JPH0933259A - Driving/detecting circuit for piezoelectric vibration gyro - Google Patents
Driving/detecting circuit for piezoelectric vibration gyroInfo
- Publication number
- JPH0933259A JPH0933259A JP7182706A JP18270695A JPH0933259A JP H0933259 A JPH0933259 A JP H0933259A JP 7182706 A JP7182706 A JP 7182706A JP 18270695 A JP18270695 A JP 18270695A JP H0933259 A JPH0933259 A JP H0933259A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- temperature
- drive
- signal
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Gyroscopes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、船舶や自動車等の
移動体自体又はこれらに搭載される機器の姿勢制御や自
動車のナビゲーションシステム等に用いられるジャイロ
スコープに属すると共に、圧電振動子の超音波振動を用
いた所謂圧電振動ジャイロに関し、詳しくは圧電振動ジ
ャイロにおける圧電振動子を自励振駆動するための圧電
振動ジャイロ用駆動検出回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gyroscope used for a posture control of a moving body such as a ship or an automobile or equipment mounted on the moving body itself, a navigation system of an automobile, and an ultrasonic wave of a piezoelectric vibrator. The present invention relates to a so-called piezoelectric vibration gyro using vibration, and more particularly to a piezoelectric vibration gyro drive detection circuit for driving a piezoelectric vibrator in the piezoelectric vibration gyro by self-excitation.
【0002】[0002]
【従来の技術】一般に、振動している物体に回転角速度
が与えられると、その振動方向と直角な方向にコリオリ
力を生ずるという力学現象を利用したジャイロスコープ
として圧電振動ジャイロが知られている。2. Description of the Related Art Generally, a piezoelectric vibrating gyro is known as a gyroscope utilizing a mechanical phenomenon that a Coriolis force is generated in a direction perpendicular to a vibrating direction when a rotating angular velocity is applied to a vibrating object.
【0003】このような圧電振動ジャイロでは、互いに
直交する二つの方向の励振とその検出とが可能であるよ
うに構成した振動系において、一方の振動を励振した状
態で、振動子自身を二つの振動面が交わる線と平行な軸
を中心として回転させると、上述したコリオリ力の作用
により、この振動と直角な方向に力が働き、他方の振動
が励振される。この他方の振動の大きさは入力側の振動
の大きさ及び回転角速度に比例するため、入力電圧を一
定にした状態で他方の振動の大きさに比例した出力電圧
の大きさから回転角速度の大きさを求めることができ
る。In such a piezoelectric vibrating gyro, in a vibrating system configured to be capable of exciting and detecting in two directions orthogonal to each other, one of the vibrators is excited in a state where one vibration is excited. When it is rotated about an axis parallel to the line where the vibrating surfaces intersect, a force acts in the direction perpendicular to this vibration due to the action of the Coriolis force described above, and the other vibration is excited. Since the magnitude of the other vibration is proportional to the magnitude of the input side vibration and the rotation angular velocity, the magnitude of the rotation angular velocity is changed from the magnitude of the output voltage proportional to the magnitude of the other vibration with the input voltage kept constant. You can ask for it.
【0004】図3は従来の圧電振動ジャイロの要部,即
ち、圧電振動ジャイロに用いられる圧電振動子の構造概
略を示したもので、同図(a)はその斜視図であり、同
図(b)は同図(a)のA−A´線方向における断面図
である。FIG. 3 shows a schematic structure of a main part of a conventional piezoelectric vibrating gyro, that is, a piezoelectric vibrator used in the piezoelectric vibrating gyro. FIG. 3A is a perspective view thereof and FIG. 3B) is a sectional view taken along the line AA ′ of FIG.
【0005】この圧電振動子では、圧電セラミックス円
柱1の外周面上の円周を6等分する位置に、その長さ方
向と平行に6本の帯状電極2,3,4,5,6,7が形
成されている。これらの帯状電極2〜7は円周に沿って
一つおきにその両端がアース用の接続用電極8a,8b
に接続されている。因みに、これらの帯状電極2〜7及
び接続用電極8a,8bは、圧電セラミックス円柱1の
側面にスクリーン印刷で直接的に形成するか、或いはメ
ッキ等を圧電セラミックス円柱1の側面全部に形成した
後、電極の不要部分をフォトエッチングにより除去する
ことによって製造される。In this piezoelectric vibrator, six strip-shaped electrodes 2, 3, 4, 5, 6, which are parallel to the length direction of the piezoelectric ceramic cylinder 1, are arranged at positions at which the circumference is divided into six equal parts. 7 are formed. These strip-shaped electrodes 2 to 7 are arranged at alternate ends along the circumference with their connecting electrodes 8a and 8b for grounding.
