JPH09328305A - Method for decomposing and removing organic material in phosphoric acid solution - Google Patents

Method for decomposing and removing organic material in phosphoric acid solution

Info

Publication number
JPH09328305A
JPH09328305A JP14582996A JP14582996A JPH09328305A JP H09328305 A JPH09328305 A JP H09328305A JP 14582996 A JP14582996 A JP 14582996A JP 14582996 A JP14582996 A JP 14582996A JP H09328305 A JPH09328305 A JP H09328305A
Authority
JP
Japan
Prior art keywords
phosphoric acid
hypochlorite
decomposing
acid solution
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14582996A
Other languages
Japanese (ja)
Other versions
JP3845901B2 (en
Inventor
Tomiyoshi Fujiwara
富良 藤原
Nobuyuki Taniguchi
信之 谷口
Tsugio Murakami
次雄 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP14582996A priority Critical patent/JP3845901B2/en
Publication of JPH09328305A publication Critical patent/JPH09328305A/en
Application granted granted Critical
Publication of JP3845901B2 publication Critical patent/JP3845901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method, solving problems characteristic to conventional techniques, having excellent removing efficiency on organic materials and capable of decomposing and removing them in an effective and efficient manner. SOLUTION: This method for decomposing and removing organic materials in a phosphoric acid solution consists of the addition of a hypochlorite in a weight ratio of <=0.35 in terms of chloride ions based on the hypochlorite ion, to the phosphoric acid solution containing the organic materials. In the method, the hypochlorite is a sodium hypochlorite aqueous solution, and the content of the effective chlorine is >=15wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は燐酸液中の有機物を
分解除去する方法に関する。
TECHNICAL FIELD The present invention relates to a method for decomposing and removing organic substances in a phosphoric acid solution.

【0002】[0002]

【従来の技術】燐酸は、肥料を主用途とする肥料用燐酸
と金属表面処理、食品添加物等を主用途とする工業用燐
酸に大別される。前者は高純度を必要とせず、通常有機
物除去は必要としない。後者は高純度が要求されるた
め、有機物の他カルシウム、マグネシウム、鉄などのカ
チオン系不純物および弗素、硫酸、ケイ酸などのアニオ
ン系不純物をその使用目的に適う十分低いレベルまで除
去しなければならない。例えば食品添加物等としての用
途のある縮合燐酸を該工業用燐酸の加熱脱水により製造
する際、有機物の含有量によっては製品の着色を引き起
こし、その価値が著しく損なわれることがある。
2. Description of the Related Art Phosphoric acid is roughly classified into fertilizer phosphoric acid mainly used for fertilizer and industrial phosphoric acid mainly used for metal surface treatment, food additives and the like. The former does not require high purity and usually does not require organic matter removal. Since the latter requires high purity, it is necessary to remove not only organic substances but also cationic impurities such as calcium, magnesium and iron and anionic impurities such as fluorine, sulfuric acid and silicic acid to a sufficiently low level suitable for the purpose of use. . For example, when producing condensed phosphoric acid which is used as a food additive or the like by heating dehydration of the industrial phosphoric acid, the product may be colored depending on the content of the organic matter, and its value may be significantly impaired.

【0003】工業用燐酸の代表的製造方法としては、燐
鉱石の硫酸分解により得られる湿式燐酸を原料とする湿
式精製法がある。この方法において有機物除去は、活性
炭等の吸着剤処理、溶媒抽出、酸化処理等により実施さ
れるが、含有される有機物の種類、量等により前記手段
が選択される。しかし、その有機物レベルが極めて高い
場合には上記処理技術では十分除去できず、縮合燐酸製
造時に着色問題が発生する。更に有機物によって、溶媒
抽出における抽出相と抽出残液相の分離不良が発生し、
精製操作自体が不能となる場合さえある。それ故、湿式
精製法において使用される原料は、人為的な焼成処理等
により、有機物含量を低減した燐鉱石を硫酸分解して製
造されたものが多い。このようにして得られる湿式燐酸
はその有機炭素濃度が100重量ppm未満であり、そ
の精製処理は容易であるが、反面原料は高価である。
As a typical method for producing industrial phosphoric acid, there is a wet purification method using wet phosphoric acid obtained by sulfuric acid decomposition of phosphate rock as a raw material. In this method, the removal of organic substances is carried out by treatment with an adsorbent such as activated carbon, solvent extraction, oxidation treatment and the like, and the above-mentioned means is selected depending on the type and amount of organic substances contained. However, when the organic matter level is extremely high, the above-mentioned treatment technique cannot sufficiently remove the organic matter, and a coloring problem occurs during the production of condensed phosphoric acid. Furthermore, due to organic matter, separation failure between the extraction phase and the extraction residual liquid phase in solvent extraction occurs,
In some cases, the purification operation itself becomes impossible. Therefore, many of the raw materials used in the wet refining method are produced by decomposing a phosphate rock having a reduced organic matter content with sulfuric acid by an artificial firing treatment or the like. The wet phosphoric acid thus obtained has an organic carbon concentration of less than 100 ppm by weight, and the purification treatment is easy, but the raw material is expensive.

