JPH09329473A - Gas flow measuring device - Google Patents

Gas flow measuring device

Info

Publication number
JPH09329473A
JPH09329473A JP8172955A JP17295596A JPH09329473A JP H09329473 A JPH09329473 A JP H09329473A JP 8172955 A JP8172955 A JP 8172955A JP 17295596 A JP17295596 A JP 17295596A JP H09329473 A JPH09329473 A JP H09329473A
Authority
JP
Japan
Prior art keywords
passage
flow rate
measuring device
pipe
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8172955A
Other languages
Japanese (ja)
Other versions
JP3346705B2 (en
Inventor
Hiroshi Aoi
寛 青井
Koichi Fujiwara
浩一 藤原
Bunichi Miyamoto
文一 宮本
Atsushi Arai
淳 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP17295596A priority Critical patent/JP3346705B2/en
Publication of JPH09329473A publication Critical patent/JPH09329473A/en
Application granted granted Critical
Publication of JP3346705B2 publication Critical patent/JP3346705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a gas flow rate measuring device capable of working in good correspondence to individual engines by using as common component an element support fitted at the tip with a flow rate detecting element, and mounting it on each pipe having different diameter. SOLUTION: Element supports 13 are equipped with interchangeability so that installation can be made both on a pipe 1 of a suction air flow measuring device A in small size and the pipe 1' of another suction air flow measuring device B having a large diameter. Even when element support 13 is mounted on the pipe 1 of the device A of smaller structure, it is possible to mount a plate-form flow rate detecting element 15 in the first passage 7 of a bypass 5. Even in the case where element support is mounted on the pipe 1' of the device B having greater size, it is also practicable to install the same type of flow rate detecting element 15 in the first passage 7' of a bypass 5'. Thereby influence of the pulsation and counter-flow of the suction air can be reduced, thus enabling high precision detection of the flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車用エ
ンジン等の吸入空気流量を検出するのに用いて好適な気
体流量計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas flow rate measuring device suitable for detecting an intake air flow rate of, for example, an automobile engine.

【0002】[0002]

【従来の技術】一般に、自動車用エンジン等では、エン
ジン本体の燃焼室内で燃料と吸入空気との混合気を燃焼
させ、その燃焼圧からエンジンの回転出力を取出すよう
にしており、燃料の噴射量等を高精度に演算するために
は吸入空気流量を正確に検出することが要求される。
2. Description of the Related Art Generally, in an engine for an automobile or the like, a mixture of fuel and intake air is burned in a combustion chamber of an engine body, and a rotational output of the engine is taken out from the combustion pressure. It is required to accurately detect the intake air flow rate in order to calculate the above values with high accuracy.

【0003】そこで、従来技術として、例えば特開昭6
1−65053号公報に示すような気体流量計測装置が
知られている。この気体流量計測装置では、内部が被測
気体(吸入空気)を流通させる通気路となった管体と、
該管体内を直径方向に伸長するように設けられたハウジ
ングと、該ハウジング内にほぼO字状に形成され、流入
口から流出口に向けて前記通気路をバイパスして被測気
体の一部を流通するバイパス通路と、該バイパス通路の
途中に設けられ、該バイパス通路を流れる被測気体の流
量を検出する流量検出素子とから構成されている。ま
た、バイパス通路の途中には通路絞り部が形成され、該
通路絞り部の位置にはボビン型の熱線プローブと温度プ
ローブとが流量検出素子として配設され、該熱線プロー
ブは、バイパス通路内を流れる吸入空気の流れにより冷
却され、この熱線プローブの抵抗値変化に基づき吸入空
気流量を検出する。
Therefore, as a conventional technique, for example, Japanese Patent Laid-Open No.
A gas flow rate measuring device as disclosed in Japanese Patent Laid-Open No. 1-65053 is known. In this gas flow rate measuring device, a pipe body whose inside is a ventilation passage through which a measured gas (intake air) flows,
A housing provided so as to extend in the diametrical direction inside the pipe body, and a part of the gas to be measured which is formed in a substantially O-shape in the housing and bypasses the ventilation passage from the inlet to the outlet. And a flow rate detecting element that is provided in the middle of the bypass channel and that detects the flow rate of the measured gas flowing through the bypass channel. Further, a passage throttle portion is formed in the middle of the bypass passage, and a bobbin type heat ray probe and a temperature probe are provided as flow rate detecting elements at the position of the passage throttle portion. It is cooled by the flow of the intake air that flows, and the intake air flow rate is detected based on the change in the resistance value of the heat ray probe.

【0004】また、バイパス通路の通路長さを、通気路
の長さよりも長く形成して該バイパス通路に圧力差を生
じさせることにより、吸気弁の開,閉弁に応じて吸入空
気が増,減して脈動が生じた場合でも、この脈動を減衰
させるようにしていた。
Further, by making the passage length of the bypass passage longer than the length of the ventilation passage to cause a pressure difference in the bypass passage, intake air increases in accordance with opening and closing of the intake valve. Even when the pulsation is reduced and the pulsation occurs, the pulsation is attenuated.

【0005】しかも、この気体流量計測装置は、バイパ
ス通路を長くすると共に、最小通路面積の位置に流量検
出素子を配設しているから、バイパス通路内での脈動に
よる空気流の乱れを低減し、流量検出素子から出力され
る検出信号のバラツキをなくして吸入空気流量を計測す
ることができる。
Moreover, in this gas flow rate measuring device, since the bypass passage is lengthened and the flow rate detecting element is arranged at the position of the minimum passage area, the turbulence of the air flow due to the pulsation in the bypass passage is reduced. It is possible to measure the intake air flow rate while eliminating variations in the detection signal output from the flow rate detection element.

【0006】[0006]

【発明が解決しようとする課題】ところで、昨今の自動
車用エンジンでは、その多様化によって使用空気流量の
範囲で、吸気管、エアクリーナ等の管路寸法は直径70
〜90mmの範囲まで種々あり、これに応じて気体流量
計測装置(エアフローメータ)を構成する管体の外径寸
法も種々のものがある。
By the way, in recent automobile engines, due to the diversification thereof, the pipe dimensions of the intake pipe, the air cleaner, etc. are 70
There are various ranges up to 90 mm, and accordingly, there are also various outer diameter dimensions of the tube body that constitutes the gas flow rate measuring device (air flow meter).

【0007】また、従来技術の気体流量計測装置では、
管体、ハウジングおよび流量検出素子を一体化して形成
していた。このため、個々の吸気管、エアクリーナの管
路寸法に対応させて気体流量計測装置を製造すること
は、それだけ気体流量計測装置を他種類取り揃えておか
なければならず、他品種小数生産になって、コスト高を
招くという欠点がある。
Further, in the conventional gas flow rate measuring device,
The tubular body, the housing, and the flow rate detecting element are integrally formed. Therefore, in order to manufacture gas flow rate measuring devices corresponding to individual intake pipe and air cleaner pipe line dimensions, it is necessary to prepare other types of gas flow rate measuring devices, which results in production of other products in small numbers. However, there is a drawback that the cost is increased.

【0008】本発明は上述した従来技術の問題に鑑みな
されたもので、本発明は素子支持体に互換性を持たせる
ことにより、種々の外径寸法を有する管体に取付けるこ
とのできる気体流量計測装置を提供することを目的とし
ている。
The present invention has been made in view of the above-mentioned problems of the prior art. The present invention provides a gas flow rate that can be attached to a tube having various outer diameter dimensions by making the element supports compatible with each other. It is intended to provide a measuring device.