It is connected to the. Incidentally, the strip electrodes 2 to 7 and the connecting electrodes 8a and 8b are directly formed on the side surface of the piezoelectric ceramic cylinder 1 by screen printing, or after plating or the like is formed on the entire side surface of the piezoelectric ceramic cylinder 1. , Is manufactured by removing unnecessary portions of the electrodes by photoetching.
【0006】ここで、各帯状電極2〜7は互いに一つお
きに接続されることにより、端子として分極処理が施さ
れた後、一つおきの帯状電極2,4,6がアース用とさ
れる(即ち、これらのアース用帯状電極2,4,6が接
続用電極8a,8bに接続される)と共に、残りの帯状
電極3が駆動用,帯状電極5,7が検出用として構成さ
れている。[0006] Here, the strip electrodes 2 to 7 are connected to each other so that every other strip electrodes 2, 4 and 6 are grounded after being polarized as terminals. (That is, these ground strip electrodes 2, 4, 6 are connected to the connecting electrodes 8a, 8b), the remaining strip electrodes 3 are configured for driving, and the strip electrodes 5, 7 are configured for detection. There is.
【0007】図4は、このような圧電振動子を含む圧電
ジャイロに用いられる従来の駆動検出回路の基本構成を
ブロック図により示したものである。この駆動検出回路
は、差動増幅回路9,加算増幅回路10,同期検波回路
11,及び移相回路12から成り、差動増幅回路9及び
加算増幅回路10の入力側は検出用帯状電極5,7に接
続され、移相回路12の出力側は駆動用帯状電極3に接
続された構成になっている。FIG. 4 is a block diagram showing the basic structure of a conventional drive detection circuit used in a piezoelectric gyro including such a piezoelectric vibrator. This drive detection circuit includes a differential amplifier circuit 9, a summing amplifier circuit 10, a synchronous detection circuit 11, and a phase shift circuit 12, and the input sides of the differential amplifier circuit 9 and the summing amplifier circuit 10 have detection strip electrodes 5, 5. 7 and the output side of the phase shift circuit 12 is connected to the driving strip electrode 3.
【0008】この駆動検出回路では、電源電圧が印加さ
れた状態で検出用帯状電極5,7から伝送される2系統
の検出信号は、加算増幅回路10で加算増幅合成されて
加算増幅信号となる。この加算増幅信号は移相回路12
で移相されて駆動信号となって駆動用帯状電極3へ伝送
される。これにより、圧電セラミックス円柱1の屈曲振
動の共振周波数近傍で発振し、一定の駆動電圧(駆動信
号の出力電圧)で圧電振動子を駆動するための自励発振
回路が構成される。In this drive detection circuit, the two systems of detection signals transmitted from the detection strip electrodes 5 and 7 in the state where the power supply voltage is applied are added and amplified and combined by the adding and amplifying circuit 10 to be added and amplified signals. . This added amplified signal is transferred to the phase shift circuit 12
Is phase-shifted and becomes a drive signal and is transmitted to the drive strip electrode 3. As a result, a self-excited oscillation circuit for oscillating near the resonance frequency of the bending vibration of the piezoelectric ceramic cylinder 1 and driving the piezoelectric vibrator with a constant drive voltage (output voltage of the drive signal) is configured.
【0009】一方、差動増幅回路9では検出用帯状電極
5,7から伝送される2系統の検出信号を差動増幅合成
して差動増幅信号を生成する。この差動増幅信号の出力
電圧は回転角速度に比例した振幅の交流電圧となる。差
動増幅回路9では差動増幅信号と加算増幅回路10から
の加算増幅信号とを入力することにより、回転方向に応
じた極性を有し、且つ回転角速度に比例した直流電圧を
生成する。On the other hand, the differential amplifier circuit 9 differentially amplifies and combines the two systems of detection signals transmitted from the detection strip electrodes 5 and 7 to generate a differential amplification signal. The output voltage of this differential amplified signal becomes an AC voltage having an amplitude proportional to the rotational angular velocity. The differential amplification circuit 9 inputs the differential amplification signal and the addition amplification signal from the addition amplification circuit 10 to generate a DC voltage having a polarity according to the rotation direction and proportional to the rotation angular velocity.
【0010】[0010]
【発明が解決しようとする課題】上述した圧電ジャイロ
用駆動検出回路の場合、圧電振動子の機械的尖鋭度Qが
温度により変化するのに伴い、駆動信号の出力電圧が一
定であっても圧電振動子からの検出信号の出力レベルが
変化してしまう。In the above-described piezoelectric gyro drive detection circuit, as the mechanical sharpness Q of the piezoelectric vibrator changes with temperature, even if the output voltage of the drive signal is constant, the piezoelectric The output level of the detection signal from the oscillator changes.
【0011】図5は、上述した圧電振動子における駆動
信号の駆動周波数f[Hz]に対する検出信号の出力電
圧Vout [V]の関係で示される機械的尖鋭度Qの特性
を示したものである。FIG. 5 shows the characteristic of the mechanical sharpness Q shown by the relationship of the output voltage V out [V] of the detection signal with respect to the drive frequency f [Hz] of the drive signal in the above-mentioned piezoelectric vibrator. is there.
【0012】ここでは初期状態が常温で、その常温状態
での曲線C2に示される駆動周波数faのときに検出信
号の出力電圧がVaであるときを仮定すると、この状態
から温度が下がって低温になると圧電振動子の機械的尖
鋭度Qが高くなることにより検出信号の出力電圧が低温
状態での曲線C1に対応するVbまで上昇してしまうこ
とを示している。又、逆に温度が上がって高温になると
圧電振動子の機械的尖鋭度Qが低くなることにより検出
信号の出力電圧が高温状態での曲線C3に対応するVc
まで下降してしまうことを示している。Here, assuming that the output voltage of the detection signal is Va when the initial state is room temperature and the drive frequency fa is shown by the curve C2 in that room temperature state, the temperature decreases from this state to a low temperature. Then, it is shown that the mechanical sharpness Q of the piezoelectric vibrator is increased and the output voltage of the detection signal is increased to Vb corresponding to the curve C1 in the low temperature state. On the contrary, when the temperature rises and becomes high, the mechanical sharpness Q of the piezoelectric vibrator becomes low, so that the output voltage of the detection signal is Vc corresponding to the curve C3 in the high temperature state.
It shows that it will fall to.
【0013】このように、温度変化に伴って圧電振動子
からの検出信号の出力レベルが変化すると、結果とし
て、圧電振動ジャイロの検出感度が温度の影響を受けて
不安定になってしまうという問題がある。As described above, when the output level of the detection signal from the piezoelectric vibrator changes with the temperature change, as a result, the detection sensitivity of the piezoelectric vibration gyro becomes unstable due to the influence of temperature. There is.
【0014】本発明は、かかる問題点を解決すべくなさ
れたもので、その技術的課題は、圧電振動ジャイロの検
出感度を温度に依存せずに常時安定化させ得る圧電振動
ジャイロ用駆動検出回路を提供することにある。The present invention has been made to solve the above problems, and its technical problem is to provide a drive detection circuit for a piezoelectric vibration gyro that can always stabilize the detection sensitivity of the piezoelectric vibration gyro without depending on the temperature. To provide.
【0015】[0015]
【課題を解決するための手段】本発明によれば、圧電振
動ジャイロ用の圧電振動子を自励駆動して該圧電振動子
から出力される検出信号を得ると共に、該検出信号を加
算増幅して加算増幅信号を生成する加算増幅回路,及び
該加算増幅信号を移相して該圧電振動子を駆動するため
の駆動信号を生成する移相回路を含む圧電振動ジャイロ
用駆動検出回路において、移相回路は、駆動信号の出力
電圧変化分に応じて該駆動信号を温度補償し、検出信号
の出力電圧を一定にするための温度補償駆動信号を生成
する温度補償回路を有する圧電振動ジャイロ用駆動検出
回路が得られる。According to the present invention, a piezoelectric vibrator for a piezoelectric vibrating gyro is self-excited to obtain a detection signal output from the piezoelectric vibrator, and the detection signal is added and amplified. In a drive detection circuit for a piezoelectric vibration gyro including a summing amplifier circuit for generating a summed amplified signal and a phase shift circuit for generating a drive signal for driving the piezoelectric vibrator by phase shifting the summed amplified signal. The phase circuit includes a temperature compensation circuit that temperature-compensates the drive signal according to a change in the output voltage of the drive signal and generates a temperature-compensated drive signal for keeping the output voltage of the detection signal constant. A detection circuit is obtained.
【0016】又、本発明によれば、上記圧電振動ジャイ
ロ用駆動検出回路において、温度補償回路は、駆動信号
の周波数を可変することにより温度補償駆動信号を生成
する圧電振動ジャイロ用駆動検出回路が得られる。Further, according to the present invention, in the piezoelectric vibration gyro drive detection circuit, the temperature compensation circuit is a piezoelectric vibration gyro drive detection circuit that generates a temperature compensation drive signal by varying the frequency of the drive signal. can get.
【0017】更に、本発明によれば、上記何れかの圧電
振動ジャイロ用駆動検出回路において、温度補償回路
は、温度変化に応じて抵抗値が変化する抵抗変化回路素
子と、抵抗変化回路素子に対して直列に接続された直列
抵抗と、抵抗変化回路素子に対して並列に接続された並
列抵抗と、直列抵抗及び並列抵抗と基準電位との間を結
合するコンデンサとから成る圧電振動ジャイロ用駆動検
出回路が得られる。Further, according to the present invention, in any one of the piezoelectric vibrating gyro drive detection circuits described above, the temperature compensation circuit includes a resistance change circuit element whose resistance value changes in accordance with a temperature change, and a resistance change circuit element. A piezoelectric vibration gyro drive including a series resistance connected in series with the resistance change circuit element, a parallel resistance connected in parallel to the resistance change circuit element, and a series resistance and a capacitor coupling the parallel resistance to a reference potential. A detection circuit is obtained.
【0018】[0018]
【発明の実施の形態】以下に実施例を挙げ、本発明の圧
電振動ジャイロ用駆動検出回路について、図面を参照し
て詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION A piezoelectric vibration gyro drive detection circuit according to the present invention will be described in detail below with reference to the accompanying drawings.
【0019】図1は、図3に示したような圧電振動子を
含む本発明の一実施例に係る圧電振動ジャイロ用駆動検
出回路の基本構成をブロック図により示したものであ
る。但し、この圧電振動ジャイロ用駆動検出回路も図4
に示した従来の駆動検出回路と同じ構成部分を有するの
で、同一箇所には同一符号を付して説明を省略し、異な
る構成部分を中心に説明する。FIG. 1 is a block diagram showing the basic structure of a piezoelectric vibrating gyro drive detection circuit according to an embodiment of the present invention including the piezoelectric vibrator shown in FIG. However, this piezoelectric vibration gyro drive detection circuit is also shown in FIG.
Since it has the same components as those of the conventional drive detection circuit shown in FIG. 2, the same parts are designated by the same reference numerals, and the description thereof will be omitted. The different components will be mainly described.
【0020】この圧電振動ジャイロ用駆動検出回路も、
差動増幅回路9,加算増幅回路10,及び同期検波回路
11を有するが、移相回路は温度補償回路が備えられた
温度補償回路付き移相回路20となっており、差動増幅
回路9及び加算増幅回路10の入力側は検出用帯状電極
5,7に接続され、温度補償回路付き移相回路20の出
力側は駆動用帯状電極3に接続された構成になってい
る。This piezoelectric vibration gyro drive detection circuit is also
Although it has the differential amplifier circuit 9, the summing amplifier circuit 10, and the synchronous detection circuit 11, the phase shift circuit is a phase shift circuit 20 with a temperature compensation circuit provided with a temperature compensation circuit. The input side of the summing amplifier circuit 10 is connected to the detection strip electrodes 5 and 7, and the output side of the phase shift circuit 20 with a temperature compensation circuit is connected to the drive strip electrode 3.
【0021】このうち、温度補償回路付き移相回路20
における温度補償回路は、駆動信号の出力電圧変化分に
応じて駆動信号を温度補償し、圧電振動子からの検出信
号の出力電圧を一定にするための温度補償駆動信号を生
成する。Of these, the phase shift circuit 20 with a temperature compensation circuit
The temperature compensating circuit in 1) temperature-compensates the drive signal according to the change in the output voltage of the drive signal, and generates a temperature-compensated drive signal for making the output voltage of the detection signal from the piezoelectric vibrator constant.
【0022】図2は、この温度補償回路付き移相回路2
0における温度補償回路の回路構成を示したものであ
る。この温度補償回路は、温度変化に応じて抵抗値が変
化する抵抗変化回路素子としてのサーミスタ13,13
´と、これらのサーミスタ13,13´に対してそれぞ
れ直列に接続された直列抵抗14,14´と、サーミス
タ13,13´に対してそれぞれ並列に接続された並列
抵抗15,15´と、直列抵抗14及び並列抵抗15と
基準電位との間,直列抵抗14´及び並列抵抗15´と
基準電位との間をそれぞれ結合するコンデンサ16,1
6´とから成る。ここで、サーミスタ13,13´には
温度上昇に応じて抵抗が増加すると共に、温度下降に応
じて抵抗が減少する正特性のものを使用している。FIG. 2 shows the phase shift circuit 2 with the temperature compensation circuit.
2 shows a circuit configuration of a temperature compensation circuit at 0. The temperature compensating circuit includes thermistors 13, 13 as resistance change circuit elements whose resistance values change according to temperature changes.
′, Series resistors 14 and 14 ′ connected in series to the thermistors 13 and 13 ′, and parallel resistors 15 and 15 ′ connected in parallel to the thermistors 13 and 13 ′, in series Capacitors 16 and 1 for coupling between the resistor 14 and the parallel resistor 15 and the reference potential, and between the series resistor 14 ′ and the parallel resistor 15 ′ and the reference potential, respectively.
6 '. Here, as the thermistors 13 and 13 ', those having a positive characteristic in which the resistance increases as the temperature increases and the resistance decreases as the temperature decreases are used.
【0023】この温度補償回路では、各抵抗14,15
又は14´,15´とサーミスタ13又は13´との定
数を任意に選択し、移相回路の抵抗値に対して温度変化
分の補償機能を持たせ、圧電振動子からの検出信号の出
力電圧が温度によって変化したときにその変化分を補う
ように移相回路の位相を変化させる(移相回路からの駆
動信号の周波数を変化させる)ことにより、温度補償駆
動信号を生成する。例えば温度が高温側に変化した場
合、正特性サーミスタ13,13´の抵抗値は大きくな
って移相回路からの駆動信号の位相が遅れる結果、温度
補償駆動信号は駆動信号の周波数が下がった状態で生成
される。又、温度が低温側に変化した場合、正特性サー
ミスタ13,13´の抵抗値は小さくなって移相回路か
らの駆動信号の位相が進む結果、温度補償駆動信号は駆
動信号の周波数が上がった状態で生成される。In this temperature compensation circuit, the resistors 14 and 15 are
Alternatively, the constants of 14 'and 15' and the thermistor 13 or 13 'are arbitrarily selected, and the resistance value of the phase shift circuit is provided with a compensation function for temperature change, and the output voltage of the detection signal from the piezoelectric vibrator The temperature compensation drive signal is generated by changing the phase of the phase shift circuit (changing the frequency of the drive signal from the phase shift circuit) so as to compensate for the change due to the temperature. For example, when the temperature changes to the high temperature side, the resistance values of the positive temperature coefficient thermistors 13 and 13 'increase and the phase of the drive signal from the phase shift circuit is delayed. As a result, the temperature-compensated drive signal is in a state where the frequency of the drive signal is lowered. Is generated by. Further, when the temperature changes to the low temperature side, the resistance values of the positive temperature coefficient thermistors 13 and 13 'become small and the phase of the drive signal from the phase shift circuit advances. As a result, the frequency-compensated drive signal has the frequency of the drive signal increased. It is generated in the state.
【0024】即ち、ここでの温度補償回路は図5に示し
た機械的尖鋭度Qの特性に基づいて、温度変化に伴って
圧電振動子からの検出信号の出力レベルが変動するのを
温度補償することによって一定レベルに保つように機能
する。That is, the temperature compensating circuit here compensates for the fact that the output level of the detection signal from the piezoelectric vibrator fluctuates with the temperature change based on the characteristic of the mechanical sharpness Q shown in FIG. It functions to keep a certain level by doing.
【0025】そこで、この温度補償機能を図5を参照し
て具体的に説明する。但し、ここでも初期状態が常温
で、その常温状態での曲線C2に示される駆動周波数f
aのときに検出信号の出力電圧がVaであるときを仮定
すると、この状態から温度が下がって低温になると圧電
振動子の機械的尖鋭度Qが高くなることにより検出信号
の出力電圧が低温状態での曲線C1に対応するVbまで
上昇するため、温度補償回路では検出信号の出力電圧を
Vaまで下げるために駆動信号の周波数をfbまで上げ
て温度補償駆動信号を生成する。これにより、圧電振動
子の検出信号の出力電圧は温度が変化して常温から低温
になってもVaに保たれる。Therefore, this temperature compensation function will be specifically described with reference to FIG. However, here again, the initial state is room temperature, and the drive frequency f shown by the curve C2 in that room temperature state is
Assuming that the output voltage of the detection signal is Va when a, the mechanical sharpness Q of the piezoelectric vibrator increases when the temperature falls from this state to a low temperature. Since the voltage rises to Vb corresponding to the curve C1 in (1), the temperature compensation circuit raises the frequency of the drive signal to fb to generate the temperature compensated drive signal in order to reduce the output voltage of the detection signal to Va. As a result, the output voltage of the detection signal of the piezoelectric vibrator is maintained at Va even if the temperature changes from room temperature to low temperature.
【0026】一方、逆に温度が上がって高温になると圧
電振動子の機械的尖鋭度Qが低くなることにより検出信
号の出力電圧が高温状態での曲線C3に対応するVcま
で下降するため、温度補償回路では検出信号の出力電圧
をVaまで上げるために駆動信号の駆動周波数をfcま
で下げて温度補償駆動信号を生成する。これにより、圧
電振動子の検出信号の出力電圧は温度が変化して常温か
ら低温になってもVaに保たれる。On the other hand, conversely, when the temperature rises and becomes high, the mechanical sharpness Q of the piezoelectric vibrator becomes low, and the output voltage of the detection signal drops to Vc corresponding to the curve C3 in the high temperature state. In the compensation circuit, in order to raise the output voltage of the detection signal to Va, the driving frequency of the driving signal is lowered to fc to generate the temperature compensation driving signal. As a result, the output voltage of the detection signal of the piezoelectric vibrator is maintained at Va even if the temperature changes from room temperature to low temperature.
【0027】このように、温度補償回路付移相回路20
では圧電振動子の機械的尖鋭度の特性に基づいて駆動信
号の周波数を変化させて温度補償駆動信号を生成するこ
とにより、圧電振動子からの検出信号の出力電圧を温度
変化に依らず常時一定にさせることができる。この結
果、圧電振動子での温度変化による影響を受けない安定
した検出感度が得られる。As described above, the phase shift circuit 20 with the temperature compensation circuit
By changing the frequency of the drive signal based on the mechanical sharpness of the piezoelectric vibrator to generate the temperature-compensated drive signal, the output voltage of the detection signal from the piezoelectric vibrator is always constant regardless of the temperature change. You can As a result, stable detection sensitivity that is not affected by temperature changes in the piezoelectric vibrator can be obtained.
【0028】[0028]
【発明の効果】以上に示したように、本発明の圧電振動
ジャイロ用駆動検出回路によれば、従来の駆動検出回路
における移相回路を改良して温度補償回路付き移相回路
とし、この温度補償回路付き移相回路における温度補償
回路により、圧電振動子の機械的尖鋭度の特性に基づい
てその移相回路からの駆動信号の出力電圧変化分に応じ
て駆動信号を温度補償した温度補償駆動信号を生成して
圧電振動子に伝送しているので、圧電振動子からの検出
信号の出力電圧は温度変化に依らず常時一定となり、こ
の結果、圧電振動ジャイロの検出感度が温度の影響を受
けずに安定化され、その検出精度が向上するようにな
る。As described above, according to the drive detection circuit for a piezoelectric vibration gyroscope of the present invention, the phase shift circuit in the conventional drive detection circuit is improved to be a phase shift circuit with a temperature compensation circuit. The temperature compensation circuit in the phase shift circuit with the compensation circuit compensates the temperature of the drive signal according to the output voltage change of the drive signal from the phase shift circuit based on the mechanical sharpness of the piezoelectric vibrator. Since the signal is generated and transmitted to the piezoelectric vibrator, the output voltage of the detection signal from the piezoelectric vibrator is always constant regardless of the temperature change, and as a result, the detection sensitivity of the piezoelectric vibration gyro is affected by the temperature. Instead, it is stabilized and its detection accuracy is improved.
【図1】本発明の一実施例に係る圧電振動子を含む圧電
振動ジャイロ用駆動検出回路の基本構成を示したブロッ
ク図である。FIG. 1 is a block diagram showing a basic configuration of a drive detection circuit for a piezoelectric vibration gyro including a piezoelectric vibrator according to an embodiment of the present invention.
【図2】図1に示す圧電振動ジャイロ用駆動検出回路が
備える移相回路における温度補償回路を示したものであ
る。FIG. 2 shows a temperature compensation circuit in a phase shift circuit included in the piezoelectric vibration gyro drive detection circuit shown in FIG.
【図3】従来の圧電振動ジャイロに用いられる圧電振動
子の概略構造を示したもので、(a)はその斜視図であ
り、(b)は(a)のA−A´線方向における断面図で
ある。3A and 3B show a schematic structure of a piezoelectric vibrator used in a conventional piezoelectric vibrating gyro, in which FIG. 3A is a perspective view thereof, and FIG. 3B is a sectional view taken along line AA ′ of FIG. It is a figure.
【図4】従来の圧電振動ジャイロに用いられる圧電振動
子を含む駆動検出回路の基本構成を示したブロック図で
ある。FIG. 4 is a block diagram showing a basic configuration of a drive detection circuit including a piezoelectric vibrator used in a conventional piezoelectric vibration gyro.
【図5】図3に示した圧電振動子における駆動信号の駆
動周波数に対する検出信号の出力電圧の関係で示される
機械的尖鋭度の特性を示したものである。5 shows a characteristic of mechanical sharpness shown by a relationship between a drive frequency of a drive signal and an output voltage of a detection signal in the piezoelectric vibrator shown in FIG.
1 圧電セラミックス円柱 2,3,4,5,6,7 帯状電極 9 差動増幅回路 10 加算増幅回路 11 同期検波回路 12 移相回路 13,13′ サーミスタ 14,14′ 直列抵抗 15,15′ 並列抵抗 16,16′ コンデンサ 20 温度補償回路付き移相回路 1 Piezoelectric Ceramics Cylinder 2, 3, 4, 5, 6, 7 Strip Electrode 9 Differential Amplifying Circuit 10 Summing Amplifying Circuit 11 Synchronous Detection Circuit 12 Phase Shifting Circuit 13, 13 'Thermistor 14, 14' Series Resistor 15, 15 'Parallel Resistor 16, 16 'Capacitor 20 Phase shift circuit with temperature compensation circuit
Claims (3)
駆動して該圧電振動子から出力される検出信号を得ると
共に、該検出信号を加算増幅して加算増幅信号を生成す
る加算増幅回路,及び該加算増幅信号を移相して該圧電
振動子を駆動するための駆動信号を生成する移相回路を
含む圧電振動ジャイロ用駆動検出回路において、前記移
相回路は、前記駆動信号の出力電圧変化分に応じて該駆
動信号を温度補償し、前記検出信号の出力電圧を一定に
するための温度補償駆動信号を生成する温度補償回路を
有することを特徴とする圧電振動ジャイロ用駆動検出回
路。1. A summing amplifier circuit for self-exciting a piezoelectric vibrator for a piezoelectric vibration gyro to obtain a detection signal output from the piezoelectric vibrator and additionally amplifying the detection signal to generate a summed amplification signal. , And a piezoelectric vibration gyro drive detection circuit including a phase shift circuit for generating a drive signal for driving the piezoelectric vibrator by phase-shifting the added amplified signal, wherein the phase shift circuit outputs the drive signal. A drive detection circuit for a piezoelectric vibration gyro having a temperature compensation circuit that temperature-compensates the drive signal according to a voltage change amount and generates a temperature-compensated drive signal for making the output voltage of the detection signal constant. .
検出回路において、前記温度補償回路は、前記駆動信号
の周波数を可変することにより前記温度補償駆動信号を
生成することを特徴とする圧電振動ジャイロ用駆動検出
回路。2. The piezoelectric vibration gyro drive detection circuit according to claim 1, wherein the temperature compensation circuit generates the temperature compensation drive signal by varying a frequency of the drive signal. Drive detection circuit for gyro.
用駆動検出回路において、前記温度補償回路は、温度変
化に応じて抵抗値が変化する抵抗変化回路素子と、前記
抵抗変化回路素子に対して直列に接続された直列抵抗
と、前記抵抗変化回路素子に対して並列に接続された並
列抵抗と、前記直列抵抗及び前記並列抵抗と基準電位と
の間を結合するコンデンサとから成ることを特徴とする
圧電振動ジャイロ用駆動検出回路。3. The drive detection circuit for a piezoelectric vibration gyro according to claim 1, wherein the temperature compensation circuit includes a resistance change circuit element whose resistance value changes according to a temperature change, and a resistance change circuit element for the resistance change circuit element. And a series resistor connected in series, a parallel resistor connected in parallel to the resistance change circuit element, and a capacitor coupling the series resistor and the parallel resistor to a reference potential. Piezoelectric vibration gyro drive detection circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7182706A JPH0933259A (en) | 1995-07-19 | 1995-07-19 | Driving/detecting circuit for piezoelectric vibration gyro |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7182706A JPH0933259A (en) | 1995-07-19 | 1995-07-19 | Driving/detecting circuit for piezoelectric vibration gyro |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0933259A true JPH0933259A (en) | 1997-02-07 |
Family
ID=16123019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7182706A Pending JPH0933259A (en) | 1995-07-19 | 1995-07-19 | Driving/detecting circuit for piezoelectric vibration gyro |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0933259A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6564638B1 (en) | 1999-01-13 | 2003-05-20 | Murata Manufacturing Co., Ltd. | Vibrating gyroscope having an enhanced sensitivity |
DE102017208561A1 (en) | 2016-05-20 | 2017-11-23 | Denso Corporation | GYROS SENSOR DEVICE |
-
1995
- 1995-07-19 JP JP7182706A patent/JPH0933259A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6564638B1 (en) | 1999-01-13 | 2003-05-20 | Murata Manufacturing Co., Ltd. | Vibrating gyroscope having an enhanced sensitivity |
DE102017208561A1 (en) | 2016-05-20 | 2017-11-23 | Denso Corporation | GYROS SENSOR DEVICE |
US10520311B2 (en) | 2016-05-20 | 2019-12-31 | Denso Corporation | Gyro sensor apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0860685B1 (en) | Vibrating gyroscope | |
JPH07113645A (en) | Vibrating gyro | |
US20020100322A1 (en) | Vibrating gyroscope and temperature-drift adjusting method therefor | |
JPH0914974A (en) | Angular-velocity measuring instrument | |
US6177756B1 (en) | Piezoelectric gyro and method of driving the piezoelectric gyro | |
JP2996157B2 (en) | Vibrating gyro | |
JPH0933259A (en) | Driving/detecting circuit for piezoelectric vibration gyro | |
JP2998248B2 (en) | Angular velocity sensor device | |
JPH0650761A (en) | Vibrating gyro | |
JPH10206166A (en) | Vibration-type gyroscope | |
JPH07139952A (en) | Vibration gyroscope | |
JPH09105637A (en) | Vibrating gyro | |
JPH09159459A (en) | Vibrating gyro | |
JP2548679B2 (en) | Vibrating gyroscope | |
EP0777105B1 (en) | Vibration gyroscope and method for adjusting vibration-gyroscope characteristics | |
JPH07270165A (en) | Vibration gyro | |
JP2536261B2 (en) | Detection circuit | |
JPH07239232A (en) | Drive detection circuit for piezoelectric vibration gyroscope | |
JPH08189834A (en) | Piezoelectric oscillation gyroscope | |
JPH07174568A (en) | Driving detection circuit for piezoelectric vibrating gyro | |
JPH09113279A (en) | Vibrational gyro | |
JP3395377B2 (en) | Vibration control device | |
JPH0829179A (en) | Driving/detecting circuit for piezoelectric vibration gyro | |
JPH07151551A (en) | Vibration gyro device | |
JPH06265358A (en) | Drive detection circuit for piezoelectric vibration gyro |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040630 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041027 |