【0004】また前述の湿式燐酸の他に、産業廃棄物と
して大量に排出される燐酸分を工業用燐酸製造用の原料
としてリサイクル使用する試みも為されている。特開平
6−16403号公報には、金属表面を燐酸により化成
処理する際に発生する燐酸スラッジを精製燐酸の原料と
して使用する技術の記載がある。しかしながら該スラッ
ジには通常油脂分など多くの有機物が付着しており、こ
の燐酸液をそのまま湿式精製法の原料として使用するこ
とは困難である。
In addition to the above-mentioned wet phosphoric acid, attempts have been made to recycle a large amount of phosphoric acid discharged as industrial waste as a raw material for producing industrial phosphoric acid. JP-A-6-16403 describes a technique in which phosphate sludge generated when a metal surface is subjected to chemical conversion treatment with phosphoric acid is used as a raw material for purified phosphoric acid. However, since many organic substances such as fats and oils are usually attached to the sludge, it is difficult to use the phosphoric acid solution as it is as a raw material for the wet refining method.

【0005】以上のような問題点を解決するため、酸化
剤による有機物分解技術が検討されてきた。特開昭54
−93695号公報には過マンガン酸塩および硝酸の混
合酸化剤を用いる技術が記載されている。この方法は、
用いる酸化剤が高価であり、また添加したマンガンを後
工程において除去しなければならず、更に硝酸の分解に
より窒素酸化物が生成しその除害を必要とするなど、問
題が多い。
In order to solve the above problems, techniques for decomposing organic substances using an oxidizing agent have been studied. JP 54
Japanese Patent Publication No. 93695 describes a technique using a mixed oxidant of permanganate and nitric acid. This method
The oxidizing agent used is expensive, and the added manganese must be removed in a subsequent step, and nitrogen oxides are generated by the decomposition of nitric acid, which necessitates the removal of the oxides, causing many problems.

【0006】特開昭56−109805号公報には少量
の触媒存在下において、過酸化水素により有機物を分解
する技術が開示されている。この処理においては、発生
ガスが炭酸ガス、酸素であり、また燐酸液中の残留成分
は水であり全く無害である点で前記技術に比較し優れて
いるが、過酸化水素の自己分解性のため有機物酸化効果
が不十分となる。
Japanese Unexamined Patent Publication No. 56-109805 discloses a technique of decomposing organic substances with hydrogen peroxide in the presence of a small amount of catalyst. In this treatment, the generated gas is carbon dioxide gas and oxygen, and the residual component in the phosphoric acid solution is water, which is excellent in comparison with the above technique in that it is completely harmless. Therefore, the effect of oxidizing the organic matter becomes insufficient.

【0007】特開昭55−16893号公報には塩素酸
塩により有機物を分解する方法の記載があるが、該方法
は有機物分解効果が大きく、これにより原料の選択肢が
広がり、より効率的な工業用燐酸製造が可能となる。し
かしながら、この処理においては燐酸液中に未反応の塩
素酸塩が残留しその後処理が必要である。該方法におい
ては、それを塩酸により還元分解するが、その際塩素ガ
スの他、除害処理の難しい二酸化塩素ガスが生成する。
Japanese Unexamined Patent Publication No. 55-16893 discloses a method of decomposing organic substances with a chlorate. However, this method has a large effect of decomposing organic substances, and thereby widens the choice of raw materials, resulting in a more efficient industrial process. It becomes possible to produce phosphoric acid for use. However, in this treatment, unreacted chlorate remains in the phosphoric acid solution, and subsequent treatment is necessary. In this method, it is reductively decomposed with hydrochloric acid, but chlorine gas and chlorine dioxide gas, which are difficult to remove, are generated at that time.

【0008】塩素の許容濃度は日本産業衛生学会199
5年度勧告によれば1ppm(3mg/m3)、また米
国産業衛生専門官会議(ACGIH1994〜1995
年版)による短時間暴露限界(15分以下)は1pp
m,時間加重平均(8時間)は0.5ppmである。こ
れらの値は、ほぼ完全に除害処理を行わなければならな
いことを意味する。塩素については、苛性ソーダ等のア
ルカリ水溶液に吸収させれば効率良く除かれるが、二酸
化塩素はアルカリによる吸収効率が低く、還元剤を使用
しなければ十分な除害は困難である。従って、塩素およ
び二酸化塩素ガスが同時に排出される場合は、一段目で
アルカリにより塩素を吸収し、2段目で還元剤により二
酸化塩素を吸収する2段階の設備が必要となる。これは
操作の複雑化と設備費の上昇を招く。文献(TAPPI Pulpi
ng Conf(Tech Assoc Pulp Pup Ind)VOL.1982 PAGE 365-
370 1982) にはパルプ漂白プラントより排出される塩素
と二酸化塩素よりなる排ガスを、充填塔により2段階処
理した例が記載されている。
The allowable concentration of chlorine is 199, Japan Society for Occupational Health.
1 ppm (3 mg / m 3 ) according to the recommendation of the 5th fiscal year, and the American Industrial Hygiene Council (ACGIH 1994-1995)
The short-term exposure limit (15 minutes or less) according to the annual edition) is 1 pp
m, time weighted average (8 hours) is 0.5 ppm. These values mean that the abatement treatment must be performed almost completely. Chlorine can be efficiently removed by absorbing it in an alkaline aqueous solution such as caustic soda, but chlorine dioxide has a low absorption efficiency by alkali, and it is difficult to sufficiently remove it unless a reducing agent is used. Therefore, when chlorine and chlorine dioxide gas are discharged at the same time, a two-stage facility for absorbing chlorine by the alkali in the first stage and chlorine dioxide by the reducing agent in the second stage is required. This leads to complicated operations and increased equipment costs. Literature (TAPPI Pulpi
ng Conf (Tech Assoc Pulp Pup Ind) VOL.1982 PAGE 365-
370 1982) describes an example in which exhaust gas consisting of chlorine and chlorine dioxide discharged from a pulp bleaching plant is treated in two stages by a packed tower.