【0009】[0009]

【課題を解決するための手段】上述した課題を解決する
ために、請求項1の発明が採用する気体流量計測装置
は、内部が被測気体を流通させる通気路となった管体
と、該管体の管壁に開口して設けられた取付口と、該取
付口と対向する位置で前記管体内を管壁から軸中心位置
に向けて半径方向に突出して設けられたハウジングと、
該ハウジング内に形成され、前記通気路をバイパスして
被測気体の一部を流通するバイパス通路と、前記通気路
の軸中心側で、かつ前記管体の取付口と対向する位置で
該バイパス通路に開口させて前記ハウジングに形成され
た素子挿入口と、前記管体の取付口から該素子挿入口に
向けて着脱可能に取付けられ、先端側に前記バイパス通
路内に位置して前記バイパス通路を流れる被測気体の流
量を検出する流量検出素子が設けられた素子支持体とか
ら構成したことにある。
In order to solve the above-mentioned problems, the gas flow rate measuring device adopted by the invention of claim 1 is a pipe body having an inside as a ventilation passage through which a measured gas flows. A mounting opening provided on the tube wall of the tubular body, and a housing provided at a position facing the mounting opening so as to radially project from the tubular wall toward the axial center position in the tubular body;
A bypass passage formed in the housing, which bypasses the ventilation passage and circulates a part of the gas to be measured, and the bypass on the axial center side of the ventilation passage and at a position facing the attachment port of the pipe body. An element insertion opening formed in the housing by opening in the passage, and detachably attached from the attachment opening of the tubular body toward the element insertion opening, and located in the bypass passage at the tip end side of the bypass passage. It is composed of an element support provided with a flow rate detection element for detecting the flow rate of the gas to be measured flowing through.

【0010】上記構成により、管体の取付口に素子支持
体を挿入して取付けると、先端側の流量検出素子は通気
路の軸中心位置にある素子挿入口を介してバイパス通路
内に位置し、通気路を流れる被測気体の一部を分岐させ
たバイパス通路の流量を前記流量検出素子で検出でき
る。また、素子支持体は管体の取付口に対して着脱可能
であるから、素子支持体に互換性を持たせ、種々の外径
寸法を有する管体に対して取付けることができる。
With the above structure, when the element support is inserted and attached to the attachment port of the pipe body, the flow rate detecting element on the tip side is positioned in the bypass passage through the element insertion port at the axial center position of the ventilation passage. The flow rate of the bypass passage, which branches off a part of the measured gas flowing through the ventilation passage, can be detected by the flow rate detecting element. Further, since the element support can be attached to and detached from the attachment port of the tube, the element support can be made compatible and can be attached to tubes having various outer diameter dimensions.

【0011】請求項2の発明では、流量検出素子を、絶
縁基板上に流量検出体を配設したプレート型流量検出素
子として形成したことにある。
According to the second aspect of the invention, the flow rate detecting element is formed as a plate type flow rate detecting element in which the flow rate detecting body is arranged on the insulating substrate.

【0012】上記構成により、被測気体がバイパス通路
内を流通するときに、流量検出体を冷却し、この冷却作
用によって流量を検出する。このとき、プレート型流量
検出素子は熱容量が小さくなっているから、応答性良く
検出することができる。
With the above structure, when the gas to be measured flows through the bypass passage, the flow rate detector is cooled and the flow rate is detected by this cooling action. At this time, since the plate-type flow rate detection element has a small heat capacity, it is possible to detect with good responsiveness.

【0013】請求項3の発明では、素子支持体には、流
量検出素子との間で電気信号の授受を行う回路を格納し
たことにある。
According to the third aspect of the present invention, the element support contains a circuit for exchanging an electric signal with the flow rate detecting element.

【0014】上記構成により、素子支持体とは別個に信
号授受用の回路部品を設ける必要がなく、素子支持体を
共通部品として径方向の異なる種々の管体に取付けるだ
けで、規格の異なった気体流量計測装置を製造すること
ができる。
With the above construction, it is not necessary to provide a circuit component for signal transmission / reception separately from the element support body, and the element support body can be attached as a common component to various pipes having different radial directions, and the standards differ. A gas flow measuring device can be manufactured.

【0015】請求項4の発明では、バイパス通路は、通
気路の軸中心近傍に位置して上流側から下流側に向け軸
線方向に延びると共に、素子挿入口が開口した第1通路
と、該第1通路から管体の管壁に向け径方向外側に延び
る第2通路と、前記ハウジングの径方向外側に位置して
第2通路から上流側に向けて軸線方向と平行に延びる第
3通路とから構成し、通路絞り部は第2通路または第3
通路のいずれか一方側に設け、流量検出素子は前記第1
通路に設けたことにある。
In the invention of claim 4, the bypass passage is located in the vicinity of the axial center of the ventilation passage, extends in the axial direction from the upstream side to the downstream side, and has a first passage having an element insertion opening, and the first passage. From a second passage extending radially outward from the first passage toward the pipe wall of the pipe body, and a third passage located radially outside the housing and extending from the second passage toward the upstream side in parallel to the axial direction. And the passage restrictor is the second passage or the third passage.
The flow rate detecting element is provided on either side of the passage, and the flow rate detecting element is the first
It was installed in the passage.

【0016】上記構成により、バイパス通路を通気路の
長さに対して十分長くすることにより、圧力差を発生さ
せ、脈動や逆流が発生したときのバイパス通路内への影
響を低減することができる。
With the above structure, by making the bypass passage sufficiently long with respect to the length of the ventilation passage, a pressure difference is generated, and the influence on the inside of the bypass passage when pulsation or backflow occurs can be reduced. .

【0017】請求項5の発明では、バイパス通路の流入
口側を、徐々に通路面積が減少するテーパ状に形成した
ことにある。
According to the invention of claim 5, the inflow port side of the bypass passage is formed in a tapered shape in which the passage area gradually decreases.

【0018】上記構成により、バイパス通路内を流れる
被測気体を徐々に早めて整流化し、流量検出素子に整流
化した被測気体を当てることができる。
With the above structure, the gas to be measured flowing in the bypass passage can be gradually advanced and rectified, and the rectified gas to be measured can be applied to the flow rate detecting element.

【0019】請求項6の発明では、素子挿入口を、流量
検出素子を挿入した状態で素子支持体の壁部によって閉
塞する構成としたことにある。
According to the sixth aspect of the invention, the element insertion port is closed by the wall portion of the element support with the flow rate detection element inserted.

【0020】上記構成のように、素子挿入口を素子支持
体の壁部で閉塞することにより、バイパス通路の第1通
路のシールを形成できる。
As described above, by closing the element insertion port with the wall portion of the element support, the seal of the first passage of the bypass passage can be formed.

【0021】請求項7の発明では、管体を、ハウジング
より上流側の管体の長さLを、管体の直径Dの0.5〜
2.0倍に設定したことにある。
[0021] In the invention of claim 7, the length of the tubular body upstream of the housing is L, and the diameter D of the tubular body is 0.5 to 0.5.
It is set to 2.0 times.

【0022】上記構成により、被測気体の整流性を高め
ることができる。
With the above structure, the rectifying property of the gas to be measured can be improved.

【0023】[0023]

【発明の実施の形態】以下、本発明による実施の形態を
添付図面に従って詳細に説明するに、図1ないし図13
は本発明による実施例を示す。本実施例では、気体流量
計測装置として吸入空気流量計測装置を例に挙げて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
Shows an embodiment according to the present invention. In the present embodiment, an intake air flow rate measuring device will be described as an example of the gas flow rate measuring device.

【0024】図中、1は吸入空気流量計測装置の本体を
構成する管体を示し、該管体1は樹脂材料または金属材
料によって外径寸法R1 となる円筒状に形成され、該管
体1は、内部が被測気体となる吸入空気が流通する通気
路2となった管壁1Aと、上流側となる一側に形成され
たフランジ部1Bと、下流側となる他側に形成された円
筒状の接続部1Cとからなる。
In the figure, reference numeral 1 denotes a tubular body which constitutes the main body of the intake air flow rate measuring device, and the tubular body 1 is formed of a resin material or a metal material into a cylindrical shape having an outer diameter R1. Is formed on the pipe wall 1A which is the ventilation passage 2 through which the intake air as the gas to be measured flows, the flange portion 1B which is formed on one side which is the upstream side, and the other side which is the downstream side. It is composed of a cylindrical connecting portion 1C.

【0025】ここで、該管体1はエンジンの吸気管の途
中に接続され、フランジ部1B側にはエアクリーナが接
続され、接続部1C側には配管を介してエンジンのシリ
ンダと連通する吸気通路ないしスロットルバルブ(いず
れも図示せず)が接続されている。そして、該管体1
は、ピストン(図示せず)の往復動に応じてエアクリー
ナで清浄化された空気をシリンダ内へと吸込ませる。
Here, the pipe body 1 is connected in the middle of the intake pipe of the engine, an air cleaner is connected to the flange portion 1B side, and an intake passage communicating with the cylinder of the engine via a pipe is connected to the connection portion 1C side. A throttle valve (neither is shown) is connected. And the tubular body 1
Causes the air cleaned by the air cleaner to be sucked into the cylinder in response to the reciprocating movement of the piston (not shown).

【0026】3は取付口で、該取付口3は前記管体1の
管壁1Aのほぼ中間部に開口し、該管壁1Aから径方向
外側に向けて突設した小径筒状に形成され、該取付口3
には後述する素子支持体13が挿入して取付けられる。
Reference numeral 3 designates a mounting port, which is formed in a small-diameter cylindrical shape which is opened substantially at an intermediate portion of the tube wall 1A of the tubular body 1 and which projects radially outward from the tube wall 1A. , The mounting port 3
An element support 13, which will be described later, is inserted into and attached to this.

【0027】4はハウジングを示し、該ハウジング4
は、前記取付口3と対向する位置で、前記管体1の管壁
1Aから通気路2の軸中心O−Oの近傍位置まで半径方
向内向きに突設し、前記管体1と一体をなした縦長な矩
形状に形成されている。そして、ハウジング4は吸入空
気の流れに対して上流側の前面4A、下流側の後面4
B、左側面4C,右側面4Dおよび上面4Eからなる5
面体となっている。
Reference numeral 4 denotes a housing, and the housing 4
At a position facing the mounting opening 3, is projected radially inward from the pipe wall 1A of the pipe body 1 to a position in the vicinity of the axial center O-O of the air passage 2, and is integrally formed with the pipe body 1. It is formed in a vertically elongated rectangular shape. The housing 4 has a front surface 4A on the upstream side and a rear surface 4 on the downstream side with respect to the flow of intake air.
B, including left side surface 4C, right side surface 4D and upper surface 4E 5
It is a face piece.

【0028】5はハウジング4内に設けられたバイパス
通路で、該バイパス通路5は、図4ないし図8に示すよ
うに、前記ハウジング4内にほぼU字状に形成されてい
る。ここで、該バイパス通路5は、ハウジング4の前面
4A側で通気路2の軸中心O−Oの近傍に位置して通気
路2の上流側に開口した流入口6と、該流入口6を介し
て軸中心O−Oの近傍に位置して上流側から下流側に向
け軸線方向に延びる第1通路7と、該第1通路7と連通
し、後面4B側で軸中心O−Oの近傍から前記管体1の
管壁1Aに向け径方向外向きに延びる第2通路8と、該
第2通路8と連通し、ハウジング4の径方向外側に位置
して第2通路8から上流側に向けて軸線方向と平行に延
びる第3通路9と、該第3通路9と連通し、ハウジング
4の径方向外側に位置して該ハウジング4の側面4C,
4Dに開口する流出口10,10とから構成されてい
る。
Reference numeral 5 denotes a bypass passage provided in the housing 4. The bypass passage 5 is formed in a substantially U-shape in the housing 4 as shown in FIGS. Here, the bypass passage 5 includes an inflow port 6 located on the front surface 4A side of the housing 4 near the axial center O-O of the air passage 2 and opened to the upstream side of the air passage 2, and the inflow port 6. A first passage 7 located in the vicinity of the axis center O-O and extending in the axial direction from the upstream side to the downstream side, and communicates with the first passage 7, and the vicinity of the axis center OO on the rear surface 4B side. From the second passage 8 extending radially outward from the above to the pipe wall 1A of the pipe body 1 and communicating with the second passage 8 and located radially outside of the housing 4 from the second passage 8 to the upstream side. A third passage 9 extending in parallel with the axial direction toward the third passage 9 and a side surface 4C of the housing 4 located outside the housing 4 in the radial direction, communicating with the third passage 9;
It is composed of the outlets 10 and 10 that open to 4D.

【0029】そして、前記流入口6と連通する第1通路
7は、図6に示すように、徐々に通路面積が減少する略
V字状またはテーパ状となった傾斜面7A,7Aによっ
て形成され、かつ上面4Eには後述する素子挿入口12
が形成されている。
As shown in FIG. 6, the first passage 7 communicating with the inflow port 6 is formed by inclined surfaces 7A, 7A having a substantially V shape or a taper shape in which the passage area gradually decreases. Also, the upper surface 4E has an element insertion port 12 described later.
Are formed.

【0030】11はバイパス通路5の途中を絞るために
ハウジング4に形成された通路絞り部で、該通路絞り部
11は、第2通路8の途中に位置して形成され、該第2
通路8のうち後面4B側は前記第1通路7の各傾斜面7
Aによって絞られているから、第2通路8の軸中心O−
O位置から通路絞り部11までの間は、図6に示すよう
に、台形状の通路から長方形の通路となるように前面4
A側の底辺を小さくすることにより通路面積が絞り込ま
れている。
Reference numeral 11 denotes a passage narrowing portion formed in the housing 4 for narrowing the middle of the bypass passage 5. The passage narrowing portion 11 is formed in the middle of the second passage 8 and is formed in the second passage 8.
The rear surface 4B side of the passage 8 has the inclined surfaces 7 of the first passage 7.
Since it is throttled by A, the axial center O- of the second passage 8 is
From the O position to the passage narrowing portion 11, as shown in FIG. 6, the front surface 4 is changed from a trapezoidal passage to a rectangular passage.
The passage area is narrowed down by reducing the bottom of the A side.

【0031】ここで、通路絞り部11によって形成され
る通路面積S0 は後述するプレート型流量検出素子15
が配設される第1通路7の通路面積S1 よりも小さくな
り、通気路2を流れる流量に対するバイパス通路5を流
れる流量の比(以下、分流比という)を決定して、常に
通気路2を流れる吸入空気の流量に対する比率が一定と
なった流量がバイパス通路5内を流れるように制御して
いる。
Here, the passage area S0 formed by the passage throttle portion 11 is a plate type flow rate detecting element 15 which will be described later.
Is smaller than the passage area S1 of the first passage 7 in which the air passage 2 is disposed, and the ratio of the flow rate of the bypass passage 5 to the flow rate of the bypass passage 2 (hereinafter, referred to as a shunt ratio) is determined so that The flow rate at which the ratio of the flow rate of the intake air to the flow rate is constant is controlled so as to flow in the bypass passage 5.

【0032】さらに、このように構成されるバイパス通
路5では、流入口6から各流出口10までの通路長さに
対する通路面積Sの関係は、図11のようになる。即
ち、流入口6の位置では通路面積Sが最も大きく、素子
取付位置では通路面積はS1 で該素子取付位置から通路
絞り部11にかけて徐々に狭くなり、該通路絞り部11
の通路面積はS0 で、該通路絞り部11の下流から急激
に通路面積Sが増加し、流出口10の位置では再び絞ら
れている。
Further, in the bypass passage 5 thus constructed, the relationship between the passage area S from the inlet 6 to each outlet 10 is as shown in FIG. That is, the passage area S is the largest at the position of the inflow port 6, the passage area is S1 at the element mounting position, and gradually narrows from the element mounting position to the passage narrowing portion 11.
Has a passage area S0, the passage area S rapidly increases from the downstream side of the passage narrowing portion 11, and the passage area 10 is narrowed again.

【0033】また、12は素子挿入口で、該素子挿入口
12は前記ハウジング4の上面4Eを、矩形状に開口し
て形成され、該素子挿入口12には後述するプレート型
流量検出素子15が挿入される。
Further, 12 is an element insertion port, which is formed by opening the upper surface 4E of the housing 4 in a rectangular shape, and the element type insertion port 12 has a plate type flow rate detection element 15 described later. Is inserted.

【0034】13は互換性を持った共通部品となる素子
支持体を示し、該素子支持体13は段付円柱状に形成さ
れ、基端側には鍔状の取付部13Aを介してコネクタ1
3Bが形成され、該取付部13Aから先端側に向け、カ
バー13C1 により閉塞される矩形状の回路収容部13
Cが形成され、該回路収容部13Cの先端側は壁部13
Dとなり、該壁部13Dの位置から流量検出素子15が
突出して設けられている。また、前記ハウジング4の上
面4Eに素子支持体13の壁部13Dを当接することに
より第1通路7をシールしている。
Reference numeral 13 designates an element support which is a compatible and common component. The element support 13 is formed in a stepped columnar shape, and the connector 1 is provided on the base end side with a flange-shaped mounting portion 13A.
3B is formed, and the rectangular circuit accommodating portion 13 is closed by the cover 13C1 from the mounting portion 13A toward the tip side.
C is formed, and the front end side of the circuit housing portion 13C is the wall portion 13
The flow rate detecting element 15 is provided so as to project from the position of the wall portion 13D. Further, the first passage 7 is sealed by bringing the wall portion 13D of the element support 13 into contact with the upper surface 4E of the housing 4.

【0035】14は素子支持体13の回路収容部13C
内に収容して設けられた回路部品で、該回路部品14は
流量検出素子15との間で電気信号の授受を行うもので
ある。このため、回路部品14は流量検出素子15のヒ
ータ18を制御するヒータ制御回路、同じく測温抵抗体
19,20による検出信号を増幅する増幅回路、逆流検
知回路等を含んで構成されている。また、回路収容部1
3C内の回路部品14は樹脂製のカバー13C1 等を介
して吸入空気により冷却される。
Reference numeral 14 is a circuit accommodating portion 13C of the element support 13.
The circuit component 14 is housed and provided inside, and the circuit component 14 transmits and receives an electrical signal to and from the flow rate detecting element 15. Therefore, the circuit component 14 is configured to include a heater control circuit that controls the heater 18 of the flow rate detection element 15, an amplification circuit that amplifies a detection signal from the resistance temperature detectors 19 and 20, a backflow detection circuit, and the like. In addition, the circuit housing portion 1
The circuit component 14 in 3C is cooled by intake air through a resin cover 13C1 and the like.

【0036】15は素子支持体13の先端に設けられた
プレート型流量検出素子を示し、該プレート型流量検出
素子15は、図9および図10に示すように、幅方向の
中間に台形状の加工穴16Aが形成されたシリコン基板
16と、該シリコン基板16の表面に例えば酸化膜(S
iO2 )または窒化膜(SiN)によって形成された絶
縁膜17と、該絶縁膜17を介して前記シリコン基板1
6上の加工穴16Aと対応する位置に白金を蒸着して例
えば0.2μm程度の膜厚で成膜したヒータ18と、該
ヒータ18の左,右に位置し、該ヒータ18と同様にし
て成膜した流量検出体となる測温抵抗体19,20とか
らなっている。なお、前記シリコン基板16に形成した
加工穴16Aは、下面側からシリコンの異方性エッチン
グを施すことによって台形状に形成されている。
Numeral 15 is provided at the tip of the element support 13.
A plate type flow rate detecting element is shown, and the plate type flow rate detecting element is shown.
The element 15 is, as shown in FIGS. 9 and 10,
Silicon substrate with a trapezoidal processing hole 16A formed in the middle
16 and an oxide film (S
iO2  ) Or nitride film (SiN)
The edge film 17 and the silicon substrate 1 through the insulating film 17
Example of depositing platinum at the position corresponding to the processed hole 16A on 6
For example, the heater 18 having a film thickness of about 0.2 μm,
Located on the left and right of the heater 18, in the same manner as the heater 18.
Temperature measuring resistors 19 and 20 which are flow rate detectors formed by
It consists of In addition, it was formed on the silicon substrate 16
The processed hole 16A is an anisotropic etch of silicon from the lower surface side.
It is formed in a trapezoidal shape by applying a groove.

【0037】ここで、前記流量検出素子15では、矢示
Aのように空気が流れるとき、この空気流によって冷却
される測温抵抗体19,20の抵抗値変化を利用して、
流量を検出する。しかも、該流量検出素子15は、ヒー
タ18の左,右に測温抵抗体19,20を配設している
から、矢示A方向の流れに対しても、逆方向の流れに対
しても同様に検出することができる正,逆流検出用の素
子である。
Here, in the flow rate detecting element 15, when the air flows as indicated by the arrow A, the change in the resistance value of the resistance temperature detectors 19 and 20 cooled by the air flow is utilized to
Detect the flow rate. In addition, since the flow rate detecting element 15 has the resistance temperature detectors 19 and 20 arranged on the left and right of the heater 18, it can be used both in the direction of arrow A and in the opposite direction. It is an element for forward and reverse flow detection that can be similarly detected.

【0038】本実施例による吸入空気流量計測装置は、
上述の如き構成を有するもので、次にその作用について
述べるに、管体1内の通気路2を流れる吸入空気の一部
を分岐してバイパス通路5内に流通し、このバイパス通
路5内を流れる空気の流量を流量検出素子15で検出す
ることにより、エンジン側に吸込まれる吸入空気の流量
を検出するものである。
The intake air flow rate measuring device according to this embodiment is
With the above-mentioned configuration, and to describe its operation next, a part of the intake air flowing through the air passage 2 in the pipe body 1 is branched and flows into the bypass passage 5, and the inside of the bypass passage 5 is The flow rate of the flowing air is detected by the flow rate detecting element 15 to detect the flow rate of the intake air sucked into the engine.

【0039】また、バイパス通路5の途中に形成された
通路絞り部11による通路面積S0は、流量検出素子1
5が配設される第1通路7の通路面積S1 よりも小さく
なるように形成しているから、通路面積S0 によってバ
イパス通路5を流れる分流比を支配することができ、常
に通気路2を流れる吸入空気の流量に対して一定の比率
の流量をバイパス通路5内に流すことができる。この結
果、バイパス通路5内を流れる空気流量を流量検出素子
15により検出することによって、通気路2内を流れる
空気流量を正確に検出することができる。
Further, the passage area S0 due to the passage throttle portion 11 formed in the middle of the bypass passage 5 is determined by the flow rate detecting element 1
Since the first passage 7 is formed so as to be smaller than the passage area S1 of the first passage 7, the passage area S0 can control the diversion ratio flowing through the bypass passage 5 and always flow through the ventilation passage 2. A flow rate of a constant ratio with respect to the flow rate of intake air can be made to flow in the bypass passage 5. As a result, the flow rate of air flowing through the bypass passage 5 is detected by the flow rate detecting element 15, so that the flow rate of air flowing through the air passage 2 can be accurately detected.

【0040】また、前記ハウジング4よりも上流側の管
体1の長さLを、管体1の直径Dの0.5〜2.0倍
(好ましくは1倍)に設定することにより、整流作用に
よって流量特性を向上できる。
Further, the length L of the tube body 1 on the upstream side of the housing 4 is set to 0.5 to 2.0 times (preferably 1 time) the diameter D of the tube body 1 to rectify the flow. The flow characteristics can be improved by the action.

【0041】ここで、本実施例によるバイパス通路5
は、第1通路7、第2通路8、第3通路9により略U字
状に形成されているから、該バイパス通路5の通路長さ
を通気路2の長さに対して十分長くして流入口6と流出
口10との間に圧力差を持たせることができ、管体1内
に発生する脈動の影響を緩和することができる。
Here, the bypass passage 5 according to the present embodiment.
Is formed in a substantially U shape by the first passage 7, the second passage 8 and the third passage 9, so that the passage length of the bypass passage 5 is set sufficiently longer than the length of the ventilation passage 2. A pressure difference can be provided between the inflow port 6 and the outflow port 10, and the influence of pulsation generated in the pipe body 1 can be mitigated.

【0042】また、前記第1通路7は通気路2の軸中心
O−Oの近傍に位置させて吸入空気の上流側に開口する
流入口6と連通させ、第3通路9はハウジング4の径方
向外側に位置させてハウジング4の側面4C,4Dに開
口する流出口10,10と連通させている。また、管体
1内を流れる空気流の流速Vは、図2中に示す如く、軸
中心O−Oの近傍が速く、管壁1Aの近傍では遅くなっ
ている。このため、流入口6と流出口10との間には圧
力差が発生し、バイパス通路5内に流れ込む空気は、エ
ンジンが空気を吸込む順方向の流れのときにはバイパス
通路5内に良好に流入させることができる。
The first passage 7 is located in the vicinity of the axial center O--O of the ventilation passage 2 and communicates with the inflow port 6 opening upstream of the intake air, and the third passage 9 has a diameter of the housing 4. It is located outside in the direction and communicates with the outlets 10, 10 that open to the side surfaces 4C, 4D of the housing 4. As shown in FIG. 2, the flow velocity V of the air flow flowing in the pipe body 1 is fast in the vicinity of the axial center O-O and slow in the vicinity of the pipe wall 1A. Therefore, a pressure difference is generated between the inflow port 6 and the outflow port 10, and the air flowing into the bypass passage 5 satisfactorily flows into the bypass passage 5 when the engine is in the forward flow for sucking air. be able to.

【0043】さらに、素子支持体13は、その取付部1
3Aを管体1の取付口3に取付けることにより、先端側
に位置したプレート型流量検出素子15は素子挿入口1
2を介して前記バイパス通路5の第1通路7内に配置し
ていると共に、該流量検出素子15は通路絞り部11の
上流側に配設されているから、空気の順方向の流れに対
しては、整流された空気を流量検出素子15に流すこと
ができ、該素子15における流量の検出感度を高めるこ
とができる。一方、逆方向の流れに対しては、通路絞り
部11で緩衝することにより、吸入空気の逆流が流量検
出素子15に流れ込むのを低減している。
Further, the element support 13 has the mounting portion 1 thereof.
By attaching 3A to the attachment opening 3 of the tubular body 1, the plate-type flow rate detection element 15 located on the tip side is attached to the element insertion opening 1
2 is disposed in the first passage 7 of the bypass passage 5 via the flow passage 2, and the flow rate detecting element 15 is disposed on the upstream side of the passage throttle portion 11, so that it is possible to prevent air from flowing in the forward direction. As a result, the rectified air can be made to flow through the flow rate detection element 15, and the flow rate detection sensitivity of the element 15 can be increased. On the other hand, the flow in the reverse direction is buffered by the passage throttle portion 11 to reduce the reverse flow of the intake air flowing into the flow rate detecting element 15.

【0044】また、前記流量検出素子15が配設される
素子挿入口12は、徐々に通路面積が減少するように傾
斜面7A,7Aによって略V字状またはテーパ状となっ
て形成しているから、前記バイパス通路5の途中に設け
た通路絞り部11の作用と併せて流量検出素子15を流
れる空気の流速を早めて整流化を促進することができ、
流量の検出感度をより高めることができる。
Further, the element insertion port 12 in which the flow rate detecting element 15 is arranged is formed in a substantially V shape or a tapered shape by the inclined surfaces 7A and 7A so that the passage area gradually decreases. Therefore, the flow velocity of the air flowing through the flow rate detecting element 15 can be accelerated and the rectification can be promoted together with the action of the passage throttle portion 11 provided in the middle of the bypass passage 5.
The flow rate detection sensitivity can be further increased.

【0045】しかも、本実施例によるプレート型流量検
出素子15は、ヒータ18の左,右に測温抵抗体19,
20を有する正,逆流検出用の素子であるから、逆流が
バイパス通路5内を流通した場合には、この逆方向の空
気流量を検出することができる。
In addition, the plate type flow rate detecting element 15 according to the present embodiment has a resistance temperature detector 19 on the left and right of the heater 18,
Since this is an element for detecting the forward and reverse flows having 20, when the reverse flow flows through the bypass passage 5, the air flow rate in the reverse direction can be detected.

【0046】さらに、前記素子支持体13では、プレー
ト型流量検出素子15との間で電気信号の授受を行う回
路部品14を回路収容部13C内に収容し、該回路収容
部13Cは素子支持体13を管体1に取付けた状態で
は、通気路2内に晒されることになるから、回路部品1
4は通気路2を流れる吸入空気により冷却することがで
き、該回路部品14の温度上昇を抑え、回路部品14か
ら出力される電気信号に温度ドリフト等が重畳するのを
低減することができる。
Further, in the element support 13, the circuit component 14 for exchanging electric signals with the plate type flow rate detection element 15 is accommodated in the circuit accommodating portion 13C, and the circuit accommodating portion 13C is accommodated in the element supporting member. In the state where 13 is attached to the pipe body 1, it is exposed to the inside of the ventilation passage 2, so that the circuit component 1
4 can be cooled by the intake air flowing through the ventilation path 2, the temperature rise of the circuit component 14 can be suppressed, and the superimposition of temperature drift or the like on the electric signal output from the circuit component 14 can be reduced.

【0047】かくして、本実施例では、ハウジング4に
形成したバイパス通路5の長さと形状等によって、脈動
による影響を大幅に改善することができ、吸入空気流量
の検出精度を高めることができる。
Thus, in the present embodiment, the influence of pulsation can be greatly reduced by the length and shape of the bypass passage 5 formed in the housing 4, and the detection accuracy of the intake air flow rate can be increased.

【0048】また、前記プレート型流量検出素子15
は、シリコン基板16上に絶縁膜17を介して薄膜のヒ
ータ18と測温抵抗体19,20によって構成している
から、従来技術で用いたボビン型の熱線プローブに比べ
て、熱容量を小さくでき、吸入空気の流量検出に対する
応答性を高めることができる。
Further, the plate type flow rate detecting element 15
Is composed of a thin-film heater 18 and resistance temperature detectors 19 and 20 on a silicon substrate 16 with an insulating film 17 interposed therebetween, so that the heat capacity can be made smaller than that of the bobbin type heat ray probe used in the prior art. The responsiveness to the detection of the flow rate of the intake air can be improved.

【0049】さらに、本実施例による素子支持体13
は、互換性を持った共通部品として管体1の取付口3か
ら素子挿入口12に向けて着脱可能に取付けているか
ら、該素子支持体13は、図1に示す小型な吸入空気流
量計測装置Aの場合はもとより、図12および図13に
示すような、大型な吸入空気流量計測装置Bの管体1′
に取付けることもできる。なお、大型な吸入空気流量計
測装置Bでは、小型な吸入空気流量計測装置Aと同一の
構成要素には、符号にダッシュ(′)を付しその説明を
省略する。
Further, the element support 13 according to the present embodiment.
Is detachably attached to the element insertion opening 12 from the attachment opening 3 of the tubular body 1 as a compatible common part. Therefore, the element support 13 is a small intake air flow rate measurement device shown in FIG. In addition to the case of the device A, the tube body 1 ′ of the large intake air flow rate measuring device B as shown in FIGS. 12 and 13 is used.
It can also be attached to. In the large intake air flow rate measuring device B, the same components as those in the small intake air flow rate measuring device A are denoted by reference numerals with a dash (') and the description thereof is omitted.

【0050】即ち、図13に示す大型な吸入空気流量計
測装置Bの管体1′は、図1に示す小型な吸入空気流量
計測装置Aの管体1の外径寸法R1 よりも大径な外径寸
法R2 となっている。このため、該管体1′の管壁1
A′に形成されるハウジング4′およびバイパス通路
5′の形状は、管体1のハウジング4とバイパス通路5
とほぼ同様に形成されているも、流入口6′を軸中心O
−Oとするためにハウジング4′は高さ寸法を高くした
縦長な矩形状に形成されている。
That is, the pipe body 1'of the large intake air flow rate measuring device B shown in FIG. 13 has a larger diameter than the outer diameter dimension R1 of the pipe body 1 of the small intake air flow rate measuring device A shown in FIG. The outer diameter is R2. Therefore, the tube wall 1 of the tube body 1 '
The shapes of the housing 4'and the bypass passage 5'formed in A'are the same as the housing 4 of the tubular body 1 and the bypass passage 5 '.
Although it is formed almost the same as
The housing 4'is formed in a vertically long rectangular shape having a height height so as to be -O.

【0051】このように構成される大型な吸入空気流量
計測装置Bの管体1′の取付口3′に、前記素子支持体
13を取付けることにより、例えば排気量の大きいエン
ジンに対応した吸入空気流量計測装置を実現することが
できる。
By attaching the element support 13 to the attachment port 3'of the tube body 1'of the large intake air flow rate measuring device B constructed as described above, for example, intake air suitable for an engine with a large displacement can be obtained. A flow rate measuring device can be realized.

【0052】かくして、本実施例では、素子支持体13
に互換性を持たせているから、外径寸法の異なる種々の
管体からなる多種の吸入空気流量計測装置に対して取付
けることができる。従って、吸入空気流量計測装置の管
体とハウジングは多種類存在したとしても、前記管体と
ハウジングに対して共通部品となる素子支持体13を該
ハウジングに取付けるだけで、種々の吸気管、エアクリ
ーナ等の管路寸法に合った吸入空気流量計測装置を製造
することができる。このため、従来技術のように個々の
エンジン毎に吸入空気流量計測装置を製造するのに比べ
て素子支持体13を共通部品とした製造が可能となり、
製造コストを大幅に低減することができる。
Thus, in this embodiment, the element support 13
Since they are compatible with each other, they can be attached to various types of intake air flow rate measuring devices composed of various pipe bodies having different outer diameter dimensions. Therefore, even if there are many types of pipes and housings of the intake air flow rate measuring device, various intake pipes and air cleaners can be obtained by simply attaching the element support 13 which is a common component to the pipes and the housing. It is possible to manufacture an intake air flow rate measuring device that matches the dimensions of the conduits such as. Therefore, as compared with the case of manufacturing the intake air flow rate measuring device for each engine as in the conventional technique, the element support 13 can be manufactured as a common component,
The manufacturing cost can be significantly reduced.

【0053】また、流量検出素子15が取付けられる素
子取付口12は流入口6側の第1通路7の位置となって
いるから、素子支持体13を取付けたときに流量検出素
子15が配置されるバイパス通路5の形状は矩形状にな
っている。このため、種々の管体に対して素子支持体1
3を取付けた場合でも、矩形状の通路に配設することに
より、取付誤差を低減でき、吸入空気の流量を常に正確
に検出することができる。
Since the element mounting port 12 to which the flow rate detecting element 15 is attached is located at the position of the first passage 7 on the inflow port 6 side, the flow rate detecting element 15 is arranged when the element support 13 is attached. The bypass passage 5 has a rectangular shape. Therefore, the element support 1 can be applied to various pipes.
Even when 3 is attached, the installation error can be reduced and the flow rate of the intake air can always be accurately detected by arranging it in the rectangular passage.

【0054】さらに、管体1′においても、前記ハウジ
ング4′よりも上流側の管体1′の長さL′を、管体
1′の直径D′の0.5〜2.0倍(好ましくは1倍)
に設定することにより、整流作用によって流量検出精度
を向上し、小型化を図ることができる。
Further, in the tubular body 1 ', the length L'of the tubular body 1'upstream of the housing 4'is 0.5 to 2.0 times the diameter D'of the tubular body 1' ( (Preferably 1 time)
By setting to, it is possible to improve the flow rate detection accuracy by the rectification function and to reduce the size.

【0055】なお、前記実施例では、バイパス通路5の
流出口10を、ハウジング4の左,右の側面4C,4D
に開口するように形成したが、本発明はこれに限らす、
流出口をいずれか一方側の側面に開口するように形成し
てもよい。
In the above embodiment, the outlet 10 of the bypass passage 5 is connected to the left and right side surfaces 4C and 4D of the housing 4.
However, the present invention is not limited to this.
The outlet may be formed so as to open on one side surface.

【0056】また、前記実施例では、バイパス通路5の
第2通路8に通路絞り部11を形成して第1通路7に流
量検出素子15を配置するようにしたが、本発明はこれ
に限らず、第3通路9に通路絞り部を形成して第1通路
7または第2通路8に流量検出素子15を配置してもよ
く、要は通路絞り部の上流側に流量検出素子15を配置
するものであればよい。
In the above embodiment, the passage throttle portion 11 is formed in the second passage 8 of the bypass passage 5 and the flow rate detecting element 15 is arranged in the first passage 7. However, the present invention is not limited to this. Alternatively, the flow passage detecting portion may be formed in the third passage 9 and the flow rate detecting element 15 may be arranged in the first passage 7 or the second passage 8. In short, the flow detecting element 15 is arranged on the upstream side of the passage narrowing portion. Anything can be used.

【0057】一方、プレート型流量検出素子15は正,
逆流検出用の素子に限らず、一方方向のみの流量を検出
する素子でもよい。
On the other hand, the plate type flow rate detecting element 15 is positive,
The element is not limited to the element for detecting the backflow, but may be an element for detecting the flow rate in only one direction.

【0058】[0058]

【発明の効果】以上詳述した如く、請求項1の発明で
は、管体の取付口に素子支持体を挿入して取付けると、
先端側の流量検出素子は通気路の軸中心の位置にある素
子挿入口を介してバイパス通路内に位置し、通気路を流
れる被測気体の一部を分岐させたバイパス通路内の流量
を前記流量検出素子で検出できる。この際、素子支持体
は管体の取付口に対して着脱可能に取付けられるから、
素子支持体に互換性を持たせることにより、異なった外
径寸法を有する管体に対して取付けることができ、種々
の吸気管、エアクリーナ等に合った気体流量計測装置を
低廉に製造することができる。また、素子支持体とバイ
パス通路の別体化が可能となり、十分長いバイパス通路
が形成できる。
As described in detail above, according to the first aspect of the invention, when the element support is inserted and attached to the attachment port of the pipe,
The flow rate detection element on the tip side is located in the bypass passage via the element insertion port located at the axial center of the ventilation passage, and the flow rate in the bypass passage obtained by branching a part of the measured gas flowing in the ventilation passage is described above. It can be detected by the flow rate detection element. At this time, since the element support is removably attached to the attachment opening of the tubular body,
By making the element supports compatible, they can be attached to pipes having different outer diameter dimensions, and a gas flow rate measuring device suitable for various intake pipes, air cleaners, etc. can be manufactured at low cost. it can. Further, the element support and the bypass passage can be separated, and a sufficiently long bypass passage can be formed.

【0059】請求項2の発明では、流量検出素子をプレ
ート型としたから、熱容量が小さくでき、被測気体がバ
イパス通路内を流通するときの流量を応答性良く検出す
ることができる。
According to the second aspect of the invention, since the flow rate detecting element is a plate type, the heat capacity can be made small and the flow rate when the gas to be measured flows in the bypass passage can be detected with good responsiveness.

【0060】請求項3の発明では、素子支持体内に回路
部品を格納するようにしたから、素子支持体とは別個に
回路部品を設ける必要がなく、素子支持体を共通部品と
して外径寸法の異なる種々の管体に取付けるだけで、規
格の異なった気体流量計測装置を簡単に製造することが
できる。また、回路部品を吸入空気により冷却すること
ができる。
According to the third aspect of the present invention, since the circuit component is stored in the element support body, it is not necessary to provide the circuit component separately from the element support body, and the element support body can be used as a common component in the outer diameter dimension. It is possible to easily manufacture gas flow rate measuring devices having different standards simply by mounting them on various different pipes. Further, the circuit components can be cooled by the intake air.

【0061】請求項4の発明では、バイパス通路を第1
通路、第2通路、第3通路により形成し、バイパス通路
の流入口を通気路の軸中心近傍に位置させ、流出口を管
体の管壁近傍に位置させたから、バイパス通路の流入口
と流出口との間に圧力差を持たせることができ、上流側
からハウジングの前面に向けて流れる被測気体を軸中心
から管壁近傍に位置した流出口に向け流通させことがで
き、この間バイパス通路内を流通する被測気体の流量を
流量検出素子によって正確に計測することができる。
According to the invention of claim 4, the bypass passage has the first passage.
It is formed by a passage, a second passage, and a third passage, and the inlet of the bypass passage is located near the axial center of the ventilation passage and the outlet is located near the pipe wall of the pipe body. A pressure difference can be created between the outlet and the measured gas that flows from the upstream side to the front surface of the housing, and can flow from the axial center to the outlet located near the pipe wall. The flow rate of the gas to be measured flowing inside can be accurately measured by the flow rate detecting element.

【0062】請求項5の発明では、バイパス通路の流入
口側を、徐々に通路面積が減少するテーパ状に形成する
ことにより、流入口側からバイパス通路に流れる被測気
体を整流化することができ、整流化した被測気体を流量
検出素子によって高精度に検出することができる。
According to the fifth aspect of the present invention, the measured gas flowing from the inlet side to the bypass passage is rectified by forming the inlet side of the bypass passage in a tapered shape in which the passage area gradually decreases. Therefore, the rectified gas to be measured can be detected with high accuracy by the flow rate detection element.

【0063】請求項6の発明では、素子挿入口を素子支
持体の壁部で閉塞することにより、バイパス通路の第1
通路をシールすることができる。
According to the sixth aspect of the invention, the element insertion port is closed by the wall portion of the element supporting member, whereby the first bypass passage is formed.
The passage can be sealed.

【0064】請求項7の発明では、管体をハウジングよ
り上流側の管体の長さLを、管体の直径Dの0.5〜
2.0倍に設定したから、被測気体の整流性を高めて検
出精度を高めることができる。
In the invention of claim 7, the length L of the tubular body upstream of the housing is set to 0.5 to 0.5 of the diameter D of the tubular body.
Since it is set to 2.0 times, the rectifying property of the gas to be measured can be enhanced and the detection accuracy can be enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例による吸入空気流量計測装置を示す正
面図である。
FIG. 1 is a front view showing an intake air flow rate measuring device according to an embodiment.

【図2】本実施例による吸入空気流量計測装置を示す図
1中の矢示II−II方向からみた断面図である。
FIG. 2 is a cross-sectional view showing the intake air flow rate measuring device according to the present embodiment as seen from the direction of arrows II-II in FIG.

【図3】管体と素子支持体とを分解させた状態で示す分
解断面図である。
FIG. 3 is an exploded cross-sectional view showing a tubular body and an element support body in a disassembled state.

【図4】ハウジングを斜めからみた縦断面図である。FIG. 4 is a vertical cross-sectional view of the housing as seen obliquely.

【図5】ハウジングの縦断面図である。FIG. 5 is a vertical sectional view of a housing.

【図6】図5中の矢示VI−VI方向からみた横断面図であ
る。
FIG. 6 is a transverse sectional view as seen from the direction of arrows VI-VI in FIG. 5;

【図7】図5中の矢示VII −VII 方向からみた縦断面図
である。
FIG. 7 is a vertical cross-sectional view taken along the line VII-VII in FIG.

【図8】図5中の矢示VIII−VIII方向からみた縦断面図
である。
8 is a vertical cross-sectional view as seen from the direction of arrows VIII-VIII in FIG.

【図9】プレート型流量検出素子を示す斜視図である。FIG. 9 is a perspective view showing a plate type flow rate detecting element.

【図10】図9中の矢示X−X方向からみた縦断面図で
ある。
FIG. 10 is a vertical cross-sectional view as seen from the direction of arrow XX in FIG.

【図11】バイパス通路の通路長さに対する通路面積を
示す特性線図である。
FIG. 11 is a characteristic diagram showing a passage area with respect to a passage length of a bypass passage.

【図12】本実施例による互換性を持った素子支持体を
外径寸法の異なった2種類の管体に取付ける前の状態を
示す分解図である。
FIG. 12 is an exploded view showing a state before the compatible element support body according to the present embodiment is attached to two types of tube bodies having different outer diameter dimensions.

【図13】大径な吸入空気流量計測装置において、管体
と素子支持体を分解させた状態で示す分解断面図であ
る。
FIG. 13 is an exploded cross-sectional view showing a state where the tube body and the element support body are disassembled in the large-diameter intake air flow rate measuring device.

【符号の説明】[Explanation of symbols]

1,1′ 管体 2,2′ 通気路 3,3′ 取付口 4,4′ ハウジング 5,5′ バイパス通路 6,6′ 流入口 7,7′ 第1通路 8,8′ 第2通路 9,9′ 第3通路 10,10′ 流出口 11,11′ 通路絞り部 12,12′ 素子挿入口 13 素子支持体 14 回路部品 15 プレート型流量検出素子 16 シリコン基板 18 ヒータ 19,20 測温抵抗体(流量検出体) A 小径な吸入空気流量計測装置 B 大径な吸入空気流量計測装置 1,1 'Tube 2,2' Ventilation path 3,3 'Mounting port 4,4' Housing 5,5 'Bypass passage 6,6' Inlet 7,7 'First passage 8,8' Second passage 9 , 9'Third passage 10, 10 'Outlet 11, 11' Passage restrictor 12, 12 'Element insertion port 13 Element support 14 Circuit component 15 Plate type flow rate detection element 16 Silicon substrate 18 Heater 19, 20 Temperature measurement resistance Body (Flow rate detector) A Small intake air flow rate measuring device B Large diameter intake air flow rate measuring device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 淳 神奈川県厚木市恩名1370番地 株式会社ユ ニシアジェックス内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Atsushi Arai 1370 Onna, Atsugi-shi, Kanagawa Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 内部が被測気体を流通させる通気路とな
った管体と、該管体の管壁に開口して設けられた取付口
と、該取付口と対向する位置で前記管体内を管壁から軸
中心位置に向けて半径方向に突出して設けられたハウジ
ングと、該ハウジング内に形成され、前記通気路をバイ
パスして被測気体の一部を流通するバイパス通路と、前
記通気路の軸中心側で、かつ前記管体の取付口と対向す
る位置で該バイパス通路に開口させて前記ハウジングに
形成された素子挿入口と、前記管体の取付口から該素子
挿入口に向けて着脱可能に取付けられ、先端側に前記バ
イパス通路内に位置して前記バイパス通路を流れる被測
気体の流量を検出する流量検出素子が設けられた素子支
持体とから構成してなる気体流量計測装置。
1. A pipe body having an air passage inside which a gas to be measured flows, an attachment opening provided in a pipe wall of the pipe body, and the inside of the pipe body at a position facing the attachment opening. A housing that is provided so as to project radially from the pipe wall toward the axial center position, a bypass passage that is formed in the housing and that bypasses the ventilation passage and circulates a part of the measured gas, and the ventilation passage. An element insertion opening formed in the housing by opening to the bypass passage at a position that is on the axial center side of the passage and faces the mounting opening of the tubular body, and from the mounting opening of the tubular body to the element insertion opening. A gas flow rate measurement device, which is detachably mounted on the tip side of the bypass passage and is provided with a flow rate detecting element for detecting the flow rate of the gas to be measured flowing through the bypass passage. apparatus.
【請求項2】 前記流量検出素子は、絶縁基板上に流量
検出体を配設したプレート型流量検出素子として形成し
てなる請求項1記載の気体流量計測装置。
2. The gas flow measuring device according to claim 1, wherein the flow rate detecting element is formed as a plate type flow rate detecting element in which a flow rate detecting body is arranged on an insulating substrate.
【請求項3】 前記素子支持体には、流量検出素子との
間で電気信号の授受を行う回路を格納してなる請求項1
または2記載の気体流量計測装置。
3. The element supporting member stores a circuit for transmitting and receiving an electric signal to and from the flow rate detecting element.
Or the gas flow rate measuring device according to 2.
【請求項4】 前記バイパス通路は、前記通気路の軸中
心近傍に位置して上流側から下流側に向け軸線方向に延
びると共に、前記素子挿入口が開口した第1通路と、該
第1通路から前記管体の管壁に向け径方向外側に延びる
第2通路と、前記ハウジングの径方向外側に位置して第
2通路から上流側に向けて軸線方向と平行に延びる第3
通路とから構成し、前記通路絞り部は第2通路または第
3通路のいずれか一方側に設け、前記流量検出素子は前
記第1通路に設けてなる請求項1,2または3記載の気
体流量計測装置。
4. The first passage, wherein the bypass passage is located in the vicinity of the axial center of the ventilation passage, extends in the axial direction from the upstream side to the downstream side, and the element insertion port is opened, and the first passage. From the second passage extending radially outward toward the pipe wall of the pipe body, and a third passage located radially outside the housing extending from the second passage toward the upstream side in parallel to the axial direction.
4. The gas flow rate according to claim 1, wherein the flow rate detection element is provided in the first passage, and the passage throttle portion is provided on either side of the second passage or the third passage. Measuring device.
【請求項5】 前記バイパス通路の流入口側は、徐々に
通路面積が減少するテーパ状に形成してなる請求項1,
2,3または4記載の気体流量計測装置。
5. The inflow port side of the bypass passage is formed in a tapered shape in which the passage area gradually decreases.
The gas flow rate measuring device according to 2, 3, or 4.
【請求項6】 前記素子挿入口は、前記流量検出素子を
挿入した状態で前記素子支持体の壁部によって閉塞する
構成としてなる請求項1,2,3,4または5記載の気
体流量計測装置。
6. The gas flow rate measurement device according to claim 1, wherein the element insertion port is configured to be closed by a wall portion of the element support in a state where the flow rate detection element is inserted. .
【請求項7】 前記管体は、ハウジングより上流側の管
体の長さLを、管体の直径Dの0.5〜2.0倍に設定
してなる請求項1,2,3,4または5記載の気体流量
計測装置。
7. The pipe body is configured such that the length L of the pipe body upstream of the housing is set to 0.5 to 2.0 times the diameter D of the pipe body. 4. The gas flow rate measuring device according to 4 or 5.
JP17295596A 1996-06-12 1996-06-12 Gas flow measurement device Expired - Lifetime JP3346705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17295596A JP3346705B2 (en) 1996-06-12 1996-06-12 Gas flow measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17295596A JP3346705B2 (en) 1996-06-12 1996-06-12 Gas flow measurement device

Publications (2)

Publication Number Publication Date
JPH09329473A true JPH09329473A (en) 1997-12-22
JP3346705B2 JP3346705B2 (en) 2002-11-18

Family

ID=15951469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17295596A Expired - Lifetime JP3346705B2 (en) 1996-06-12 1996-06-12 Gas flow measurement device

Country Status (1)

Country Link
JP (1) JP3346705B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089416A (en) * 2000-09-12 2002-03-27 Mitsubishi Motors Corp Structure for air flow sensor fitting part
JP2006038787A (en) * 2004-07-30 2006-02-09 Yamatake Corp Flow sensor
WO2017208640A1 (en) * 2016-05-31 2017-12-07 日立オートモティブシステムズ株式会社 Thermal flowmeter
WO2017212801A1 (en) * 2016-06-07 2017-12-14 日立オートモティブシステムズ株式会社 Thermal flowmeter
CN113490836A (en) * 2019-03-04 2021-10-08 日立安斯泰莫株式会社 Physical quantity detecting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089416A (en) * 2000-09-12 2002-03-27 Mitsubishi Motors Corp Structure for air flow sensor fitting part
JP2006038787A (en) * 2004-07-30 2006-02-09 Yamatake Corp Flow sensor
WO2017208640A1 (en) * 2016-05-31 2017-12-07 日立オートモティブシステムズ株式会社 Thermal flowmeter
JP2017215192A (en) * 2016-05-31 2017-12-07 日立オートモティブシステムズ株式会社 Thermal type flowmeter
CN109196311A (en) * 2016-05-31 2019-01-11 日立汽车系统株式会社 Thermal flowmeter
CN109196311B (en) * 2016-05-31 2020-12-25 日立汽车系统株式会社 Thermal flowmeter
WO2017212801A1 (en) * 2016-06-07 2017-12-14 日立オートモティブシステムズ株式会社 Thermal flowmeter
CN109196312A (en) * 2016-06-07 2019-01-11 日立汽车系统株式会社 Thermal flowmeter
JPWO2017212801A1 (en) * 2016-06-07 2019-02-21 日立オートモティブシステムズ株式会社 Thermal flow meter
US10718647B2 (en) 2016-06-07 2020-07-21 Hitachi Automotive Systems, Ltd. Thermal flowmeter including an inclined passage
CN113490836A (en) * 2019-03-04 2021-10-08 日立安斯泰莫株式会社 Physical quantity detecting device

Also Published As

Publication number Publication date
JP3346705B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
JP3310167B2 (en) Gas flow measurement device
KR100402728B1 (en) Heating resistance flow measurement device and internal combustion engine control system using the same
EP1291622B1 (en) Thermal mass flow meter with particle protection
KR100324840B1 (en) Thermal flow sensor
JP2002122452A (en) Divided flow type flowmeter
US6298720B1 (en) Measurement device for measuring the mass of a medium flowing in a line
JPH09329473A (en) Gas flow measuring device
JP2006047272A (en) Flow sensor
JP2001004420A (en) Measuring apparatus of flow rate and flow velocity
WO2002103301A1 (en) Heating resistor flow rate measuring instrument
JP2010101885A (en) Mass flow rate sensor device
JPH05322624A (en) Flow meter
US10345182B2 (en) Sensor element for recording at least one property of a fluid medium
JPH1123336A (en) Heating resistor type apparatus for measuring air flow rate
JP3124457B2 (en) Flowmeter
JP2002310756A (en) Air-flow-rate measuring device
JP2000002573A (en) Gas flow rate measuring apparatus
JP2515535B2 (en) Air flow meter
JPS59618A (en) Detector for suction air quantity
JP2001108500A (en) Heat generation resistance-type flow rate-measuring device
JP3593011B2 (en) Heating resistance type flow measurement device
KR0184672B1 (en) Vortex meter unit
JP2002005711A (en) Measuring device for flow
JP2001317976A (en) Flow rate measuring apparatus
JP3593042B2 (en) Heating resistance type flow measurement device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

EXPY Cancellation because of completion of term