を備え、該
挟持手段により、前記補正手段を光軸物体側に付勢する
ようにしている。Further, according to the present invention, there is provided a holding means for holding the correcting means slidably in the direction orthogonal to the optical axis, and the holding means biases the correcting means toward the optical axis object side. I have to.
【0154】よって、該装置の携帯時や衝撃が加わるこ
とにより弾性手段が撓んで補正手段が沈み込み、該装置
の使用時に弾性手段の付勢によっては補正手段が元の位
置に完全に復帰できず、その後の防振制御に影響を与え
ることを防止する事と、前記弾性手段の付勢力を、防振
制御時の補正手段の摺動を滑らかに行える位の弱させ設
定する事の、両方を満足することができる。Therefore, when the device is carried or when an impact is applied, the elastic means bends and the correction means sinks, and when the device is used, the correction means can be completely returned to its original position depending on the bias of the elastic means. Both to prevent the influence on the subsequent image stabilization control and to set the biasing force of the elastic means to a weakness so that the correction means can slide smoothly during the image stabilization control. Can be satisfied.
【図1】本発明の実施の第1の形態に係る補正光学装置
の構成を示す分解斜視図である。FIG. 1 is an exploded perspective view showing a configuration of a correction optical device according to a first embodiment of the present invention.
【図2】図1の支持球の構造を示す斜視図である。FIG. 2 is a perspective view showing a structure of a support ball of FIG.
【図3】図1の地板に支持枠を組み込んだ時の様子を示
す断面図である。FIG. 3 is a cross-sectional view showing a state in which a support frame is incorporated in the main plate of FIG.
【図4】図3の挟持手段が挿入される支持枠の孔の形状
を説明する為の図である。FIG. 4 is a diagram for explaining the shape of a hole of a support frame into which the holding means of FIG. 3 is inserted.
【図5】本発明の実施の第2の形態に係る補正光学装置
の要部構成を示す断面図である。FIG. 5 is a cross-sectional view showing a main configuration of a correction optical device according to a second embodiment of the invention.
【図6】本発明の実施の第2の形態に係る補正光学装置
の要部構成を示す断面図である。FIG. 6 is a cross-sectional view showing a main configuration of a correction optical device according to a second embodiment of the invention.
【図7】従来の防振システムの概略構成を示す斜視図で
ある。FIG. 7 is a perspective view showing a schematic configuration of a conventional anti-vibration system.
【図8】図7の補正光学装置の構造を示す分解斜視図で
ある。8 is an exploded perspective view showing the structure of the correction optical device in FIG.
【図9】図8の地板に支持枠を組み込んだ時の様子を示
す断面図である。9 is a cross-sectional view showing a state where a support frame is incorporated in the main plate of FIG.
【図10】図8に示す地板を示す斜視図である。FIG. 10 is a perspective view showing the main plate shown in FIG.
【図11】図8に示す支持枠を示す斜視図である。FIG. 11 is a perspective view showing the support frame shown in FIG.
【図12】図8に示すロックリングを示す斜視図であ
る。12 is a perspective view showing the lock ring shown in FIG. 8. FIG.
【図13】図8の支持枠等を示す正面図である。13 is a front view showing the support frame and the like of FIG.
【図14】図8の位置検出素子の出力を増幅するICの
構成を示す回路図である。14 is a circuit diagram showing a configuration of an IC that amplifies an output of the position detection element of FIG.
【図15】図8のロックリングが駆動される地の様子を
示す図である。FIG. 15 is a diagram showing a state of the ground where the lock ring of FIG. 8 is driven.
【図16】図15のロックリング駆動時における信号波
形を示す図である。16 is a diagram showing signal waveforms at the time of lock ring driving in FIG.
【図17】防振システムが搭載されたカメラの防振系の
回路構成を示すブロック図である。FIG. 17 is a block diagram illustrating a circuit configuration of an image stabilizing system of a camera equipped with the image stabilizing system.
【図18】従来の補正光学装置の問題点を説明する為の
図断面図である。FIG. 18 is a sectional view illustrating a problem of the conventional correction optical device.
71 地板 72 第2ヨーク 74 レンズ 75 支持枠 76p,76y コイル 79A,79B 支持球 710 チャージバネ 712 第1ヨーク 71 Base plate 72 Second yoke 74 Lens 75 Support frame 76p, 76y Coil 79A, 79B Support ball 710 Charge spring 712 First yoke
Claims (8)
関係で発生する偶力を受ける制限部を備えた補正光学装
置。1. A correction optical device including a limiting portion that receives a couple generated due to a positional relationship of a center of gravity of a correction unit that decenters an optical axis.
交する方向のみ摺動可能に固定部材に対して挟持する挟
持手段に具備されていることを特徴とする請求項1記載
の補正光学装置。2. The correcting unit according to claim 1, wherein the limiting unit is provided in a holding unit that holds the correcting unit slidably only in a direction orthogonal to an optical axis with respect to a fixing member. Optical device.
直交する互いに離間した第1と第2の平面の間にチャー
ジされて納められており、前記補正手段に固定あるいは
一体化され前記第1の平面と摺動する、前記制限部を成
す固定摺動手段,前記第2の平面と摺動すると共に前記
補正手段に対して光軸方向に可動する可動摺動手段、及
び、該可動摺動手段を前記補正手段に対して付勢する弾
性手段にて構成され、 光軸が偏心しないように前記補正手段を係止する為の係
止手段の係止部が重心位置に対して光軸像面側にあり、
前記補正手段を倒立振り子状態に支持する場合は、前記
固定部材の各平面が像面側から物体側の光軸方向に向か
って、第2の平面,第1の平面の順になるように配設
し、前記係止部が重心位置に対して光軸物体側にあり、
前記補正手段を倒立振り子状態に支持する場合は、前記
固定部材の各平面が像面側から物体側の光軸方向に向か
って、第1の平面,第2の平面の順になるように配設し
たことを特徴とする請求項2記載の補正光学装置。3. The holding means is charged and housed between first and second planes which are orthogonal to the optical axis of the fixing member and are separated from each other, and are fixed or integrated with the correcting means. Fixed sliding means forming the limiting portion, which slides on a first plane, movable sliding means that slides on the second plane and is movable in the optical axis direction with respect to the correcting means, and the movable The sliding portion is composed of elastic means for urging the correcting means, and the locking portion of the locking means for locking the correcting means so that the optical axis is not eccentric, is locked to the center of gravity position. On the axial image side,
When the correcting means is supported in an inverted pendulum state, the fixing members are arranged such that the respective planes of the fixing member are in the order of the second plane and the first plane from the image plane side toward the object side optical axis direction. The locking portion is on the optical axis object side with respect to the center of gravity,
When the correcting means is supported in an inverted pendulum state, the fixing members are arranged such that the respective planes of the fixing member are in the order of the first plane and the second plane from the image plane side toward the object side optical axis direction. The correction optical device according to claim 2, wherein
直交する互いに離間した第1と第2の平面の間にチャー
ジされて納められており、前記補正手段に固定あるいは
一体化され前記第1の平面と摺動する、前記制限部を成
す第1の固定摺動手段,前記第2の平面と摺動すると共
に前記補正手段に対して光軸方向に可動する第2の可動
摺動手段、及び、該可動摺動手段を前記補正手段に対し
て付勢する弾性手段にて構成され、 光軸が偏心しないように前記補正手段を係止する為の係
止手段の係止部が重心位置に対して光軸像面側にあり、
前記補正手段を吊り下げ状態に支持する場合は、前記固
定部材の各平面が像面側から物体側の光軸方向に向かっ
て、第1の平面,第2の平面の順になるように配設し、
前記係止部が重心位置に対して光軸物体側にあり、前記
補正手段を吊り下げ状態に支持する場合は、前記固定部
材の各平面が像面側から物体側の光軸方向に向かって、
第2の平面,第1の平面の順になるように配設したこと
を特徴とする請求項2記載の補正光学装置。4. The holding means is charged and housed between first and second flat surfaces which are orthogonal to the optical axis of the fixing member and are spaced apart from each other, and are fixed or integrated with the correcting means. A first fixed sliding means that slides on a first plane and forms the limiting portion; a second movable slide that slides on the second plane and that moves in the optical axis direction with respect to the correction means. Means and elastic means for urging the movable sliding means with respect to the correction means, and a locking portion of the locking means for locking the correction means so that the optical axis is not eccentric. It is on the optical axis image plane side with respect to the center of gravity,
When the correction means is supported in a suspended state, the fixing members are arranged such that the respective planes of the fixing member are in the order of the first plane and the second plane in the optical axis direction from the image plane side to the object side. Then
When the locking portion is on the optical axis object side with respect to the center of gravity and supports the correcting means in a suspended state, each plane of the fixing member faces from the image plane side to the object side optical axis direction. ,
3. The correction optical device according to claim 2, wherein the correction optical device is arranged so that the second plane and the first plane are arranged in this order.
交する方向に摺動可能に挟持する挟持手段を有し、該挟
持手段は、前記補正手段を光軸物体側に付勢しているこ
とを特徴とする補正光学装置。5. A holding means for holding a correction means for eccentricizing the optical axis so as to be slidable in a direction orthogonal to the optical axis, and the holding means biases the correction means toward the object side of the optical axis. A correction optical device characterized in that
離間した第1と第2の平面の間にチャージされて納めら
れており、前記補正手段に固定あるいは一体化され前記
第1の平面と摺動する固定摺動手段,前記第2の平面と
摺動すると共に前記補正手段に対して光軸方向に可動す
る可動摺動手段、及び、該可動摺動手段を前記補正手段
に対して付勢する弾性手段にて構成され、 前記第1の平面を光軸物体側に、前記第2の平面を光軸
像面側に、それぞれ配設したことを特徴とする請求項5
記載の補正光学装置。6. The holding means is charged and housed between first and second planes which are orthogonal to the optical axis and are spaced apart from each other, and are fixed or integrated with the correction means and the first plane. Fixed sliding means that slides with, movable sliding means that slides on the second plane and is movable in the optical axis direction with respect to the correcting means, and the movable sliding means with respect to the correcting means. 6. An elastic means for urging, wherein the first plane is arranged on the optical axis object side, and the second plane is arranged on the optical axis image plane side.
The correction optical device described.
段を駆動する駆動手段と、該駆動手段の駆動力の発生位
置と前記補正手段の重心位置の関係で発生する偶力を受
ける制限部とを備えた補正光学装置。7. A correcting means for eccentricizing an optical axis, a driving means for driving the correcting means, and a limit for receiving a couple force generated due to a relationship between a position where a driving force of the driving means is generated and a center of gravity of the correcting means. And a correction optical device having a section.
段を係止する係止手段と、該係止手段と前記補正手段の
重心位置の関係で発生する偶力を受ける制限部とを備え
た補正光学装置。8. A correction means for eccentricizing an optical axis, a locking means for locking the correction means, and a limiting portion for receiving a couple generated due to the relationship between the locking means and the center of gravity of the correction means. Compensation optical device equipped.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20676995A JPH0933975A (en) | 1995-07-21 | 1995-07-21 | Correction optical device |
US08/683,951 US6035131A (en) | 1995-07-21 | 1996-07-19 | Image blur prevention apparatus and a contact portion for contacting fixed portions of a movable optical member for an image blur prevention apparatus which prevents image blur by moving the movable optical member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20676995A JPH0933975A (en) | 1995-07-21 | 1995-07-21 | Correction optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0933975A true JPH0933975A (en) | 1997-02-07 |
Family
ID=16528791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20676995A Pending JPH0933975A (en) | 1995-07-21 | 1995-07-21 | Correction optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0933975A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002196383A (en) * | 2000-12-26 | 2002-07-12 | Canon Inc | Shake correcting device and optical equipment |
JP2002244010A (en) * | 2001-02-21 | 2002-08-28 | Nikon Corp | Blur correcting device |
JP2007219388A (en) * | 2006-02-20 | 2007-08-30 | Canon Inc | Image blur correcting device, imaging apparatus and optical equipment |
JP2008003131A (en) * | 2006-06-20 | 2008-01-10 | Fujifilm Corp | Shake correcting device |
JP2009230091A (en) * | 2008-02-28 | 2009-10-08 | Konica Minolta Opto Inc | Imaging unit and electronic camera |
JP2011033697A (en) * | 2009-07-30 | 2011-02-17 | Victor Co Of Japan Ltd | Linear motion device and lens drive device |
CN102116995A (en) * | 2010-01-06 | 2011-07-06 | 佳能株式会社 | Image stabilizing apparatus and imaging apparatus including the same |
-
1995
- 1995-07-21 JP JP20676995A patent/JPH0933975A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002196383A (en) * | 2000-12-26 | 2002-07-12 | Canon Inc | Shake correcting device and optical equipment |
JP2002244010A (en) * | 2001-02-21 | 2002-08-28 | Nikon Corp | Blur correcting device |
JP2007219388A (en) * | 2006-02-20 | 2007-08-30 | Canon Inc | Image blur correcting device, imaging apparatus and optical equipment |
JP2008003131A (en) * | 2006-06-20 | 2008-01-10 | Fujifilm Corp | Shake correcting device |
JP2009230091A (en) * | 2008-02-28 | 2009-10-08 | Konica Minolta Opto Inc | Imaging unit and electronic camera |
JP2011033697A (en) * | 2009-07-30 | 2011-02-17 | Victor Co Of Japan Ltd | Linear motion device and lens drive device |
CN102116995A (en) * | 2010-01-06 | 2011-07-06 | 佳能株式会社 | Image stabilizing apparatus and imaging apparatus including the same |
US8287193B2 (en) | 2010-01-06 | 2012-10-16 | Canon Kabushiki Kaisha | Image stabilizing apparatus and imaging apparatus including image stabilizing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3423564B2 (en) | Optical equipment | |
JP3530643B2 (en) | Lens barrel and optical equipment using the same | |
JPH09211518A (en) | Camera and vibration-proof device | |
US6035131A (en) | Image blur prevention apparatus and a contact portion for contacting fixed portions of a movable optical member for an image blur prevention apparatus which prevents image blur by moving the movable optical member | |
JPH10213833A (en) | Optical equipment provided with image shaking correcting function and interchangeable lens | |
JP3706661B2 (en) | Lens barrel and optical apparatus using the same | |
JPH0933975A (en) | Correction optical device | |
JP3397536B2 (en) | Correction optics | |
JP3814363B2 (en) | camera | |
JP3805045B2 (en) | Vibration correction device | |
JP3423493B2 (en) | Correction optics | |
JP2004227003A (en) | Optical equipment with unstable image correcting function | |
JPH10213834A (en) | Optical equipment provided with image shaking correcting function | |
JPH0961880A (en) | Lens barrel and optical equipment using the same | |
JPH09281538A (en) | Correction optical device, vibration proof device and vibration proof camera | |
JP3740218B2 (en) | Lens barrel and optical apparatus using the same | |
JP3372722B2 (en) | Optical device | |
JPH0961881A (en) | Lens barrel and optical equipment using the same | |
JPH11174514A (en) | Position controller for correcting means | |
JPH09211517A (en) | Vibration-proof controller and optical equipment | |
JP3720474B2 (en) | Vibration correction device | |
JPH09292642A (en) | Vibrationproofing camera and its controller | |
JPH10221730A (en) | Vibrationproofing controller | |
JPH09211519A (en) | Correction optical device | |
JP3684015B2 (en) | Optical equipment with image stabilization |