【0009】英国特許1215664号および特開昭5
3−88691号公報には酸化剤として次亜塩素酸塩を
用いる方法が記載されている。前者は湿式燐酸の脱色を
目的としており、処理後の燐酸液中には未だ多くの有機
物が残留しており、それを工業用燐酸の原料として使用
することは困難である。また後者は、湿式燐酸中の有機
物を高温加熱処理により炭化物固体とし分離除去する方
法において、任意付加的事項として次亜塩素酸塩を使用
するというものである。この方法で十分な効果を得るた
めにはかなりの高温が必要であり、装置材質面で、工業
的に困難性大である。
British Patent 1215664 and JP-A-5
Japanese Patent No. 3-88691 describes a method using hypochlorite as an oxidizing agent. The former aims at decolorizing wet phosphoric acid, and many organic substances still remain in the phosphoric acid solution after treatment, and it is difficult to use it as a raw material for industrial phosphoric acid. In the latter method, hypochlorite is used as an optional additional item in the method of separating and removing the organic matter in the wet phosphoric acid as a solid carbide by high-temperature heat treatment. A considerably high temperature is required to obtain a sufficient effect by this method, which is industrially difficult in terms of the material of the device.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、上記
の従来の技術が有する問題点を解決し、有機物除去効果
が大きく、有機物を効果的、効率的に分解除去できる新
規な方法を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the problems of the above-mentioned conventional techniques and to provide a novel method which has a large effect of removing organic substances and can decompose and remove organic substances effectively and efficiently. To do.

【0011】[0011]

【課題を解決するための手段】各種酸化剤の中でも次亜
塩素酸塩は、比較的酸化力が大きいと考えられる。本発
明者らは市販の次亜塩素酸ナトリウム水溶を用いて、そ
の燐酸液中有機物の分解効果について検討を行ったが、
予期に反し極めて効果が低いという結果となった。そこ
でこの原因を解明すべく更に検討を加えたところ、実に
興味深い事実を見出だした。即ち、それまで使用してい
た次亜塩素酸ナトリウム水溶液に代えて、高濃度苛性ソ
ーダ水溶液に塩素を吹き込む際に同時に析出する塩化ナ
トリウムの結晶を濾過除去して得た新鮮な次亜塩素酸ナ
トリウム水溶液を用いて検討したところ、効果が飛躍的
に向上するという新たな事実を見出だし本発明を完成す
るに至った。
Among various oxidizing agents, hypochlorite is considered to have a relatively high oxidizing power. The present inventors have examined the effect of decomposing organic matter in the phosphoric acid solution using commercially available sodium hypochlorite water solution.
Unexpectedly, the result was extremely low. Therefore, when further investigation was conducted to clarify the cause, an actually interesting fact was found. That is, in place of the sodium hypochlorite aqueous solution used until then, a fresh sodium hypochlorite aqueous solution obtained by filtering out the sodium chloride crystals that are simultaneously precipitated when chlorine is blown into the high-concentration sodium hydroxide aqueous solution. As a result of a study using the above, a new fact was found that the effect was dramatically improved, and the present invention was completed.

【0012】即ち本発明は、有機物を含有する燐酸液
に、次亜塩素酸イオンに対する塩化物イオンの含有量が
重量比で0.35以下である次亜塩素酸塩を添加するこ
とを特徴とする燐酸液中の有機物を分解除去する方法で
ある。
That is, the present invention is characterized by adding hypochlorite having a weight ratio of chloride ion to hypochlorite ion of 0.35 or less to a phosphoric acid solution containing an organic substance. This is a method of decomposing and removing organic substances in the phosphoric acid solution.

【0013】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0014】本発明の方法に使用できる次亜塩素酸塩は
次亜塩素酸イオンに対する塩化物イオンの含有量が重量
比で0.35以下であることを必須とする。共存する塩
化物イオンの量は少ないほど有機物分解効果は大きく、
この重量比は0.25以下が特に好ましい。このレベル
を越えて塩化物イオンが含まれる場合、有機物分解効果
は著しく損なわれ、本発明の効果を得ることはできな
い。例えば、広く産業用に使用されている並次亜曹ある
いは普通次亜曹と称される次亜塩素酸ナトリウム水溶液
は低濃度の苛性ソーダ水溶液を塩素化反応により製造さ
れているが、その塩化物イオンは次亜塩素酸イオンに対
して、重量比で0.69以上である。その他、消石灰ま
たは石灰乳に塩素ガスを作用させて製造されるサラシ粉
またはサラシ液と称される次亜塩素酸のカルシウム塩が
あるがこれらもまた次亜塩素酸イオンに対する塩化物イ
オンの量が重量比で0.69以上であるため、満足でき
る有機物分解効果を得ることはできない。
The hypochlorite that can be used in the method of the present invention must have a chloride ion content with respect to hypochlorite ion of 0.35 or less by weight. The smaller the amount of coexisting chloride ions, the greater the effect of decomposing organic matter,
This weight ratio is particularly preferably 0.25 or less. When chloride ions are contained in excess of this level, the effect of decomposing organic matter is significantly impaired, and the effect of the present invention cannot be obtained. For example, sodium hypochlorite aqueous solution commonly called industrial hypochlorous acid or commonly used hypochlorous acid is produced by chlorinating a low-concentration aqueous solution of caustic soda. Is 0.69 or more in weight ratio with respect to hypochlorite ion. In addition, there is a calcium salt of hypochlorous acid called soda powder or soy sauce liquid produced by causing chlorine gas to act on slaked lime or milk of lime, but these also have an amount of chloride ion relative to hypochlorite ion. Since the weight ratio is 0.69 or more, a satisfactory organic substance decomposition effect cannot be obtained.

【0015】本発明で使用できる次亜塩素酸塩は、アル
カリ金属または/及びアルカリ土類金属の次亜塩素酸塩
が好ましく、特にナトリウム塩、カルシウム塩が好まし
い。また湿式燐酸のように硫酸根を含む燐酸液の場合、
カルシウム塩を用いると硫酸カルシウムの結晶が析出し
スケールを生じるなど操作性が低下することがあるが、
このような場合にはナトリウム塩が好適に使用される。
The hypochlorite which can be used in the present invention is preferably an alkali metal and / or alkaline earth metal hypochlorite, particularly preferably a sodium salt or a calcium salt. In the case of a phosphoric acid solution containing sulfate such as wet phosphoric acid,
When calcium salt is used, the operability may be reduced, such as the precipitation of calcium sulfate crystals and the formation of scale.
In such a case, sodium salt is preferably used.

【0016】ナトリウム塩としては、高濃度の苛性ソー
ダ水溶液を塩素化し、析出する塩化ナトリウムを濾別し
て得られる、低食塩次亜塩素酸ナトリウム水溶液(低塩
次亜曹)、また更に共存塩化ナトリウム量の少ない極低
塩品(極低塩次亜曹)が該当する。次亜塩素酸ナトリウ
ム水溶液の有効塩素濃度は15重量%以上が好ましく、
20重量%以上が更に好ましい。低すぎると取扱量が増
加し、添加により燐酸液が希釈され有機物の分解効果が
低下する。
As the sodium salt, a low-concentration sodium hypochlorite aqueous solution (low salt hypochlorous acid) obtained by chlorinating a high-concentration caustic soda aqueous solution and filtering out precipitated sodium chloride, and a coexisting sodium chloride content Very low low salt products (ultra low salt hyposodium) correspond. The effective chlorine concentration of the sodium hypochlorite aqueous solution is preferably 15% by weight or more,
20% by weight or more is more preferable. If it is too low, the handling amount increases, and the phosphoric acid solution is diluted by the addition, and the effect of decomposing organic substances decreases.

【0017】カルシウム塩としては高濃度石灰乳を塩素
化し、析出する次亜塩素酸カルシウム2水和物結晶を濾
過乾燥して得られる高度サラシ粉がこれに該当する。
As the calcium salt, the high-grade ground bean powder obtained by chlorinating high-concentration lime milk and filtering and drying the precipitated calcium hypochlorite dihydrate crystals corresponds to this.

【0018】本発明の処理対象となる燐酸液としては有
機炭素濃度が100〜1500重量ppmの範囲に入る
ものが好適に使用できる。例えば湿式燐酸の場合、モロ
ッコ、タイバ、ヨルダン、中国などの産地の燐鉱石から
得られるものがこれに該当する。また、前述の特開平6
−16403号公報記載の燐酸スラッジから得られる粗
製燐酸液なども本発明の処理対象液として挙げられる。
これらの湿式燐酸および粗製燐酸液はそのまま単独で、
或いは混合して用いても良い。有機物濃度が高い場合は
本発明の方法と他の方法を組み合わせても良い。例え
ば、活性炭吸着などの手段により有機物濃度が100〜
1500重量ppmの範囲となるように処理しておくと
効率的である。
As the phosphoric acid solution to be treated in the present invention, one having an organic carbon concentration of 100 to 1500 ppm by weight can be preferably used. For example, in the case of wet phosphoric acid, those obtained from phosphate rocks in production areas such as Morocco, Taiba, Jordan and China fall under this category. Further, the above-mentioned JP-A-6
A crude phosphoric acid solution obtained from the phosphoric acid sludge described in JP-A-16403 is also an example of the solution to be treated in the present invention.
These wet phosphoric acid and crude phosphoric acid solutions are used as they are,
Alternatively, they may be mixed and used. When the organic matter concentration is high, the method of the present invention may be combined with another method. For example, the organic matter concentration is 100 to 100 by means such as activated carbon adsorption.
It is more efficient to treat it in the range of 1500 ppm by weight.

【0019】処理対象となる燐酸液の燐酸濃度は、工業
用燐酸の通常の製品濃度が75または85重量%(P2
5 として54または62重量%)であるため、低すぎ
ると濃縮のためのエネルギーコストおよび生産性の面で
好ましくない。本発明の方法に供される燐酸液の濃度は
2 5 として30〜60重量%含有するものが好適で
ある。
The phosphoric acid concentration of the phosphoric acid solution to be treated is 75 or 85% by weight (P 2
Since it is 54 or 62% by weight as O 5 , if it is too low, it is not preferable in terms of energy cost for concentration and productivity. The concentration of the phosphoric acid solution used in the method of the present invention is preferably that containing 30 to 60% by weight as P 2 O 5 .

【0020】次亜塩素酸塩の使用量は、燐酸液中の有機
物濃度、処理温度、処理方式により異なり、一義的に決
められるものではないが、有機炭素1gあたり有効塩素
として10〜200gを添加する。
The amount of hypochlorite used varies depending on the concentration of organic substances in the phosphoric acid solution, the treatment temperature and the treatment method and is not uniquely determined, but 10 to 200 g of effective chlorine is added per 1 g of organic carbon. To do.

【0021】処理は常圧でも加圧でも可能で、また回
分、半回分、連続式いずれの反応形式でもよいが、運転
操作性、処理能力の面から連続式が好ましく、完全混合
槽型の連続反応装置を用いる場合には反応槽は複数シリ
ーズに連結使用したほうが効率が良く好ましい。またチ
ューブラー型の連続反応も好適である。反応の制御は酸
化還元電位により行うことができる。
The treatment may be carried out under normal pressure or under pressure, and may be a batch, semi-batch, or continuous reaction type, but a continuous type is preferable from the viewpoints of operability and processing ability, and a complete mixing tank type continuous type is preferable. When a reaction device is used, it is preferable to connect and use a plurality of reaction tanks in series because the efficiency is high. A tubular type continuous reaction is also suitable. The reaction can be controlled by the redox potential.

【0022】処理温度は高いほど有機物分解効果が大き
く有利であるが、高すぎると装置腐食が顕著となり実施
は困難である。従って本発明の方法を実施する上での好
ましい温度範囲は80から150℃、更に好ましくは1
00から130℃である。
The higher the treatment temperature, the greater the effect of decomposing organic substances, which is advantageous. Therefore, a preferred temperature range for carrying out the process of the present invention is 80 to 150 ° C, more preferably 1
The temperature is from 00 to 130 ° C.

【0023】また本発明の方法においては処理時に塩素
系のガスが発生するが実質的に塩素ガスであり、その除
害処理はアルカリとの接触により容易に行うことが可能
であり、本発明の特徴である。吸収装置としては、アル
カリ溶液中に排ガスを吹き込む撹拌槽形式でも、気泡
塔、段塔あるいは充填塔のような形式いずれを用いても
よい。
Further, in the method of the present invention, a chlorine-based gas is generated during the treatment, but it is substantially chlorine gas, and its detoxification treatment can be easily carried out by contact with an alkali. It is a feature. As the absorption device, any of a stirring tank type in which exhaust gas is blown into an alkaline solution, a bubble column, a plate column, or a packed column may be used.

【0024】[0024]

【実施例】以下実施例により本発明を更に詳細に説明す
る。
The present invention will be described in more detail with reference to the following examples.

【0025】実施例1 テフロン製の内筒を備えた150ミリリットルの密閉容
器に、中国鉱を硫酸分解し、ついで濃縮して得られた湿
式燐酸(P2 5 54%、有機炭素濃度600重量pp
m)160g、および次亜塩素酸イオンに対する塩化物
イオンの含有量が重量比で0.22である低塩次亜曹
(有効塩素濃度13重量%)を27g(有効塩素換算
3.5g)仕込み、加熱オーブン中に設置し、130℃
で5時間処理を行った。この処理の結果、有機炭素濃度
は185重量ppmとなった。
Example 1 Wet phosphoric acid (P 2 O 5 54%, organic carbon concentration 600% by weight) obtained by decomposing a Chinese ore with sulfuric acid in a closed container of 150 ml equipped with a Teflon inner cylinder and then concentrating it. pp
m) 160 g and 27 g (effective chlorine concentration: 3.5 g) of low-salt hypochlorous acid (effective chlorine concentration: 13% by weight) having a chloride ion content of 0.22 by weight ratio to hypochlorite ion. Set in a heating oven at 130 ℃
Was treated for 5 hours. As a result of this treatment, the organic carbon concentration was 185 ppm by weight.

【0026】比較例1 次亜塩素酸ナトリウムとして次亜塩素酸イオンに対する
塩化物イオンの含有量が0.69である、いわゆる普通
次亜曹(有効塩素濃度13重量%)を使用した他は、実
施例1と全く同様の処理を行った。この処理により有機
炭素濃度は380ppmとなった。
Comparative Example 1 Sodium hypochlorite having a chloride ion content of 0.69 with respect to hypochlorite ions, that is, so-called ordinary hyposodium (effective chlorine concentration: 13% by weight) was used. The same process as in Example 1 was performed. This treatment resulted in an organic carbon concentration of 380 ppm.

【0027】比較例2 低塩次亜曹に代えて、酸化剤として45重量%の塩素酸
ナトリウムを3.7g(有効塩素換算3.3gであり実
施例1と等量)用いる以外、実施例1と同様の処理を行
った。処理後の有機炭素濃度は210ppmであった。
Comparative Example 2 An example was carried out except that 45 g by weight of sodium chlorate, 3.7 g (effective chlorine equivalent 3.3 g, equivalent to Example 1), was used as an oxidizing agent in place of the low-salt hypochlorous acid. The same process as 1 was performed. The organic carbon concentration after the treatment was 210 ppm.

【0028】実施例2 撹拌翼を備えたテフロン製2リットルの反応槽をオーバ
ーフロー方式で2槽シリーズに連結した処理装置に、中
国鉱を硫酸分解しついで濃縮して得られた湿式燐酸(P
2 5 54%、有機炭素濃度600重量ppm)を40
0ミリリットル(640g)/時間の流速でフィードし
た。また次亜塩素酸イオンに対する塩化物イオンの含有
量が重量比で0.22である次亜塩素酸ナトリウム(有
効塩素濃度25重量%)を第一反応槽へ76g/時間、
また第二反応槽へ38g/時間の流速でフィードした
(有効塩素換算の添加量はトータル27g/時間)。反
応槽の加熱はオイルバスにより行った。定常状態におけ
る温度は第一および第二反応槽ともに120℃であっ
た。この処理により有機炭素濃度は98重量ppmとな
った。
Example 2 A wet phosphoric acid (P) obtained by decomposing a Chinese ore with sulfuric acid and then concentrating it in a processing device in which a 2 liter reaction tank made of Teflon equipped with a stirring blade was connected in a two tank series by an overflow method.
2 O 5 54%, organic carbon concentration 600 weight ppm) 40
It was fed at a flow rate of 0 ml (640 g) / hour. 76 g / hour of sodium hypochlorite (effective chlorine concentration: 25% by weight) having a chloride ion content of 0.22 with respect to hypochlorite ion in a weight ratio to the first reaction tank,
Further, it was fed to the second reaction tank at a flow rate of 38 g / hour (the total amount of effective chlorine added was 27 g / hour). The heating of the reaction tank was performed by an oil bath. The temperature in the steady state was 120 ° C. in both the first and second reaction tanks. This treatment resulted in an organic carbon concentration of 98 ppm by weight.

【0029】次に処理液に残留する有効塩素のHClに
よる還元分解処理を行ったところ、酸化処理液1kgに
対し35重量%HClを1.4g消費した。
Next, when the effective chlorine remaining in the treatment liquid was subjected to a reductive decomposition treatment with HCl, 1.4 g of 35 wt% HCl was consumed for 1 kg of the oxidation treatment liquid.

【0030】以上の処理において発生するガスを144
リットル/時間のエアーと共に、塔径30mm,充填高
さ300mmの吸収塔(充填物:ラシヒリング(3mm
φ))の下部より導入し1規定の苛性ソーダ水溶液(2
リットル/時間)と向流接触させた。塔頂部より排出さ
れるガスを10%ヨウ化カリウム水溶液を満たした吸収
瓶に導入したところ、ヨウ素の遊離に基づく着色は全く
みられず、排ガス中に塩素は存在しないことが確認さ
れ,有機物分解および残留有効塩素の還元分解処理にお
いて発生する塩素系ガスは、苛性ソーダ吸収液によって
除害することができた。
The gas generated in the above processing is set to 144
Absorption tower (packing: Raschig ring (3 mm
φ)) is introduced from the bottom and 1N caustic soda solution (2
Liter / hour). When the gas discharged from the top of the tower was introduced into an absorption bottle filled with a 10% potassium iodide aqueous solution, no coloring due to the release of iodine was observed, and it was confirmed that chlorine was not present in the exhaust gas. The chlorine-based gas generated in the reductive decomposition treatment of residual available chlorine could be removed by the caustic soda absorbent.

【0031】比較例3 実施例と同一の燐酸原料、装置を用い塩素酸ナトリウム
による処理を行った。第一反応槽へ燐酸液を400ミリ
リットル(640g)/時間で供給し、45重量%塩素
酸ナトリウム水溶液を第一反応槽へ20g/時間、また
第二反応槽へ10g/時間の流速で添加した(有効塩素
換算の添加量はトータル27.5g/時間)。定常状態
における温度は第一および第二反応槽ともに120℃で
あった。この処理により有機物濃度は100重量ppm
となった。
Comparative Example 3 Treatment with sodium chlorate was carried out using the same phosphoric acid raw material and apparatus as in Example. The phosphoric acid solution was supplied to the first reaction tank at 400 ml (640 g) / hour, and a 45 wt% sodium chlorate aqueous solution was added to the first reaction tank at a flow rate of 20 g / hour and to the second reaction tank at a flow rate of 10 g / hour. (The total amount of effective chlorine added is 27.5 g / hour). The temperature in the steady state was 120 ° C. in both the first and second reaction tanks. Organic concentration is 100 ppm by weight
It became.

【0032】得られた処理液中に残留する未分解の塩素
酸ナトリウム濃度は0.21重量%であり、これをHC
lにより110℃にて還元分解処理を行った結果、35
重量%HClの必要量は処理液1kgに対し4.1gで
あった。
The concentration of undecomposed sodium chlorate remaining in the obtained treatment liquid was 0.21% by weight.
As a result of reductive decomposition treatment at 110 ° C. with
The required amount of wt% HCl was 4.1 g per 1 kg of the treatment liquid.

【0033】以上の処理において発生したガスを実施例
と同様の充填塔に導き除害処理を行った。塔頂部よりの
排出ガスを10%ヨウ化カリウム水溶液を満たした吸収
瓶に導入したところ、液はヨウ素の遊離によって赤褐色
に変色し、塩素系のガスが苛性ソーダ水溶液で吸収除害
されていないことがわかった。吸収剤である苛性ソーダ
水溶液の濃度および流量を増加しても、完全に除害する
ことはできなかった。これは発生ガス中に、塩素酸塩の
分解による二酸化塩素が含まれていることが原因と考え
られたため、充填塔頂部よりフィードする苛性ソーダ水
溶液に還元剤である亜硫酸ナトリウムを共存させ発生ガ
スの吸収を行った。この操作により、塔頂部よりの排出
ガスはヨウ素を遊離することはなく、塩素系のガスを除
害することができた。
The gas generated in the above treatment was introduced into the same packed tower as in the example to carry out a detoxification treatment. When the exhaust gas from the tower top was introduced into an absorption bottle filled with a 10% potassium iodide aqueous solution, the liquid turned reddish brown due to the release of iodine, and the chlorine-based gas was not absorbed and removed by the caustic soda aqueous solution. all right. Even if the concentration and flow rate of the aqueous solution of caustic soda as the absorbent were increased, they could not be completely removed. It is considered that this is because the generated gas contains chlorine dioxide due to the decomposition of chlorate, so that sodium sulfite, which is a reducing agent, coexists in the caustic soda aqueous solution fed from the top of the packed column to absorb the generated gas. I went. By this operation, the exhaust gas from the tower top did not liberate iodine, and the chlorine-based gas could be removed.

【0034】[0034]

【発明の効果】本発明の方法によれば、燐酸液中の有機
物除去効果は大きく、有機物を効果的、効率的に分解除
去することができる。以下本発明の効果を列記する。
According to the method of the present invention, the effect of removing organic substances in the phosphoric acid solution is large, and the organic substances can be decomposed and removed effectively and efficiently. Hereinafter, the effects of the present invention will be listed.

【0035】(1)燐酸液中の有機物を分解除去する
際、次亜塩素酸イオンに対する塩化物イオンの含有量が
重量比で0.35以下である次亜塩素酸塩を用いれば、
並次亜曹あるいは普通次亜曹など該重量比が0.69以
上のものを使用した場合に比べ、有機物分解効果が著し
く向上し、同じ効果を得るために必要な酸化剤の量が少
なくて済み、経済的に有利となり効率的な処理が可能で
ある。
(1) When decomposing and removing organic substances in the phosphoric acid solution, the use of hypochlorite having a chloride ion to hypochlorite ion content of 0.35 or less by weight gives:
Compared with the case of using normal hypochlorous acid or ordinary hypochlorous acid with a weight ratio of 0.69 or more, the effect of decomposing organic matter is remarkably improved, and the amount of oxidizing agent required to obtain the same effect is small. In addition, it is economically advantageous and efficient processing is possible.

【0036】(2)従来の塩素酸塩を用いる方法では、
処理燐酸液中に塩素酸塩が多く残留し、その還元処理に
多くのHClが必要となる。また有機物分解および還元
処理時に塩素ガスのみならず除害処理の難しい二酸化塩
素が排出されるため、その除害設備は複雑となり操作は
煩雑である。しかし本発明の方法によれば、処理燐酸液
中に残留する有効塩素化合物の残留量はわずかであり、
少量のHClにより容易に還元処理可能である。また操
作時に発生する塩素系ガスは実質的に塩素のみであり、
アルカリによる簡単な除害設備で容易に処理することが
できる。
(2) In the conventional method using a chlorate,
A large amount of chlorate remains in the treated phosphoric acid solution, and a large amount of HCl is required for the reduction treatment. Further, not only chlorine gas but also chlorine dioxide, which is difficult to remove harm, is discharged during the decomposition and reduction treatment of organic substances, so that the harm removal equipment is complicated and the operation is complicated. However, according to the method of the present invention, the residual amount of available chlorine compounds remaining in the treated phosphoric acid solution is small,
It can be easily reduced with a small amount of HCl. Also, the chlorine-based gas generated during operation is essentially only chlorine,
It can be easily treated with a simple decontamination facility using alkali.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】有機物を含有する燐酸液に、次亜塩素酸イ
オンに対する塩化物イオンの含有量が重量比で0.35
以下である次亜塩素酸塩を添加することを特徴とする燐
酸液中の有機物を分解除去する方法。
1. A phosphoric acid solution containing an organic substance having a chloride ion to hypochlorite ion content of 0.35 by weight.
A method for decomposing and removing organic matter in a phosphoric acid solution, which comprises adding the following hypochlorite.
【請求項2】次亜塩素酸塩が次亜塩素酸ナトリウム水溶
液であり、その有効塩素含量が15重量%以上である請
求項1に記載の方法。
2. The method according to claim 1, wherein the hypochlorite is an aqueous solution of sodium hypochlorite, and the effective chlorine content is 15% by weight or more.
JP14582996A 1996-06-07 1996-06-07 Method for decomposing and removing organic substances in phosphoric acid solution Expired - Fee Related JP3845901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14582996A JP3845901B2 (en) 1996-06-07 1996-06-07 Method for decomposing and removing organic substances in phosphoric acid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14582996A JP3845901B2 (en) 1996-06-07 1996-06-07 Method for decomposing and removing organic substances in phosphoric acid solution

Publications (2)

Publication Number Publication Date
JPH09328305A true JPH09328305A (en) 1997-12-22
JP3845901B2 JP3845901B2 (en) 2006-11-15

Family

ID=15394089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14582996A Expired - Fee Related JP3845901B2 (en) 1996-06-07 1996-06-07 Method for decomposing and removing organic substances in phosphoric acid solution

Country Status (1)

Country Link
JP (1) JP3845901B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432679A (en) * 2022-09-27 2022-12-06 宜昌邦普宜化新材料有限公司 Method for preparing polyphosphoric acid from wet-process phosphoric acid extraction spent acid and application of method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432679A (en) * 2022-09-27 2022-12-06 宜昌邦普宜化新材料有限公司 Method for preparing polyphosphoric acid from wet-process phosphoric acid extraction spent acid and application of method
CN115432679B (en) * 2022-09-27 2023-10-17 宜昌邦普宜化新材料有限公司 Method for preparing polyphosphoric acid from wet phosphoric acid raffinate acid and application thereof

Also Published As

Publication number Publication date
JP3845901B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
US4707349A (en) Process of preparing a preferred ferric sulfate solution, and product
US3725530A (en) Method of removing mercury vapor from gases
US4599177A (en) Process for removal of mercury from waste water
KR101921342B1 (en) Method of treating copper etching waste liquor
US9994448B2 (en) Iodine extraction processes
US5348724A (en) Method of decomposing hydrogen peroxide
CN112569761B (en) Device and method for treating tail gas of titanium dioxide produced by chlorination process and preparing water purifying agent
JPH01317128A (en) Production of ferric chloride from dilute hydrochloric acid
US4323437A (en) Treatment of brine
JP5951303B2 (en) Method for producing ferric nitrate aqueous solution and sodium nitrite
JP6752206B2 (en) Recovery of acid from acid-rich solutions
US3804751A (en) Disposal of wastes containing mercury
JP3845901B2 (en) Method for decomposing and removing organic substances in phosphoric acid solution
JP3735970B2 (en) Method for decomposing and removing organic substances in phosphoric acid solution
JP4208971B2 (en) Recovery of molybdenum epoxidation catalyst
US4637922A (en) Method for removing organic materials from a wet process phosphoric acid
CA1085879A (en) Continuous process for the removal of non-paraffinic hydrocarbons from paraffinic hydrocarbons
JPS59203692A (en) Treatment of pulp mill waste liquor
US2032702A (en) Method of improving the purity of calcium chloride brines
JPH02124721A (en) Production of chromium chloride
JPS5834080A (en) Treatment of acid-digested waste liquid
KR20040069754A (en) Method of preparing liquid calcium chloride using shell
US4175038A (en) Purification of waste streams containing available chlorine
JP2014129566A (en) Electrolysis method for sodium chloride aqueous solution
KR100240828B1 (en) The recovery method of high purified magnesium chloride from the waste liquid of manufacturing of tetra butyl tin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100901

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees