JPH0933736A - Plastic optical fiber - Google Patents

Plastic optical fiber

Info

Publication number
JPH0933736A
JPH0933736A JP7179239A JP17923995A JPH0933736A JP H0933736 A JPH0933736 A JP H0933736A JP 7179239 A JP7179239 A JP 7179239A JP 17923995 A JP17923995 A JP 17923995A JP H0933736 A JPH0933736 A JP H0933736A
Authority
JP
Japan
Prior art keywords
core
monomer
optical fiber
plastic optical
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7179239A
Other languages
Japanese (ja)
Other versions
JP3479573B2 (en
Inventor
Kazumi Nakamura
一己 中村
Makoto Muro
誠 室
Atsushi Okumura
淳 奥村
Jun Kamo
純 加茂
Kikue Irie
菊江 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP17923995A priority Critical patent/JP3479573B2/en
Publication of JPH0933736A publication Critical patent/JPH0933736A/en
Application granted granted Critical
Publication of JP3479573B2 publication Critical patent/JP3479573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a plastic optical fiber having a core-clad structure and having heat resistance and low transmission loss characteristips which are comparable to a polymethacrylate by constituting the core of a specified copolymer. SOLUTION: This fiber has such a core-clad structure that the core consists of a copolymer comprising a monomer A expressed by the formula and a monomer B which can copolymerize with it. In the formula for the monomer A, R1 and R2 are preferably substituents of <=12 carbon number because when the structure has a large bulk, the heat resistance and polymn. degree decrease. The alkyl groups to be introduced to R1 and R2 are expressed by structural formula Cn H2n+1 (n<=12) and may has a straight or branched structure. Further, R1 and R2 may be coupled to form a six-member structure of cyclohexyl group. As for the monomers B which can copolymerize with the monomers A, methacrylates such as methyl methacrylate or α-chloroacrylate can be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光情報通信媒体として利
用可能なプラスチック光ファイバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic optical fiber usable as an optical information communication medium.

【0002】[0002]

【従来の技術】光伝送は大容量で電磁ノイズの影響を全
く受けないという特長を生かして通信媒体として広く用
いられている。実用化されている光伝送体はその素材に
より石英系とプラスチック系に大別される。また、伝送
モードの様式により単一モード型と多モード型に分ける
ことができる。さらに、屈折率分布様式から断面の半径
方向に沿った屈折率変化が不連続的なステップインデッ
クス型(以下「SI型」という)と連続的なグレーデッド
インデックス型(以下「GI型」という)とに分類される
こともある。
2. Description of the Related Art Optical transmission is widely used as a communication medium by taking advantage of its large capacity and being completely unaffected by electromagnetic noise. Practical optical transmitters are roughly classified into quartz type and plastic type depending on their materials. Further, it can be classified into a single mode type and a multimode type according to the mode of the transmission mode. Furthermore, there are a step index type (hereinafter referred to as “SI type”) and a continuous graded index type (hereinafter referred to as “GI type”) in which the refractive index change along the radial direction of the cross section is discontinuous from the refractive index distribution pattern. It may be classified into.

【0003】市販されている石英系単一モードファイバ
は、圧倒的な低損失、広帯域を特長とする。この特長を
生かして長距離の大容量通信幹線に用いられている。プ
ラスチック系はSI型プラスチック光ファイバ(以下「SI
型POF」という)が市販されており、大口径(500〜1000
μm程度)、高開口数(NA≒0.5)でありながら柔軟性に
優れていることを最大の特長としている。
Commercially available silica-based single mode fibers are characterized by overwhelmingly low loss and wide band. Taking advantage of this feature, it is used for long-distance, large-capacity communication trunk lines. The plastic type is SI type plastic optical fiber (hereinafter "SI
Type POF "is commercially available and has a large diameter (500 to 1000
Its greatest feature is that it has excellent flexibility while having a high numerical aperture (NA ≈ 0.5).

【0004】石英系単一モードファイバは極めて広帯域
であるが、同時に受光面となるコア径が極めて小さく
(10μm程度)かつコアとクラッドの屈折率差が小さい
ため、光源との位置関係や入射角に対する許容範囲が狭
く、周辺機器との結合時のアラインメント(位置、角度
あわせ)操作に労力を要する。さらには、素材が石英で
あるため、受発光素子との結合部分である端面処理も困
難を伴う。
The silica type single mode fiber has an extremely wide band, but at the same time, the core diameter serving as the light receiving surface is extremely small (about 10 μm) and the difference in the refractive index between the core and the clad is small, so that the positional relationship with the light source and the incident angle are small. Since the allowable range is narrow, it takes a lot of effort to perform alignment (position and angle adjustment) operations when connecting with peripheral devices. Further, since the material is quartz, it is difficult to process the end face, which is a connecting portion with the light emitting / receiving element.

【0005】また、石英系単一モードファイバよりも大
口径、高開口数の石英系GI型ファイバであっても、SI型
POFに比較すると口径も開口数も小さい。また、素材が
石英であるために結合部分などのファイバ端面の研摩処
理などの操作が必要である。このような欠点を補うため
にコア材に石英、クラッド材にプラスチックを用いたプ
ラスチッククラッド石英コアファイバも市販されている
が、端面処理の困難さはさけられず、なおかつ柔軟性の
改善も充分なものとは言えない。
In addition, even if the silica type GI type fiber has a larger diameter and a higher numerical aperture than the silica type single mode fiber, the SI type
Compared to POF, it has a smaller aperture and numerical aperture. Further, since the material is quartz, it is necessary to perform an operation such as polishing of the end face of the fiber such as the coupling portion. To compensate for such drawbacks, plastic clad quartz core fibers using quartz as the core material and plastic as the clad material are also commercially available, but the difficulty of end face treatment is unavoidable and the flexibility is also sufficiently improved. Not a thing.

【0006】これらの観点から現在市販されているプラ
スチック光ファイバのもつ利点としては、大口径であり
ながら柔軟で取り扱い性がよい、結合のアラインメント
の許容範囲が広く接続が容易なので高価な加工装置・光
学装置が不要である、等の点が挙げられる。
From these viewpoints, the advantages of the plastic optical fibers currently on the market are that they have a large diameter, are flexible and easy to handle, have a wide tolerance range of coupling alignment, and are easy to connect. There is a point that an optical device is unnecessary.

【0007】そこでSI型POFは上記の特長を生かして、
データリンクなどの短距離通信やセンサー等への応用が
浸透しつつある。また今後、FA用、OA用などフロアー内
外の機器間LANのような施設網や加入者網(FTTH)にお
ける末端配線など、接続点の多い近距離の低コスト情報
伝送線として期待されている。また、柔軟性に優れてい
るため振動する環境でも破損、折損や劣化が起きにく
く、この点でも石英系よりもはるかに優れ、自動車、電
車、飛行機などの移動体中のネットワークなど信号伝送
線への応用も図られている。
Then, SI type POF makes use of the above-mentioned feature,
Applications for short-distance communication such as data link and sensors are spreading. In the future, it is expected to be a low-cost information transmission line for short distances with many connection points such as facility networks such as LAN between devices inside and outside the floor for FA and OA, and terminal wiring in the subscriber network (FTTH). In addition, since it is excellent in flexibility, it is less likely to be damaged, broken or deteriorated even in a vibrating environment. In this respect as well, it is far superior to the quartz system and can be used for signal transmission lines such as networks in moving bodies such as automobiles, trains and airplanes. Is also being applied.

【0008】通常のプラスチック光ファイバにおいては
伝送損失が低くかつ機械的特性や耐候性にも問題がない
ことから、ポリメタクリル酸メチルをコア材として用い
たものが主流となっている。ポリメタクリル酸メチルを
コアとする光ファイバの使用上限温度はこの素材のガラ
ス転移点Tgに制限されているため、耐熱性に富む被覆な
どを施した場合でも、高々105℃程度と限られてお
り、上記のような移動体中での通信や屋外での使用にお
いては耐熱性が不足である。
Since ordinary plastic optical fibers have a low transmission loss and have no problem in mechanical properties and weather resistance, those using polymethylmethacrylate as a core material are predominant. Since the upper limit temperature of the optical fiber with poly (methyl methacrylate) as the core is limited to the glass transition point Tg of this material, even if a coating with high heat resistance is applied, it is limited to at most 105 ° C. However, the heat resistance is insufficient in the above-mentioned communication in the mobile body and in the outdoor use.

【0009】プラスチック光ファイバの耐熱性向上の方
法としては、主に、コア材のTgを上げる方法と耐熱性の
被覆を施す方法がある。前者のコア材のTgを上げる物と
して、1)ポリマー単体で高いガラス転移点を持つポリ
カーボネートをコア材に用いる(特開昭61−2627
06号公報)、2)多環オレフィン系モノマーを含むオ
レフィン系共重合体をコア材に用いる(特開昭61−2
11315号公報)、3)メチルメタクリレートモノマ
ーと他の高Tgのモノマーとの共重合体をコア材に用いる
ものであって、コモノマーとして、芳香族マレイミドを
用いるもの(特公平5−82405号公報、特公平5−
82406号公報)、脂肪族マレイミド(特開昭63−
80205号公報)、脂環式メタクリレート(特開昭6
1−260205号公報)が挙げられる。
As a method of improving the heat resistance of the plastic optical fiber, there are mainly a method of increasing the Tg of the core material and a method of applying a heat resistant coating. As for the former which raises the Tg of the core material, 1) Polycarbonate having a high glass transition point as a polymer alone is used as the core material (JP-A-61-2627).
No. 06), 2) an olefin-based copolymer containing a polycyclic olefin-based monomer is used as a core material (JP-A-61-2).
11315 gazette), 3) using a copolymer of a methyl methacrylate monomer and another high Tg monomer as a core material, and using an aromatic maleimide as a comonomer (Japanese Patent Publication No. 5-82405, Tokufair 5-
82406), and aliphatic maleimides (JP-A-63-63).
80205), alicyclic methacrylates (JP-A-6-206)
No. 1-260205).

【0010】[0010]

【発明が解決しようとする課題】しかしながら前記の1
及び2)のものは高温下での寸法、機械的特性の安定性
については十分であるが、ポリメタクリル酸メチル系の
光ファイバと比較すると伝送損失特性が大きく、かつ高
温下での経時変化が大きいという欠点がある。また3)
のものは脂肪族マレイミドを用いた系が伝送損失、耐熱
性と機械的特性のバランスの点で良好な特性を有する
が、ポリメチルメタクリレート単体をコア材とするプラ
スチック光ファイバと比較すると伝送損失が大きく伝送
距離が短距離に限られてしまう点が問題である。
However, the above-mentioned 1
And 2) are sufficient in terms of size and stability of mechanical properties at high temperature, but have larger transmission loss characteristics than polymethylmethacrylate-based optical fibers, and their aging changes at high temperatures. It has the drawback of being large. See also 3)
Although the one using an aliphatic maleimide has good characteristics in terms of transmission loss, heat resistance and balance of mechanical properties, the transmission loss is lower than that of a plastic optical fiber using polymethylmethacrylate alone as a core material. The problem is that the transmission distance is largely limited to short distances.

【0011】また、自動車などの移動体内での使用を考
えた場合、限られた空間でケーブルをレイアウトする必
要から、屈曲部分が多くなることが予想される。一般に
ファイバーを屈曲させることで伝送損失が増加するた
め、ファイバー自体の伝送損失が大きいことは不利であ
り、1)〜3)の例のように伝送損失を犠牲にして耐熱
性を向上させる方法では十分なものとは言えない。
Further, when considering use in a moving body such as an automobile, it is expected that the number of bent portions will increase because the cables need to be laid out in a limited space. Generally, bending the fiber increases the transmission loss, which is disadvantageous in that the transmission loss of the fiber itself is large, and the method of improving the heat resistance by sacrificing the transmission loss as in the examples 1) to 3) Not enough.

【0012】本発明の目的は、かかる問題点を解決し、
ポリメタクリル酸メチルに匹敵する優れた低伝送損失特
性を有し且つ耐熱性を有するプラスチック光ファイバを
提供することにある。
The object of the present invention is to solve these problems,
An object of the present invention is to provide a plastic optical fiber having excellent low transmission loss characteristics comparable to polymethylmethacrylate and heat resistance.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、コアが
下記の式(1)で示される単量体Aとこれと共重合可能
な単量体Bとからなる共重合体で構成されたコア/クラ
ッド構造のプラスチック光ファイバにある。
The gist of the present invention is that the core is composed of a copolymer comprising a monomer A represented by the following formula (1) and a monomer B copolymerizable therewith. It is in plastic optical fiber with core / clad structure.

【0014】[0014]

【化3】 Embedded image

【0015】本発明で用いる式(1)で表される単量体
Aにおいて、式中のR1、R2については、その構造が
かさ高くなると耐熱性、重合性が低下するため炭素数12
以下の置換基にすることが好ましい。またR1、R2で
導入しうるアルキル基は構造式Cn2n+1(n≦12)
で表され、直鎖状、分岐状のいずれの構造もとることが
できる。さらにR1とR2基によってシクロヘキシル基
の6員環構造が形成されたものとすることもできる。
In the monomer A represented by the formula (1) used in the present invention, with respect to R1 and R2 in the formula, when the structure becomes bulky, the heat resistance and the polymerizability decrease, so that the carbon number is 12
The following substituents are preferred. The alkyl group which can be introduced by R1 and R2 has a structural formula of C n H 2n + 1 (n ≦ 12)
And can have a linear structure or a branched structure. Further, a 6-membered ring structure of cyclohexyl group may be formed by the R1 and R2 groups.

【0016】本発明においてコア材としては、式(1)
で示される単量体Aとこれと共重合可能な単量体Bとか
らなる共重合体が使用される。このような単量体Bとし
ては、式(2)で表される単量体が使用できる。
In the present invention, the core material has the formula (1)
A copolymer composed of the monomer A represented by and the monomer B copolymerizable therewith is used. As such a monomer B, a monomer represented by the formula (2) can be used.

【0017】[0017]

【化4】 Embedded image

【0018】具体的にはメタクリル酸メチル等のメタク
リル酸エステル、メタクリル酸エステル、αフロロアク
リル酸エステル、及びこれらのフロロアルキルエステル
等が挙げられる。
Specific examples thereof include methacrylic acid esters such as methyl methacrylate, methacrylic acid esters, α-fluoroacrylic acid esters, and fluoroalkyl esters thereof.

【0019】単量体Aと単量体Bとの共重合組成比は特
に限定されないが、Aが20〜60モル%でBが80〜
40モル%程度であることが好ましい。
The copolymerization composition ratio of the monomer A and the monomer B is not particularly limited, but A is 20 to 60 mol% and B is 80 to 60 mol%.
It is preferably about 40 mol%.

【0020】コア材用の共重合体を得るための重合様式
は特に限定されないが、光ファイバの低損失化という観
点から塊状重合で行うことが好ましい。重合開始剤は重
合時に副反応や着色等の悪影響を及ぼさないものであれ
ば特に限定されない。重合様式、重合温度、重合率、重
合時間に応じて適宜選択でき、複数種の重合開始剤をあ
わせて用いることができる。その例としてアゾビスイソ
ブチロニトリルなどのアゾ化合物、ベンゾイルパーオキ
サイド等のパーオキサイド化合物などを挙げることがで
きる。
The polymerization mode for obtaining the copolymer for the core material is not particularly limited, but bulk polymerization is preferable from the viewpoint of reducing the loss of the optical fiber. The polymerization initiator is not particularly limited as long as it does not adversely affect side reactions or coloring during polymerization. It can be appropriately selected depending on the polymerization mode, the polymerization temperature, the polymerization rate, and the polymerization time, and a plurality of types of polymerization initiators can be used together. Examples thereof include azo compounds such as azobisisobutyronitrile and peroxide compounds such as benzoyl peroxide.

【0021】また、重合時において分子量を調節する目
的で連鎖移動剤を用いても良い。連鎖移動剤としては重
合時に副反応や着色等の悪影響を及ぼさないものであれ
ば、特に限定されず、目的とする分子量に対して適宜選
択でき、複数種の連鎖移動剤をあわせて用いても良い。
連鎖移動剤の例としてはn−ブチルメルカプタン、イソ
ブチルメルカプタン、t−ブチルメルカプタンなどの第
一級、第二級、第三級メルカプタン、チオグリコール
酸、及びそのエステルなどが挙げられる。
A chain transfer agent may be used for the purpose of controlling the molecular weight during polymerization. The chain transfer agent is not particularly limited as long as it does not adversely affect side reactions or coloring during polymerization, and can be appropriately selected for the target molecular weight, and a plurality of kinds of chain transfer agents can be used together. good.
Examples of chain transfer agents include primary, secondary, and tertiary mercaptans such as n-butyl mercaptan, isobutyl mercaptan, and t-butyl mercaptan, thioglycolic acid, and esters thereof.

【0022】クラッド層の素材としてはコアに用いる材
料の屈折率よりも小さいポリマーならば特に限定されな
い。高開口数というプラスチック光ファイバの長所を生
かすためにフッ素化メタクリレート系ポリマーまたはコ
ポリマー、フッ素化メタクリレートとメタクリル酸エス
テルの共重合体、フッ化ビニリデン−テトラフルオロエ
チレン共重合体、α-フルオロメタクリレート系樹脂、
またはそれらの混合物を用いることが好ましい。耐熱性
向上の点では高Tgのα-フルオロメタクリレート系樹脂
が好ましい。
The material of the clad layer is not particularly limited as long as it is a polymer having a refractive index smaller than that of the material used for the core. Fluorinated methacrylate polymers or copolymers, copolymers of fluorinated methacrylate and methacrylate, vinylidene fluoride-tetrafluoroethylene copolymers, α-fluoromethacrylate resins to take advantage of the high numerical aperture of plastic optical fibers ,
Alternatively, it is preferable to use a mixture thereof. From the viewpoint of improving heat resistance, an α-fluoromethacrylate resin having a high Tg is preferable.

【0023】クラッド部分の厚みは、薄すぎるとしみ出
し光が無視できなくなり光ファイバ全体の伝送損失を増
大させるため1μm以上であることが好ましい。
The thickness of the clad portion is preferably 1 μm or more in order to make the leaked light too negligible to increase the transmission loss of the entire optical fiber when it is too thin.

【0024】本発明のコア/クラッド構造を有するプラ
スチック光ファイバは、コア、クラッドポリマーをそれ
ぞれ溶融し、複合ノズルより押し出す複合紡糸法、繊維
状に賦形したコアポリマーにクラッドポリマーの溶液を
塗布したのち溶剤を除去するコーティング法などにより
作ることができる。
In the plastic optical fiber having the core / clad structure of the present invention, the core and the clad polymer are melted and extruded from the composite nozzle by the composite spinning method, and the clad polymer solution is applied to the fibrous shaped core polymer. After that, it can be produced by a coating method for removing the solvent.

【0025】尚、耐熱性向上、耐湿性向上、耐化学薬品
性向上など目的でクラッド層の外周部に保護層を被覆す
ることも可能である。
A protective layer may be coated on the outer peripheral portion of the clad layer for the purpose of improving heat resistance, moisture resistance and chemical resistance.

【0026】[0026]

【実施例】以下本発明を実施例に基いて具体的に説明す
る。
EXAMPLES The present invention will be specifically described below based on examples.

【0027】実施例1 10部のナトリウムエトキシドを分散させた100部の
無水テトラヒドロフラン中にシュウ酸ジエチル25部を
加えた後、15℃以下でγ−ブチロラクトンを滴下し、
16時間放置した。次いでこの反応液中にホルムアルデ
ヒドを吹き込み、溶媒を留去した後、エーテル抽出を行
った。抽出したエーテル相を飽和炭酸ナトリウム水溶液
と混合し、1時間攪拌した。その後、溶媒を留去し、残
さをビグリュ−管をつけて減圧蒸留しα−メチレン−γ
−ブチロラクトンを得た。
Example 1 25 parts of diethyl oxalate was added to 100 parts of anhydrous tetrahydrofuran in which 10 parts of sodium ethoxide was dispersed, and γ-butyrolactone was added dropwise at 15 ° C. or below.
It was left for 16 hours. Next, formaldehyde was blown into the reaction solution, the solvent was distilled off, and then extraction with ether was performed. The extracted ether phase was mixed with saturated aqueous sodium carbonate solution and stirred for 1 hour. Then, the solvent was distilled off, and the residue was attached to a Vigreux tube and distilled under reduced pressure to obtain α-methylene-γ.
-Butyrolactone was obtained.

【0028】このようにして合成したα−メチレン−γ
−ブチロラクトンとメタクリル酸メチルをモル比40/
60の割合で混合し、この単量体混合液100部に対し
て、開始剤としてジ−t−ブチルパ−オキサイド20p
pm、連鎖移動剤としてオクチルメルカプタン0.1w
t%を添加して塊状共重合することによりコア材ポリマ
ーを製造した。
Α-methylene-γ synthesized in this way
A butyrolactone / methyl methacrylate molar ratio of 40 /
The mixture was mixed at a ratio of 60, and 20 parts of di-t-butylperoxide as an initiator was added to 100 parts of this monomer mixture solution.
pm, octyl mercaptan 0.1w as chain transfer agent
A core material polymer was produced by adding t% and performing bulk copolymerization.

【0029】一方、クラッド材としてはαーフルオロア
クリル酸トリフルオロエチル/α-フルオロアクリル酸
メチル(モル比85/15)のポリマーを用いた。これ
らのポリマーを二層同心円状複合ノズルからスクリュー
型押出機を用いて紡糸し、ファイバ直径;1000μ
m、コア直径;980μmのコア/クラッド構造のプラス
チック光ファイバを製造した。
On the other hand, as the cladding material, a polymer of α-fluoroacrylic acid trifluoroethyl / α-fluoroacrylic acid methyl (molar ratio 85/15) was used. These polymers were spun from a two-layer concentric composite nozzle using a screw type extruder, and the fiber diameter was 1000 μm.
A plastic optical fiber having a core / clad structure with m and a core diameter of 980 μm was manufactured.

【0030】このプラスチック光ファイバの伝送損失は
205dB/km(測定法;50m−5mカットバック
法、波長;650nm、入射NA=0.1)であった。
このファイバを125℃で1000時間熱処理したとこ
ろ、伝送損失の増加は20dB/km以下を維持し良好
な耐熱性を示した。
The transmission loss of this plastic optical fiber was 205 dB / km (measurement method: 50 m-5 m cutback method, wavelength: 650 nm, incident NA = 0.1).
When this fiber was heat-treated at 125 ° C. for 1000 hours, the increase in transmission loss was maintained at 20 dB / km or less, and good heat resistance was exhibited.

【0031】実施例2 37%のホルマリン水溶液50部、アクリル酸メチル7
0部及び1,4−ジアザビシクロ−[2,2,2]−オクタ
ン30部を、1,2−ジメトキシエタン200部に溶解
させ、室温で50時間攪拌したのち反応液から有機相を
分離して、α−ヒドロキシメチルアクリル酸メチルを得
た。このα−ヒドロキシメチルアクリル酸メチルを6倍
量の無水エ−テルで希釈し氷浴下、この液中に3臭化隣
20部を滴下し、室温で3時間攪拌し反応させた。反応
終了後水を加えて有機相を分離し、αーブロモメチルア
クリル酸メチルを得た。
Example 2 50 parts of 37% aqueous formalin solution, methyl acrylate 7
0 parts and 30 parts of 1,4-diazabicyclo- [2,2,2] -octane were dissolved in 200 parts of 1,2-dimethoxyethane and stirred at room temperature for 50 hours, and then the organic phase was separated from the reaction solution. , Α-hydroxymethyl methyl acrylate were obtained. This methyl α-hydroxymethyl acrylate was diluted with 6 volumes of anhydrous ether, and 20 parts of tribromide was added dropwise to this solution in an ice bath, and the mixture was stirred at room temperature for 3 hours for reaction. After the reaction was completed, water was added and the organic phase was separated to obtain methyl α-bromomethylacrylate.

【0032】このα−ブロモメチルアクリル酸メチルを
3倍量の無水テトラヒドロフランで希釈した溶液を、亜
鉛7部、アセトン25部と無水テトラヒドロフラン10
0部の混合溶液中に滴下した。滴下終了後、3時間攪拌
して、10%の塩酸水溶液中に注ぎ、有機相をよく水洗
した後、硫酸ナトリウム上で脱水し、減圧留去してα−
メチレン−4,4−ジメチル−γ−ブチロラクトンを得
た。
A solution prepared by diluting methyl α-bromomethylacrylate with 3 times the amount of anhydrous tetrahydrofuran was added with 7 parts of zinc, 25 parts of acetone and 10 parts of anhydrous tetrahydrofuran.
It was added dropwise to 0 part of the mixed solution. After completion of dropping, the mixture was stirred for 3 hours, poured into a 10% hydrochloric acid aqueous solution, the organic phase was washed well with water, dehydrated over sodium sulfate, and evaporated under reduced pressure to obtain α-.
Methylene-4,4-dimethyl-γ-butyrolactone was obtained.

【0033】α−メチレン−γ−ブチロラクトンの代わ
りに前記の方法にて合成したα−メチレン−4,4ージ
メチル−γ−ブチロラクトン を用いた以外は実施例1
と同様にして共重合体を製造し、更にファイバ直径;1
000μm、コア直径;980μmのコア/クラッド構造
のプラスチック光ファイバを製造した。このプラスチッ
ク光ファイバの伝送損失は210dB/km(測定法;
50m−5mカットバック法、波長;650nm、入射
NA=0.1)であった。このファイバを125℃で1
000時間熱処理したところが伝送損失の増加は20d
B/km以下を維持し良好な耐熱性を示した。
Example 1 except that α-methylene-4,4-dimethyl-γ-butyrolactone synthesized by the above method was used in place of α-methylene-γ-butyrolactone.
A copolymer is produced in the same manner as described above, and the fiber diameter is 1;
A plastic optical fiber with a core / clad structure having a core diameter of 980 μm and a core diameter of 980 μm was manufactured. The transmission loss of this plastic optical fiber is 210 dB / km (measurement method;
50 m-5 m cutback method, wavelength: 650 nm, incident NA = 0.1). This fiber at 125 ° C
After heat treatment for 000 hours, increase in transmission loss is 20d
B / km or less was maintained and good heat resistance was exhibited.

【0034】比較例1 三菱瓦斯化学(株)のポリカーボネート樹脂ユーピロン
をコア材とし、クラッド材としてはαーフルオロアクリ
ル酸トリフルオロエチル/α-フルオロアクリル酸メチ
ル(モル比85/15)のポリマーを用いた。これらの
ポリマーを実施例1と同様に二層同心円状複合ノズルか
らスクリュー型押出機を用いて紡糸し、ファイバ直径;
1000μm、コア直径;980μmのコア/クラッド構
造のプラスチック光ファイバを製造した。
Comparative Example 1 Polycarbonate resin Iupilon manufactured by Mitsubishi Gas Chemical Co., Inc. was used as a core material, and a clad material was a polymer of α-fluorofluoroacrylate / methyl α-fluoroacrylate (molar ratio 85/15). Using. These polymers were spun from a two-layer concentric circular composite nozzle in the same manner as in Example 1 using a screw type extruder, and the fiber diameter was measured;
A plastic optical fiber having a core / clad structure of 1000 μm and a core diameter of 980 μm was manufactured.

【0035】このプラスチック光ファイバの光伝送損失
は280dB/km(測定法;50m−5mカットバッ
ク法、波長;650nm、入射NA=0.1)であっ
た。またこの光ファイバを125℃で1000時間熱処
理したところ光伝送損失は40dB/km増加した。
The optical transmission loss of this plastic optical fiber was 280 dB / km (measurement method: 50 m-5 m cutback method, wavelength: 650 nm, incident NA = 0.1). When this optical fiber was heat-treated at 125 ° C. for 1000 hours, the optical transmission loss increased by 40 dB / km.

【0036】[0036]

【発明の効果】本発明のプラスチック光ファイバは光伝
送損失が低く耐熱性が高いという優れた性能を有してい
る。
As described above, the plastic optical fiber of the present invention has excellent performance such as low optical transmission loss and high heat resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加茂 純 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 (72)発明者 入江 菊江 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Kamo 20-1 Miyuki-cho, Otake-shi, Hiroshima Mitsubishi Rayon Co., Ltd. Central Research Institute (72) Inventor Kikue Irie 20-1 Miyuki-cho, Otake-shi, Hiroshima Central Research Laboratory, Mitsubishi Rayon Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コアが下記の式(1)で示される単量体
Aとこれと共重合可能な単量体Bとからなる共重合体で
構成されたコア/クラッド構造のプラスチック光ファイ
バ。 【化1】
1. A plastic optical fiber having a core / clad structure in which a core is composed of a copolymer of a monomer A represented by the following formula (1) and a monomer B copolymerizable therewith. Embedded image
【請求項2】 単量体Bが下記の式(2)で表される単
量体であることを特徴とする請求項1に記載のプラスチ
ック光ファイバ。 【化2】
2. The plastic optical fiber according to claim 1, wherein the monomer B is a monomer represented by the following formula (2). Embedded image
JP17923995A 1995-07-14 1995-07-14 Plastic optical fiber Expired - Fee Related JP3479573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17923995A JP3479573B2 (en) 1995-07-14 1995-07-14 Plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17923995A JP3479573B2 (en) 1995-07-14 1995-07-14 Plastic optical fiber

Publications (2)

Publication Number Publication Date
JPH0933736A true JPH0933736A (en) 1997-02-07
JP3479573B2 JP3479573B2 (en) 2003-12-15

Family

ID=16062382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17923995A Expired - Fee Related JP3479573B2 (en) 1995-07-14 1995-07-14 Plastic optical fiber

Country Status (1)

Country Link
JP (1) JP3479573B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116918A (en) * 1997-04-24 1999-01-12 Bridgestone Corp Light transmission tube and its production
US6696217B2 (en) * 2001-02-22 2004-02-24 Samsung Electronics Co., Ltd. Photosensitive monomer, photosensitive polymer and chemically amplified resist composition comprising lactone group having acid-labile protecting group
US6794460B2 (en) 1998-12-09 2004-09-21 Nippon Shokubai Co., Ltd. Production process and use for transparent heat-resistant resin
WO2006025360A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Rayon Co., Ltd. Optical copolymer and molded product comprising the same
US7045267B2 (en) * 2000-07-11 2006-05-16 Samsung Electronics Co., Ltd. Resist composition comprising photosensitive polymer having lactone in its backbone
US7465498B2 (en) 2005-11-30 2008-12-16 Sabic Innovative Plastics Ip B.V. Tulipalin copolymers
US7512309B2 (en) 2004-12-27 2009-03-31 Mitsubishi Rayon Co, Ltd. Polymer composition, plastic optical fiber, plastic optical fiber cable, and method for manufacturing plastic optical fiber
JP2018173449A (en) * 2017-03-31 2018-11-08 富士フイルム株式会社 Method for manufacturing lens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116918A (en) * 1997-04-24 1999-01-12 Bridgestone Corp Light transmission tube and its production
US6794460B2 (en) 1998-12-09 2004-09-21 Nippon Shokubai Co., Ltd. Production process and use for transparent heat-resistant resin
US7045267B2 (en) * 2000-07-11 2006-05-16 Samsung Electronics Co., Ltd. Resist composition comprising photosensitive polymer having lactone in its backbone
US7241552B2 (en) 2000-07-11 2007-07-10 Samsung Electronics Co., Ltd. Resist composition comprising photosensitive polymer having lactone in its backbone
US6696217B2 (en) * 2001-02-22 2004-02-24 Samsung Electronics Co., Ltd. Photosensitive monomer, photosensitive polymer and chemically amplified resist composition comprising lactone group having acid-labile protecting group
WO2006025360A1 (en) * 2004-08-30 2006-03-09 Mitsubishi Rayon Co., Ltd. Optical copolymer and molded product comprising the same
US7512309B2 (en) 2004-12-27 2009-03-31 Mitsubishi Rayon Co, Ltd. Polymer composition, plastic optical fiber, plastic optical fiber cable, and method for manufacturing plastic optical fiber
US7465498B2 (en) 2005-11-30 2008-12-16 Sabic Innovative Plastics Ip B.V. Tulipalin copolymers
JP2018173449A (en) * 2017-03-31 2018-11-08 富士フイルム株式会社 Method for manufacturing lens

Also Published As

Publication number Publication date
JP3479573B2 (en) 2003-12-15

Similar Documents

Publication Publication Date Title
KR0179070B1 (en) Low loss high numerical aperture cladded optical fibers
CA2120334A1 (en) Low refractive index plastics for optical fiber cladding
JPH0251483B2 (en)
JP2987190B2 (en) Radiation curable cladding composition
KR920001247B1 (en) Cladding material for optical fiber
JPWO2006070824A1 (en) Polymer composition, plastic optical fiber, plastic optical fiber cable, and method for producing plastic optical fiber
JPH0933736A (en) Plastic optical fiber
JPH0215041B2 (en)
US7142754B2 (en) Plastic optical fiber, plastic optical fiber cables, optical fiber cables with plugs with copolymer
JP3486483B2 (en) Plastic optical fiber
JP3506837B2 (en) Sheath material for optical fiber
JP4245521B2 (en) Sheath material for plastic optical fiber
JP3559423B2 (en) Plastic optical fiber
JP4875255B2 (en) Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug
JPH01158404A (en) Plastic clad optical fiber and clad material
WO2018168775A1 (en) Plastic optical fiber, plastic optical fiber cable, wiring harness and vehicle
KR100647156B1 (en) Fluorine-Containing Optical Material and Fluorine-Containing Copolymer
JP4646295B2 (en) Multi-core plastic optical fiber and multi-core plastic optical fiber cable
JP2787771B2 (en) Core-sheath plastic optical fiber
JP2005134737A (en) Sheath material for plastic optical fiber
JPS63287908A (en) Optical fiber clad with plastic material
JPH01223104A (en) Polymer for sheath material of optical fiber
JP2000231024A (en) Clad material for plastic optical fiber, plastic optical fiber and plastic optical fiber cable
JP2002053576A (en) Sulfur-containing cyclic compound and optical material
JP2005338130A (en) Plastic optical fiber, plastic optical fiber cable, and plastic optical fiber with plug

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees