JPH0933735A - Plastic optical fiber - Google Patents

Plastic optical fiber

Info

Publication number
JPH0933735A
JPH0933735A JP7179238A JP17923895A JPH0933735A JP H0933735 A JPH0933735 A JP H0933735A JP 7179238 A JP7179238 A JP 7179238A JP 17923895 A JP17923895 A JP 17923895A JP H0933735 A JPH0933735 A JP H0933735A
Authority
JP
Japan
Prior art keywords
core
optical fiber
plastic optical
polymn
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7179238A
Other languages
Japanese (ja)
Other versions
JP3486483B2 (en
Inventor
Atsushi Okumura
淳 奥村
Makoto Muro
誠 室
Kazumi Nakamura
一己 中村
Jun Kamo
純 加茂
Kikue Irie
菊枝 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP17923895A priority Critical patent/JP3486483B2/en
Publication of JPH0933735A publication Critical patent/JPH0933735A/en
Application granted granted Critical
Publication of JP3486483B2 publication Critical patent/JP3486483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a plastic optical fiber having a core-clad structure and having heat resistance and low transmission loss characteristics which are comparable to a polymethacrylate by constituting the core of a polymer comprising a specified structural unit. SOLUTION: This fiber has such a core-clad structure that the core consists of a polymer comprising a structural unit expressed by formula. The core material having this structural unit can be obtd. by polymn. of α-methylene-y- butylolactone derives having this structure. In formula, R1 , R2 are preferably substituents having <=12 carbon number because when the structure has a larger bulk, the heat resistance and the polymn. degree decrease. The alkyl groups to be introduced into R1 , R2 are expressed by structural formula Cn H2n+1 (n<12) and may have a straight or branched structure. Further, R1 and R2 may be coupled to form a six-member structure of a cyclohexyl group. The polymn. method is not limited but block polymn. is preferable from the viewpoint of decreasing the loss of the optical fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光情報通信媒体として利
用可能なプラスチック光ファイバに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic optical fiber usable as an optical information communication medium.

【0002】[0002]

【従来の技術】光伝送は大容量で電磁ノイズの影響を全
く受けないという特長を生かして通信媒体として広く用
いられている。実用化されている光伝送体はその素材に
より石英系とプラスチック系に大別される。また、伝送
モードの様式により単一モード型と多モード型に分ける
ことができる。さらに、屈折率分布様式から断面の半径
方向に沿った屈折率変化が不連続的なステップインデッ
クス型(以下「SI型」という)と連続的なグレーデッド
インデックス型(以下「GI型」という)とに分類される
こともある。
2. Description of the Related Art Optical transmission is widely used as a communication medium by taking advantage of its large capacity and being completely unaffected by electromagnetic noise. Practical optical transmitters are roughly classified into quartz type and plastic type depending on their materials. Further, it can be classified into a single mode type and a multimode type according to the mode of the transmission mode. Furthermore, there are a step index type (hereinafter referred to as “SI type”) and a continuous graded index type (hereinafter referred to as “GI type”) in which the refractive index change along the radial direction of the cross section is discontinuous from the refractive index distribution pattern. It may be classified into.

【0003】市販されている石英系単一モードファイバ
は、圧倒的な低損失、広帯域を特長とする。この特長を
生かして長距離の大容量通信幹線に用いられている。プ
ラスチック系はSI型プラスチック光ファイバ(以下「SI
型POF」という)が市販されており、大口径(500〜1000
μm程度)、高開口数(NA≒0.5)でありながら柔軟性に
優れていることを最大の特長としている。
Commercially available silica-based single mode fibers are characterized by overwhelmingly low loss and wide band. Taking advantage of this feature, it is used for long-distance, large-capacity communication trunk lines. The plastic type is SI type plastic optical fiber (hereinafter "SI
Type POF "is commercially available and has a large diameter (500 to 1000
Its greatest feature is that it has excellent flexibility while having a high numerical aperture (NA ≈ 0.5).

【0004】石英系単一モードファイバは極めて広帯域
であるが、同時に受光面となるコア径が極めて小さく
(10μm程度)かつコアとクラッドの屈折率差が小さい
ため、光源との位置関係や入射角に対する許容範囲が狭
く、周辺機器との結合時のアラインメント(位置、角度
あわせ)操作に労力を要する。さらには、素材が石英で
あるため、受発光素子との結合部分である端面処理も困
難を伴う。
The silica type single mode fiber has an extremely wide band, but at the same time, the core diameter serving as the light receiving surface is extremely small (about 10 μm) and the difference in the refractive index between the core and the clad is small, so that the positional relationship with the light source and the incident angle are small. Since the allowable range is narrow, it takes a lot of effort to perform alignment (position and angle adjustment) operations when connecting with peripheral devices. Further, since the material is quartz, it is difficult to process the end face, which is a connecting portion with the light emitting / receiving element.

【0005】また、石英系単一モードファイバよりも大
口径、高開口数の石英系GI型ファイバであっても、SI型
POFに比較すると口径も開口数も小さい。また、素材が
石英であるために結合部分などのファイバ端面の研摩処
理などの操作が必要である。このような欠点を補うため
にコア材に石英、クラッド材にプラスチックを用いたプ
ラスチッククラッド石英コアファイバも市販されている
が、端面処理の困難さはさけられず、なおかつ柔軟性の
改善も充分なものとは言えない。
In addition, even if the silica type GI type fiber has a larger diameter and a higher numerical aperture than the silica type single mode fiber, the SI type
Compared to POF, it has a smaller aperture and numerical aperture. Further, since the material is quartz, it is necessary to perform an operation such as polishing of the end face of the fiber such as the coupling portion. To compensate for such drawbacks, plastic clad quartz core fibers using quartz as the core material and plastic as the clad material are also commercially available, but the difficulty of end face treatment is unavoidable and the flexibility is also sufficiently improved. Not a thing.

【0006】これらの観点から現在市販されているプラ
スチック光ファイバのもつ利点としては、大口径であり
ながら柔軟で取り扱い性がよい、結合のアラインメント
の許容範囲が広く接続が容易なので高価な加工装置・光
学装置が不要である、等の点が挙げられる。
From these viewpoints, the advantages of the plastic optical fibers currently on the market are that they have a large diameter, are flexible and easy to handle, have a wide tolerance range of coupling alignment, and are easy to connect. There is a point that an optical device is unnecessary.

【0007】そこでSI型POFは上記の特長を生かして、
データリンクなどの短距離通信やセンサー等への応用が
浸透しつつある。また今後、FA用、OA用などフロアー内
外の機器間LANのような施設網や加入者網(FTTH)にお
ける末端配線など、接続点の多い近距離の低コスト情報
伝送線として期待されている。また、柔軟性に優れてい
るため振動する環境でも破損、折損や劣化が起きにく
く、この点でも石英系よりもはるかに優れ、自動車、電
車、飛行機などの移動体中のネットワークなど信号伝送
線への応用も図られている。
Then, SI type POF makes use of the above-mentioned feature,
Applications for short-distance communication such as data link and sensors are spreading. In the future, it is expected to be a low-cost information transmission line for short distances with many connection points such as facility networks such as LAN between devices inside and outside the floor for FA and OA, and terminal wiring in the subscriber network (FTTH). In addition, since it is excellent in flexibility, it is less likely to be damaged, broken or deteriorated even in a vibrating environment. In this respect as well, it is far superior to the quartz system and can be used for signal transmission lines such as networks in moving bodies such as automobiles, trains and airplanes. Is also being applied.

【0008】通常のプラスチック光ファイバにおいては
伝送損失が低くかつ機械的特性や耐候性にも問題がない
ことから、ポリメタクリル酸メチルをコア材として用い
たものが主流となっている。ポリメタクリル酸メチルを
コアとする光ファイバの使用上限温度はこの素材のガラ
ス転移点Tgに制限されているため、耐熱性に富む被覆な
どを施した場合でも、高々105℃程度と限られてお
り、上記のような移動体中での通信や屋外での使用にお
いては耐熱性が不足である。
Since ordinary plastic optical fibers have a low transmission loss and have no problem in mechanical properties and weather resistance, those using polymethylmethacrylate as a core material are predominant. Since the upper limit temperature of the optical fiber with poly (methyl methacrylate) as the core is limited to the glass transition point Tg of this material, even if a coating with high heat resistance is applied, it is limited to at most 105 ° C. However, the heat resistance is insufficient in the above-mentioned communication in the mobile body and in the outdoor use.

【0009】プラスチック光ファイバの耐熱性向上の方
法としては、主に、コア材のTgを上げる方法と耐熱性の
被覆を施す方法がある。前者のコア材のTgを上げる物と
して、1)ポリマー単体で高いガラス転移点を持つポリ
カーボネートをコア材に用いる(特開昭61−2627
06号公報)、2)多環オレフィン系モノマーを含むオ
レフィン系共重合体をコア材に用いる(特開昭61−2
11315号公報)、3)メチルメタクリレートモノマ
ーと他の高Tgのモノマーとの共重合体をコア材に用いる
ものであって、コモノマーとして、芳香族マレイミドを
用いるもの(特公平5−82405号公報、特公平5−
82406号公報)、脂肪族マレイミド(特開昭63−
80205号公報)、脂環式メタクリレート(特開昭6
1−260205号公報)が挙げられる。
As a method of improving the heat resistance of the plastic optical fiber, there are mainly a method of increasing the Tg of the core material and a method of applying a heat resistant coating. As for the former which raises the Tg of the core material, 1) Polycarbonate having a high glass transition point as a polymer alone is used as the core material (JP-A-61-2627).
No. 06), 2) an olefin-based copolymer containing a polycyclic olefin-based monomer is used as a core material (JP-A-61-2).
11315 gazette), 3) using a copolymer of a methyl methacrylate monomer and another high Tg monomer as a core material, and using an aromatic maleimide as a comonomer (Japanese Patent Publication No. 5-82405, Tokufair 5-
82406), and aliphatic maleimides (JP-A-63-63).
80205), alicyclic methacrylates (JP-A-6-206)
No. 1-260205).

【0010】[0010]

【発明が解決しようとする課題】しかしながら前記の1
及び2)のものは高温下での寸法、機械的特性の安定性
については十分であるが、ポリメタクリル酸メチル系の
光ファイバと比較すると伝送損失特性が大きく、かつ高
温下での経時変化が大きいという欠点がある。また3)
のものは脂肪族マレイミドを用いた系が伝送損失、耐熱
性と機械的特性のバランスの点で良好な特性を有する
が、ポリメチルメタクリレート単体をコア材とするプラ
スチック光ファイバと比較すると伝送損失が大きく伝送
距離が短距離に限られてしまう点が問題である。
However, the above-mentioned 1
And 2) are sufficient in terms of size and stability of mechanical properties at high temperature, but have larger transmission loss characteristics than polymethylmethacrylate-based optical fibers, and their aging changes at high temperatures. It has the drawback of being large. See also 3)
Although the one using an aliphatic maleimide has good characteristics in terms of transmission loss, heat resistance and balance of mechanical properties, the transmission loss is lower than that of a plastic optical fiber using polymethylmethacrylate alone as a core material. The problem is that the transmission distance is largely limited to short distances.

【0011】また、自動車などの移動体内での使用を考
えた場合、限られた空間でケーブルをレイアウトする必
要から、屈曲部分が多くなることが予想される。一般に
ファイバーを屈曲させることで伝送損失が増加するた
め、ファイバー自体の伝送損失が大きいことは不利であ
り、1)〜3)の例のように伝送損失を犠牲にして耐熱
性を向上させる方法では十分なものとは言えない。
Further, when considering use in a moving body such as an automobile, it is expected that the number of bent portions will increase because the cables need to be laid out in a limited space. Generally, bending the fiber increases the transmission loss, which is disadvantageous in that the transmission loss of the fiber itself is large, and the method of improving the heat resistance by sacrificing the transmission loss as in the examples 1) to 3) Not enough.

【0012】本発明の目的は、かかる問題点を解決し、
ポリメタクリル酸メチルに匹敵する優れた低伝送損失特
性を有し且つ耐熱性を有するプラスチック光ファイバを
提供することにある。
The object of the present invention is to solve these problems,
An object of the present invention is to provide a plastic optical fiber having excellent low transmission loss characteristics comparable to polymethylmethacrylate and heat resistance.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、コアが
下記の一般式(1)で示される構造単位からなる重合体
で構成されたコア/クラッド構造のプラスチック光ファ
イバにある。
The gist of the present invention resides in a plastic optical fiber having a core / clad structure in which a core is composed of a polymer composed of structural units represented by the following general formula (1).

【0014】[0014]

【化2】 Embedded image

【0015】本発明者らは耐熱性を向上させつつ伝送損
失が十分低いプラスチック光ファイバを開発すべく鋭意
検討したところ、前記一般式(1)で示される構造単位
を有する重合体が十分な耐熱性と伝送損失特性を有する
光ファイバの芯材として最適であることを見いだした。
The inventors of the present invention have made earnest studies to develop a plastic optical fiber having improved heat resistance and sufficiently low transmission loss. As a result, a polymer having the structural unit represented by the general formula (1) has sufficient heat resistance. It has been found that it is the most suitable as the core material of the optical fiber having the characteristics and transmission loss characteristics.

【0016】本発明で用いる一般式(1)で表される構
造単位を有するコア材は下記一般式(2)で表せるαー
メチレンーγーブチロラクトン誘導体を重合させること
によって得ることができる。
The core material having the structural unit represented by the general formula (1) used in the present invention can be obtained by polymerizing the α-methylene-γ-butyrolactone derivative represented by the following general formula (2).

【0017】[0017]

【化3】 Embedded image

【0018】式中のR1、R2については、その構造が
かさ高くなると耐熱性、重合性が低下するため炭素数12
以下の置換基にすることが好ましい。またR1、R2で
導入しうるアルキル基は構造式Cn2n+1(n≦12)
で表され、直鎖状、分岐状のいずれの構造もとることが
できる。さらにR1とR2基によってシクロヘキシル基
の6員環構造が形成されたものとすることもできる。
Regarding R1 and R2 in the formula, when the structure becomes bulky, the heat resistance and the polymerizability are lowered, so that the number of carbon atoms is 12
The following substituents are preferred. The alkyl group which can be introduced by R1 and R2 has a structural formula of C n H 2n + 1 (n ≦ 12)
And can have a linear structure or a branched structure. Further, a 6-membered ring structure of cyclohexyl group may be formed by the R1 and R2 groups.

【0019】本発明のコア材は一般式(2)で示される
構造単位を有する単量体の一種を重合させたもの、また
はこれらの構造単位を有する単量体の二種以上を共重合
させたものである。
The core material of the present invention is obtained by polymerizing one kind of the monomer having the structural unit represented by the general formula (2), or by copolymerizing two or more kinds of the monomers having these structural units. It is a thing.

【0020】このようなコア材を得るための重合様式は
特に限定されないが、光ファイバの低損失化という観点
から塊状重合で行うことが好ましい。重合開始剤は重合
時に副反応や着色等の悪影響を及ぼさないものであれば
特に限定されない。重合様式、重合温度、重合率、重合
時間に応じて適宜選択でき、複数種の重合開始剤をあわ
せて用いることができる。その例としてアゾビスイソブ
チロニトリルなどのアゾ化合物、ベンゾイルパーオキサ
イド等のパーオキサイド化合物などを挙げることができ
る。
The polymerization mode for obtaining such a core material is not particularly limited, but bulk polymerization is preferable from the viewpoint of reducing the loss of the optical fiber. The polymerization initiator is not particularly limited as long as it does not adversely affect side reactions or coloring during polymerization. It can be appropriately selected depending on the polymerization mode, the polymerization temperature, the polymerization rate, and the polymerization time, and a plurality of types of polymerization initiators can be used together. Examples thereof include azo compounds such as azobisisobutyronitrile and peroxide compounds such as benzoyl peroxide.

【0021】また、重合時において分子量を調節する目
的で連鎖移動剤を用いても良い。連鎖移動剤としては重
合時に副反応や着色等の悪影響を及ぼさないものであれ
ば、特に限定されず、目的とする分子量に対して適宜選
択でき、複数種の連鎖移動剤をあわせて用いても良い。
連鎖移動剤の例としてはn−ブチルメルカプタン、イソ
ブチルメルカプタン、t−ブチルメルカプタンなどの第
一級、第二級、第三級メルカプタン、チオグリコール
酸、及びそのエステルなどが挙げられる。
A chain transfer agent may be used for the purpose of controlling the molecular weight during polymerization. The chain transfer agent is not particularly limited as long as it does not adversely affect side reactions or coloring during polymerization, and can be appropriately selected for the target molecular weight, and a plurality of kinds of chain transfer agents can be used together. good.
Examples of chain transfer agents include primary, secondary, and tertiary mercaptans such as n-butyl mercaptan, isobutyl mercaptan, and t-butyl mercaptan, thioglycolic acid, and esters thereof.

【0022】クラッド層の素材としてはコアに用いる材
料の屈折率よりも小さいポリマーならば特に限定されな
い。高開口数というプラスチック光ファイバの長所を生
かすためにフッ素化メタクリレート系ポリマーまたはコ
ポリマー、フッ素化メタクリレートとメタクリル酸エス
テルの共重合体、フッ化ビニリデン−テトラフルオロエ
チレン共重合体、α-フルオロメタクリレート系樹脂、
またはそれらの混合物を用いることが好ましい。耐熱性
向上の点では高Tgのα-フルオロメタクリレート系樹脂
が好ましい。
The material of the clad layer is not particularly limited as long as it is a polymer having a refractive index smaller than that of the material used for the core. Fluorinated methacrylate polymers or copolymers, copolymers of fluorinated methacrylate and methacrylate, vinylidene fluoride-tetrafluoroethylene copolymers, α-fluoromethacrylate resins to take advantage of the high numerical aperture of plastic optical fibers ,
Alternatively, it is preferable to use a mixture thereof. From the viewpoint of improving heat resistance, an α-fluoromethacrylate resin having a high Tg is preferable.

【0023】クラッド部分の厚みは、薄すぎるとしみ出
し光が無視できなくなり光ファイバ全体の伝送損失を増
大させるため1μm以上であることが好ましい。
The thickness of the clad portion is preferably 1 μm or more in order to make the leaked light too negligible to increase the transmission loss of the entire optical fiber when it is too thin.

【0024】本発明のコア/クラッド構造を有するプラ
スチック光ファイバは、コア、クラッドポリマーをそれ
ぞれ溶融し、複合ノズルより押し出す複合紡糸法、繊維
状に賦形したコアポリマーにクラッドポリマーの溶液を
塗布したのち溶剤を除去するコーティング法などにより
作ることができる。
In the plastic optical fiber having the core / clad structure of the present invention, the core and the clad polymer are melted and extruded from the composite nozzle by the composite spinning method, and the clad polymer solution is applied to the fibrous shaped core polymer. After that, it can be produced by a coating method for removing the solvent.

【0025】尚、耐熱性向上、耐湿性向上、耐化学薬品
性向上など目的でクラッド層の外周部に保護層を被覆す
ることも可能である。
A protective layer may be coated on the outer peripheral portion of the clad layer for the purpose of improving heat resistance, moisture resistance and chemical resistance.

【0026】[0026]

【実施例】以下本発明を実施例に基いて具体的に説明す
る。
EXAMPLES The present invention will be specifically described below based on examples.

【0027】実施例1 10部のナトリウムエトキシドを分散させた100部の
無水テトラヒドロフラン中にシュウ酸ジエチル25部を
加えた後、15℃以下でγ−ブチロラクトンを滴下し、
16時間放置した。次いでこの反応液中にホルムアルデ
ヒドを吹き込み、溶媒を留去した後、エーテル抽出を行
った。抽出したエーテル相を飽和炭酸ナトリウム水溶液
と混合し、1時間攪拌した。その後、溶媒を留去し、残
さをビグリュ−管をつけて減圧蒸留しα−メチレン−γ
−ブチロラクトンを得た。
Example 1 25 parts of diethyl oxalate was added to 100 parts of anhydrous tetrahydrofuran in which 10 parts of sodium ethoxide was dispersed, and γ-butyrolactone was added dropwise at 15 ° C. or below.
It was left for 16 hours. Next, formaldehyde was blown into the reaction solution, the solvent was distilled off, and then extraction with ether was performed. The extracted ether phase was mixed with saturated aqueous sodium carbonate solution and stirred for 1 hour. Then, the solvent was distilled off, and the residue was attached to a Vigreux tube and distilled under reduced pressure to obtain α-methylene-γ.
-Butyrolactone was obtained.

【0028】このようにして合成したα−メチレン−γ
−ブチロラクトンに開始剤としてジ−t−ブチルパ−オ
キサイドを20ppm、連鎖移動剤としてオクチルメル
カプタンを0.1wt%添加して塊状重合し、コア材ポ
リマーを製造した。
Α-methylene-γ synthesized in this way
-Butyrolactone was added with 20 ppm of di-t-butylperoxide as an initiator and 0.1 wt% of octyl mercaptan as a chain transfer agent, and bulk polymerization was performed to produce a core material polymer.

【0029】クラッド材としてはαーフルオロアクリル
酸トリフルオロエチル/α-フルオロアクリル酸メチル
(85/15モル比)のポリマーを用いた。
As a clad material, a polymer of α-fluoroacrylic acid trifluoroethyl / α-fluoroacrylic acid methyl (85/15 molar ratio) was used.

【0030】これらのポリマーを二層同心円状複合ノズ
ルからスクリュー型押出機を用いて紡糸し、ファイバ直
径;1000μm、コア直径;980μmのコア/クラッ
ド構造のプラスチック光ファイバを製造した。
These polymers were spun using a screw type extruder from a two-layer concentric circular composite nozzle to produce a plastic optical fiber having a core / clad structure with a fiber diameter of 1000 μm and a core diameter of 980 μm.

【0031】このプラスチック光ファイバの光伝送損失
は220dB/km(測定法;50m−5mカットバッ
ク法、波長;650nm、入射NA=0.1)であっ
た。このファイバを125℃で1000時間熱処理した
ところ光伝送損失の増加は20dB/km以下を維持し
良好な耐熱性を示した。
The optical transmission loss of this plastic optical fiber was 220 dB / km (measurement method: 50 m-5 m cutback method, wavelength: 650 nm, incident NA = 0.1). When this fiber was heat-treated at 125 ° C. for 1000 hours, the increase in optical transmission loss was maintained at 20 dB / km or less, and good heat resistance was exhibited.

【0032】実施例2 37%のホルマリン水溶液50部、アクリル酸メチル7
0部及び1,4−ジアザビシクロ−[2,2,2]−オクタ
ン30部を、1,2−ジメトキシエタン200部に溶解
させ、室温で50時間攪拌したのち反応液から有機相を
分離して、α−ヒドロキシメチルアクリル酸メチルを得
た。このα−ヒドロキシメチルアクリル酸メチルを6倍
量の無水エ−テルで希釈し氷浴下、この液中に3臭化隣
20部を滴下し、室温で3時間攪拌し反応させた。反応
終了後水を加えて有機相を分離し、αーブロモメチルア
クリル酸メチルを得た。
Example 2 50 parts of 37% aqueous formalin solution, methyl acrylate 7
0 parts and 30 parts of 1,4-diazabicyclo- [2,2,2] -octane were dissolved in 200 parts of 1,2-dimethoxyethane and stirred at room temperature for 50 hours, and then the organic phase was separated from the reaction solution. , Α-hydroxymethyl methyl acrylate were obtained. This methyl α-hydroxymethyl acrylate was diluted with 6 volumes of anhydrous ether, and 20 parts of tribromide was added dropwise to this solution in an ice bath, and the mixture was stirred at room temperature for 3 hours for reaction. After the reaction was completed, water was added and the organic phase was separated to obtain methyl α-bromomethylacrylate.

【0033】このα−ブロモメチルアクリル酸メチルを
3倍量の無水テトラヒドロフランで希釈した溶液を、亜
鉛7部、アセトン25部と無水テトラヒドロフラン10
0部の混合溶液中に滴下した。滴下終了後、3時間攪拌
して、10%の塩酸水溶液中に注ぎ、有機相をよく水洗
した後、硫酸ナトリウム上で脱水し、減圧留去してα−
メチレン−4,4−ジメチル−γ−ブチロラクトンを得
た。
A solution prepared by diluting this methyl α-bromomethyl acrylate with 3 times the amount of anhydrous tetrahydrofuran was added with 7 parts of zinc, 25 parts of acetone and 10 parts of anhydrous tetrahydrofuran.
It was added dropwise to 0 part of the mixed solution. After completion of dropping, the mixture was stirred for 3 hours, poured into a 10% hydrochloric acid aqueous solution, the organic phase was washed well with water, dehydrated over sodium sulfate, and evaporated under reduced pressure to obtain α-.
Methylene-4,4-dimethyl-γ-butyrolactone was obtained.

【0034】このα−メチレン−4,4ージメチル−γ
−ブチロラクトンをコア材として用いそれ以外の条件は
実施例1と同様にして、ファイバ直径;1000μm、
コア直径;980μmのコア−クラッド構造のプラスチ
ック光ファイバを作成した。
This α-methylene-4,4-dimethyl-γ
-Butyrolactone was used as the core material and the other conditions were the same as in Example 1 except that the fiber diameter was 1000 μm,
A plastic optical fiber having a core-clad structure with a core diameter of 980 μm was prepared.

【0035】このプラスチック光ファイバの光伝送損失
は230dB/km(測定法;50m−5mカットバッ
ク法、波長;650nm、入射NA=0.1)であっ
た。このファイバを125℃で1000時間熱処理した
ところ光伝送損失の増加は25dB/km以下を維持し
良好な耐熱性を示した。
The optical transmission loss of this plastic optical fiber was 230 dB / km (measurement method: 50 m-5 m cutback method, wavelength: 650 nm, incident NA = 0.1). When this fiber was heat-treated at 125 ° C. for 1000 hours, the increase in optical transmission loss was maintained at 25 dB / km or less, and good heat resistance was exhibited.

【0036】比較例1 三菱瓦斯化学(株)のポリカーボネート樹脂ユーピロン
をコア材とし、クラッド材としてはαーフルオロアクリ
ル酸トリフルオロエチル/α-フルオロアクリル酸メチ
ル(モル比85/15)のポリマーを用いた。これらの
ポリマーを実施例1と同様に二層同心円状複合ノズルか
らスクリュー型押出機を用いて紡糸し、ファイバ直径;
1000μm、コア直径;980μmのコア−クラッド構
造のプラスチック光ファイバを製造した。
Comparative Example 1 Polycarbonate resin Iupilon of Mitsubishi Gas Chemical Co., Inc. was used as a core material, and a clad material was a polymer of α-trifluoroethyl acrylate / methyl α-fluoroacrylate (molar ratio 85/15). Using. These polymers were spun from a two-layer concentric circular composite nozzle in the same manner as in Example 1 using a screw type extruder, and the fiber diameter was measured;
A plastic optical fiber with a core-clad structure having a thickness of 1000 μm and a core diameter of 980 μm was manufactured.

【0037】このプラスチック光ファイバの光伝送損失
は280dB/km(測定法;50m−5mカットバッ
ク法、波長;650nm、入射NA=0.1)であっ
た。またこの光ファイバを125℃で1000時間熱処
理したところ光伝送損失は40dB/km増加した。
The optical transmission loss of this plastic optical fiber was 280 dB / km (measurement method: 50 m-5 m cutback method, wavelength: 650 nm, incident NA = 0.1). When this optical fiber was heat-treated at 125 ° C. for 1000 hours, the optical transmission loss increased by 40 dB / km.

【0038】[0038]

【発明の効果】本発明のプラスチック光ファイバは光伝
送損失が低く耐熱性が高いという優れた性能を有してい
る。
As described above, the plastic optical fiber of the present invention has excellent performance such as low optical transmission loss and high heat resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加茂 純 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 (72)発明者 入江 菊枝 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Kamo 20-1 Miyuki-cho, Otake-shi, Hiroshima Mitsubishi Rayon Co., Ltd. Central Research Laboratory (72) Inventor Kikue Irie 20-1 Miyuki-cho, Otake-shi, Hiroshima Central Research Laboratory, Mitsubishi Rayon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コアが下記の一般式(1)で示される構
造単位からなる重合体で構成されたコア/クラッド構造
のプラスチック光ファイバ。 【化1】
1. A plastic optical fiber having a core / clad structure in which a core is composed of a polymer composed of structural units represented by the following general formula (1). Embedded image
JP17923895A 1995-07-14 1995-07-14 Plastic optical fiber Expired - Fee Related JP3486483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17923895A JP3486483B2 (en) 1995-07-14 1995-07-14 Plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17923895A JP3486483B2 (en) 1995-07-14 1995-07-14 Plastic optical fiber

Publications (2)

Publication Number Publication Date
JPH0933735A true JPH0933735A (en) 1997-02-07
JP3486483B2 JP3486483B2 (en) 2004-01-13

Family

ID=16062365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17923895A Expired - Fee Related JP3486483B2 (en) 1995-07-14 1995-07-14 Plastic optical fiber

Country Status (1)

Country Link
JP (1) JP3486483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7512309B2 (en) 2004-12-27 2009-03-31 Mitsubishi Rayon Co, Ltd. Polymer composition, plastic optical fiber, plastic optical fiber cable, and method for manufacturing plastic optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7512309B2 (en) 2004-12-27 2009-03-31 Mitsubishi Rayon Co, Ltd. Polymer composition, plastic optical fiber, plastic optical fiber cable, and method for manufacturing plastic optical fiber

Also Published As

Publication number Publication date
JP3486483B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
KR0179070B1 (en) Low loss high numerical aperture cladded optical fibers
CA2120334A1 (en) Low refractive index plastics for optical fiber cladding
JPH0251483B2 (en)
JPH0250442B2 (en)
JP2987190B2 (en) Radiation curable cladding composition
JPWO2006070824A1 (en) Polymer composition, plastic optical fiber, plastic optical fiber cable, and method for producing plastic optical fiber
EP1907432B1 (en) Copolymer and polymerizable composition
JP3479573B2 (en) Plastic optical fiber
JPH0215041B2 (en)
JPH0220081B2 (en)
AU8358298A (en) Graded Index type optical fibers
US7142754B2 (en) Plastic optical fiber, plastic optical fiber cables, optical fiber cables with plugs with copolymer
JP3486483B2 (en) Plastic optical fiber
JP3506837B2 (en) Sheath material for optical fiber
JP4245521B2 (en) Sheath material for plastic optical fiber
JP3559423B2 (en) Plastic optical fiber
JPH05112635A (en) Totally fluorinated wholly aromatic polyester and optical part using the same polyester
JP4875255B2 (en) Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug
JP2787771B2 (en) Core-sheath plastic optical fiber
JP2005134737A (en) Sheath material for plastic optical fiber
JP2005145861A (en) Compound having diphenylsulfide group, polymer utilizing the compound, optical member, method for manufacturing plastic optical fiber preform and method for manufacturing plastic optical fiber
JPH01223104A (en) Polymer for sheath material of optical fiber
JP2002053576A (en) Sulfur-containing cyclic compound and optical material
JPS63287908A (en) Optical fiber clad with plastic material
KR20050085623A (en) Fluorine-containing optical material and fluorine-containing copolymer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees