JPH09326266A - Heat radiator of battery for power storage - Google Patents

Heat radiator of battery for power storage

Info

Publication number
JPH09326266A
JPH09326266A JP14394996A JP14394996A JPH09326266A JP H09326266 A JPH09326266 A JP H09326266A JP 14394996 A JP14394996 A JP 14394996A JP 14394996 A JP14394996 A JP 14394996A JP H09326266 A JPH09326266 A JP H09326266A
Authority
JP
Japan
Prior art keywords
heat
power storage
battery
heat dissipation
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14394996A
Other languages
Japanese (ja)
Inventor
Kenya Kawabata
賢也 川畑
Yuichi Kimura
裕一 木村
Jun Niekawa
潤 贄川
Kenji Watanabe
健次 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP14394996A priority Critical patent/JPH09326266A/en
Publication of JPH09326266A publication Critical patent/JPH09326266A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat radiator of a battery capable of performing continuous fine control and reducing the occupying area of a battery module. SOLUTION: A heat radiator is constituted with a heat pipe 20 having a gas reservoir 25 at the end part, in which fluid and non-condensable gas are sealed, a condensing part 24 of the heat pipe 20 is constituted with a plurality of branch pipes 24a, 24b, 24c connected in parallel, and by making the cross section area of one branch pipe small, the diffusion effect on the interface of the working fluid and the non-condensable gas is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ナトリウム−硫黄
電池(NaS電池)などの電力貯蔵用電池の放熱装置に
関し、特に放熱能力が連続的に可変である不凝縮性ガス
入りヒートパイプを用いた電力貯蔵用電池の放熱装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipation device for a power storage battery such as a sodium-sulfur battery (NaS battery), and in particular, a heat pipe containing a non-condensable gas having a continuously variable heat dissipation capability is used. The present invention relates to a heat dissipation device for an electric power storage battery.

【0002】[0002]

【従来の技術】電気の使用量は、昼夜間や季節によって
大きな差があるため、この負荷変動を平準化するため
に、ナトリウム−硫黄電池などを用いて電力を貯蔵する
ことが試みられている。この種のナトリウム−硫黄電池
は、NaS単電池を集合化して断熱容器に収納し、電池
モジュールとして使用されるが、化学反応を利用する高
温型電池であるため、300℃以上の温度に加熱するこ
とが必要とされる。一方、高温になるほど電池の劣化が
大きく短期間で本来の蓄電量を保持できなくなるので、
最高でも350℃以下に抑制することが好ましい。すな
わち、300〜330℃の温度に保持して使用すること
が好ましいとされる。
2. Description of the Related Art Since the amount of electricity used varies greatly depending on the time of day or night and the season, it has been attempted to store electric power by using a sodium-sulfur battery or the like in order to level this load fluctuation. . This type of sodium-sulfur battery is used as a battery module by assembling NaS cells in an adiabatic container and used as a battery module. However, since it is a high-temperature battery that utilizes a chemical reaction, it is heated to a temperature of 300 ° C. or higher. Is needed. On the other hand, the higher the temperature, the greater the deterioration of the battery and the inability to maintain the original amount of electricity stored in a short time.
It is preferable to suppress the temperature to 350 ° C. or lower at the highest. That is, it is preferable that the temperature is kept at 300 to 330 ° C. before use.

【0003】このような電力貯蔵用電池の温度保持に
は、従来よりヒータなどを用いた加熱とヒートパイプを
用いた放熱(冷却)とが併用され、制御機器を用いて3
00〜330℃の範囲に調節されていた。従来の電力貯
蔵用電池においては、ヒータを用いて電池を加熱して立
ち上げ、300℃以上にするとともに、運転時には、ヒ
ートパイプを用いて最高でも350℃以下に電池温度を
抑制する。しかしながら、従来のヒートパイプには放熱
量の調節機能がなく、しかもヒートパイプは小さな温度
差でも大量の熱を搬送するので、過放熱となることもあ
って、運転時(蓄放電時)においてもヒータを作動させ
る必要があった。このため、ヒートパイプに開閉弁を設
け、この開閉弁を開閉させることにより放熱フィンの有
効面積を段階的に調節するようにしたものも提案されて
いる(例えば、特開昭63−175,355号公報参
照)。
Conventionally, in order to maintain the temperature of such a battery for storing electric power, heating using a heater or the like and heat dissipation (cooling) using a heat pipe have been used together.
It was adjusted to the range of 00 to 330 ° C. In a conventional battery for storing electric power, a heater is used to heat the battery to start it up to 300 ° C. or higher, and at the time of operation, the temperature of the battery is suppressed to 350 ° C. or lower by using a heat pipe. However, the conventional heat pipe does not have a function of adjusting the amount of heat radiation, and since the heat pipe carries a large amount of heat even with a small temperature difference, it may cause excessive heat radiation, and even during operation (during storage and discharge). It was necessary to activate the heater. For this reason, there has been proposed a heat pipe provided with an opening / closing valve, and the opening / closing valve is opened / closed to adjust the effective area of the radiation fins stepwise (for example, JP-A-63-175,355). (See the official gazette).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、開閉弁
による放熱量の調節では、そもそも開閉弁が必要とな
り、それ以外にも制御機器等が必要となるので、コスト
アップにつながるという問題がある。また、開閉弁によ
る放熱量の調節では、一部のヒートパイプが作動不能と
なるので、電池モジュール内で温度分布が生じる可能性
がある。さらに、弁の開閉制御であるために、制御が段
階的(ディジタル的)になり、アナログ的な微調整が困
難であるとともに、頻繁に弁が開閉して、いわゆるハン
チング現象が生じるおそれもある。
However, the adjustment of the amount of heat radiation by the on-off valve requires an on-off valve in the first place, and requires a control device or the like in addition to this, which causes a problem of cost increase. Further, when the amount of heat radiation is adjusted by the on-off valve, some heat pipes become inoperable, which may cause temperature distribution in the battery module. Further, since the valve opening / closing control is performed, the control is stepwise (digital), and it is difficult to perform analog fine adjustment, and the valve may be opened / closed frequently to cause a so-called hunting phenomenon.

【0005】一方、電力貯蔵用電池は多数の電池モジュ
ールが並設されたり積層されたりして使用され、その電
力貯蔵能力は単位体積あたりで評価されるため、放熱装
置の占める体積がきわめて重要な問題となっている。本
発明は、このような課題に鑑みてなされたものであり、
制御機器を用いることなく連続的な放熱量の制御が可能
で、しかも電池モジュールの専有体積を小さくし得る電
力貯蔵用電池の放熱装置を提供することを目的とする。
On the other hand, the power storage battery is used by arranging or stacking a number of battery modules in parallel, and its power storage capacity is evaluated per unit volume. Therefore, the volume occupied by the heat dissipation device is extremely important. It's a problem. The present invention has been made in view of such problems,
An object of the present invention is to provide a heat dissipation device for a power storage battery, which can continuously control the amount of heat dissipation without using a control device and can reduce the volume occupied by the battery module.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の電力貯蔵用電池の放熱装置は、電力貯蔵用
電池モジュールに取り付けられる放熱装置であって、作
動流体と不凝縮性ガスが封入され凝縮部の端部にガス溜
め部を有するヒートパイプを備えた電力貯蔵用電池の放
熱装置において、前記ヒートパイプの凝縮部が、並列に
接続された複数の分岐管からなることを特徴とする。
In order to achieve the above object, a heat dissipation device for a power storage battery according to the present invention is a heat dissipation device attached to a power storage battery module, which is a working fluid and a non-condensable gas. In a heat dissipation device for an electric power storage battery including a heat pipe having a gas reservoir at the end of the condenser enclosed therein, the condenser of the heat pipe comprises a plurality of branch pipes connected in parallel. And

【0007】本発明の電力貯蔵用電池の放熱装置では、
作動流体と不凝縮性ガスが封入されたヒートパイプを有
しているので、このヒートパイプが作動すると、管内の
蒸気流によって不凝縮性ガスは凝縮部の端に押し込まれ
る。ここで、不凝縮性ガスは、環境温度に支配される
が、作動流体の飽和圧力は、温度の上昇に応じて著しく
上昇するため、温度が上昇すると、作動流体と不凝縮性
ガスとの界面が、厳密には多少の拡散効果があるもの
の、凝縮部側に移動することになる。したがって、この
界面の位置を最低保持温度(ナトリウム−硫黄電池では
約300℃)付近で蒸発部の凝縮部側に、最高保持温度
(ナトリウム−硫黄電池では330〜350℃)付近で
凝縮部とガス溜めとの境界位置になるように不凝縮性ガ
スを封入すると、最低保持温度に達するまでの温度で
は、ヒートパイプとしての機能が抑制される。一方、こ
れ以上の温度になると作動流体領域が凝縮部側に移動す
るので、実質的に凝縮部が拡大され放熱量が増加するこ
ととなる。そして、最高保持温度に達すると、不凝縮性
ガスは凝縮部の端のガス溜めに収納されるので、最も大
きい放熱効果を発揮することとなる。
In the heat dissipation device for the power storage battery of the present invention,
Since the heat pipe is filled with the working fluid and the noncondensable gas, when the heat pipe is operated, the noncondensable gas is pushed to the end of the condensing section by the vapor flow in the pipe. Here, the non-condensable gas is governed by the environmental temperature, but the saturation pressure of the working fluid rises significantly in accordance with the rise in temperature. Therefore, when the temperature rises, the interface between the working fluid and the non-condensable gas increases. However, strictly speaking, although it has some diffusion effect, it moves to the condensation section side. Therefore, the position of this interface is near the minimum holding temperature (about 300 ° C. in the sodium-sulfur battery) on the condenser side of the evaporation part, and near the maximum holding temperature (330-350 ° C. in the sodium-sulfur battery), the condensation part and the gas. If the non-condensable gas is enclosed at the boundary position with the reservoir, the function as a heat pipe is suppressed at the temperature up to the minimum holding temperature. On the other hand, when the temperature becomes higher than this, the working fluid region moves to the condensation section side, so that the condensation section is substantially expanded and the amount of heat radiation increases. Then, when the maximum holding temperature is reached, the non-condensable gas is stored in the gas reservoir at the end of the condensing portion, so that the greatest heat dissipation effect is exhibited.

【0008】このように本発明の電力貯蔵用電池の放熱
装置では、開閉弁などの機器を設けなくても、作動流体
の実質的な存在領域を電池温度に応じて可変とすること
ができるので、開閉弁は勿論のこと、これに伴う制御機
器なども省略することができる。また、電池温度に応じ
て自動的に放熱量が制御されるので、温度センサなどの
電子機器が不要となる。したがって、制御が段階的にな
ることなく、しかもハンチング現象を引き起こすことな
く、放熱量の微調整が可能となる。その結果、一定温度
以上に加熱された後は、ヒートパイプのみによって電池
温度を制御することができ、ランニングコストの低減お
よび制御機器の削減を達成できる。これと同時に、制御
機器等が不要となるので電池モジュールの専有体積を実
質的に小さくできる。
As described above, in the heat dissipation device for the electric power storage battery of the present invention, the substantial existence region of the working fluid can be made variable according to the battery temperature without providing a device such as an on-off valve. Not only the on-off valve but also the control device associated therewith can be omitted. Further, since the amount of heat radiation is automatically controlled according to the battery temperature, an electronic device such as a temperature sensor becomes unnecessary. Therefore, the heat radiation amount can be finely adjusted without the control becoming stepwise and without causing the hunting phenomenon. As a result, after being heated to a certain temperature or higher, the battery temperature can be controlled only by the heat pipe, and the running cost and the control equipment can be reduced. At the same time, since a control device or the like is unnecessary, the volume occupied by the battery module can be substantially reduced.

【0009】このように、本発明の電力貯蔵用電池の放
熱装置では、作動流体と不凝縮性ガスとが封入されたヒ
ートパイプを用い、この作動流体と不凝縮性ガスとの界
面の移動を利用して連続的な放熱制御を行うものである
が、パイプ径が大きいと、作動流体と不凝縮性ガスとの
界面で拡散が生じ易くなる。
As described above, in the heat dissipation device for the power storage battery of the present invention, the heat pipe in which the working fluid and the noncondensable gas are enclosed is used, and the movement of the interface between the working fluid and the noncondensable gas is prevented. However, if the pipe diameter is large, diffusion easily occurs at the interface between the working fluid and the non-condensable gas.

【0010】しかしながら、本発明の電力貯蔵用電池の
放熱装置では、ヒートパイプの凝縮部が、並列に接続さ
れた複数の分岐管からなるので、1本のパイプで構成し
た場合に比較して、1本の分岐管の径は細くて足りる。
したがって、作動流体と不凝縮性ガスとの界面の拡散効
果を抑制することができ、鮮明な界面となるので、制御
性が向上することになる。
However, in the heat radiator of the power storage battery of the present invention, since the condensing part of the heat pipe is composed of a plurality of branch pipes connected in parallel, as compared with the case of being constituted by one pipe, The diameter of one branch pipe is small and sufficient.
Therefore, the diffusion effect of the interface between the working fluid and the non-condensable gas can be suppressed, and a clear interface is provided, so that the controllability is improved.

【0011】本発明の電力貯蔵用電池の放熱装置におい
て、ガス溜め部は各分岐管の端部にそれぞれ設けても良
いが、ガス溜め部が複数の分岐管の端部で連通されてい
ることがより好ましい。各分岐管の端部でガス溜め部を
連通させておくことで、蒸発部からの蒸気が各分岐管に
偏流して流れ込んでも、界面の位置は各分岐管で等しく
なるからである。
In the heat dissipation device for the power storage battery of the present invention, the gas reservoir may be provided at each end of each branch pipe, but the gas reservoir is connected at the ends of the plurality of branch pipes. Is more preferable. This is because by making the gas reservoirs communicate with each other at the end of each branch pipe, even if the vapor from the evaporation part flows into each branch pipe in a biased manner, the position of the interface becomes the same in each branch pipe.

【0012】本発明の電力貯蔵用電池の放熱装置におい
て、凝縮部には放熱フィンなどの放熱手段が設けられる
が、複数の分岐管が放熱手段に対して略等間隔で取り付
けられていることがより好ましい。凝縮部の熱源からの
距離を均等にすることができるので、放熱効率が向上す
る。
In the heat dissipating device for the power storage battery of the present invention, the condenser section is provided with heat dissipating means such as heat dissipating fins, but a plurality of branch pipes are attached to the heat dissipating means at substantially equal intervals. More preferable. Since the distance from the heat source of the condenser can be made uniform, the heat dissipation efficiency is improved.

【0013】本発明の電力貯蔵用電池の放熱装置におい
て、複数の分岐管の総断面積とヒートパイプの蒸発部の
断面積が略等しいことが好ましい。蒸発部と凝縮部のそ
れぞれの流路断面積を等しくすることで必要十分な伝熱
量を確保することができ、しかも、こうすることにより
各分岐管の断面積が小さくなるので、作動流体と不凝縮
性ガスとの界面の拡散効果を抑制することができる。
In the heat dissipation device of the power storage battery of the present invention, it is preferable that the total sectional area of the plurality of branch pipes and the sectional area of the evaporation portion of the heat pipe are substantially equal. It is possible to secure the necessary and sufficient amount of heat transfer by making the flow passage cross-sectional areas of the evaporation section and the condensation section equal, and in addition, since this reduces the cross-sectional area of each branch pipe, it does not The diffusion effect at the interface with the condensable gas can be suppressed.

【0014】本発明の電力貯蔵用電池の放熱装置におい
て、前記ヒートパイプの蒸発部の横断面が偏平管形状で
あることが好ましい。ヒートパイプの蒸発部を偏平管形
状にすることで、管の流路断面積を極端に小さくするこ
となく、しかも必要十分な伝熱面積を確保した状態で、
ヒートパイプの蒸発部が取り付けられる均熱板などの厚
さを薄くすることができる。結果的に、電池モジュール
の容積の低減および軽量化を図ることができる。同時
に、ヒートパイプの本数を低減することができ、加工性
や製造コストの面から有利になる。
In the heat dissipation device of the power storage battery of the present invention, it is preferable that the evaporating portion of the heat pipe has a flat cross section. By making the evaporation section of the heat pipe into a flat tube shape, without making the flow passage cross-sectional area of the tube extremely small, and yet with a necessary and sufficient heat transfer area secured,
It is possible to reduce the thickness of the heat equalizing plate to which the evaporation portion of the heat pipe is attached. As a result, the volume and weight of the battery module can be reduced. At the same time, the number of heat pipes can be reduced, which is advantageous in terms of workability and manufacturing cost.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1(A)は本発明の電力貯蔵用電
池の放熱装置の実施形態を示す正面縦断面図、図1
(B)は側面図であり、断熱材で形成されたモジュール
ケース1内に、円筒状のナトリウム−硫黄単電池2が複
数立設して収納されている。本実施形態では、たとえば
縦25基、横12基の単電池2が収納されているが、本
発明では特に限定されることはない。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a front vertical cross-sectional view showing an embodiment of a heat dissipation device for a battery for electric power storage of the present invention, FIG.
(B) is a side view, and a plurality of cylindrical sodium-sulfur cells 2 are erected and housed in a module case 1 formed of a heat insulating material. In the present embodiment, for example, 25 vertical cells and 12 horizontal cells 2 are stored, but the present invention is not particularly limited.

【0016】この断熱モジュールケース1の底部には、
熱伝導性に優れた均熱板3が取り付けられており、この
均熱板3の長手方向に沿ってヒートパイプ20の蒸発部
22が延在して設けられている。本実施形態のヒートパ
イプ20は、真空の管内に作動流体と不凝縮性ガスを封
入したもので、作動流体としては特に限定されないが、
制御する温度範囲に応じて、水、ナフタリンやビフェニ
ールなどの芳香族、サームエス(商品名,新日鉄化学)
などを例示することができる。また、不凝縮性ガスとし
ては、特に限定されないが、安定性に優れ、作動流体に
対して溶解し難い気体が好ましく、アルゴン、キセノ
ン、窒素などを例示することができる。
At the bottom of the heat insulating module case 1,
A heat equalizing plate 3 having excellent thermal conductivity is attached, and an evaporating portion 22 of the heat pipe 20 extends along the longitudinal direction of the heat equalizing plate 3. The heat pipe 20 of the present embodiment is a vacuum tube in which a working fluid and a non-condensable gas are enclosed, and the working fluid is not particularly limited.
Depending on the temperature range to be controlled, water, aromatics such as naphthalene and biphenyl, therms (trade name, Nippon Steel Chemical)
And the like. The non-condensable gas is not particularly limited, but is preferably a gas having excellent stability and being hardly dissolved in the working fluid, and examples thereof include argon, xenon, and nitrogen.

【0017】ヒートパイプ20の蒸発部22は、既述し
たように均熱板3に埋設して設けられているが、他端側
は、モジュールケース1の側面で立ち上がり、ここで3
本の分岐管24a,24b,24cが並列に接続されて
凝縮部24が形成されている。本実施例では、蒸発部2
2の内径20mmに対して、1本の分岐管の内径を12
mmとし、3本の分岐管24a,24b,24cの断面
積の合計が蒸発部22の断面積にほぼ等しくなるように
している。このように、蒸発部22と凝縮部24のそれ
ぞれの流路断面積を等しくすることで、必要十分な伝熱
量を確保することができ、しかも、こうすることにより
各分岐管24a,24b,24cの断面積が小さくなる
ので、作動流体と不凝縮性ガスとの界面の拡散効果を抑
制することができる。
The evaporating portion 22 of the heat pipe 20 is embedded in the heat equalizing plate 3 as described above, but the other end of the evaporating portion 22 stands up on the side surface of the module case 1 and is set at 3 here.
The branch pipes 24a, 24b, 24c of the book are connected in parallel to form a condensing part 24. In this embodiment, the evaporation unit 2
2 inside diameter 20mm, one branch pipe inside diameter 12
mm, and the total cross-sectional area of the three branch pipes 24a, 24b, 24c is set to be substantially equal to the cross-sectional area of the evaporation portion 22. In this way, by equalizing the flow passage cross-sectional areas of the evaporation section 22 and the condensation section 24, it is possible to secure a necessary and sufficient amount of heat transfer, and moreover, by doing so, the respective branch pipes 24a, 24b, 24c. Since the cross-sectional area of is small, the diffusion effect at the interface between the working fluid and the non-condensable gas can be suppressed.

【0018】この3本の分岐管24a,24b,24c
からなる凝縮部24には、熱伝導性に優れた銅やアルミ
ニウムあるいは加工性に優れた真鍮からなる放熱フィン
26が設けられて自然空冷による放熱が行われる。分岐
管24a,24b,24cは、この放熱フィン26に略
等間隔で配設されており、放熱フィン全域にわたって凝
縮部24からの距離が短くなるので、放熱効率が高くな
る。
These three branch pipes 24a, 24b, 24c
The condensing unit 24 made of is provided with a radiation fin 26 made of copper or aluminum having excellent heat conductivity or brass having excellent workability, and heat is radiated by natural air cooling. The branch pipes 24a, 24b, and 24c are arranged on the heat radiation fins 26 at substantially equal intervals, and the distance from the condenser 24 is shortened over the entire heat radiation fins, so that the heat radiation efficiency is improved.

【0019】また、3本の分岐管24a,24b,24
cの端部は互いに連通され、不凝縮性ガスを溜めるため
のガス溜め25が設けられている。本実施形態では、ヒ
ートパイプ20の内径20mm、分岐管の内径12mm
に対してガス溜め部25の内径を40mmとしている。
Also, three branch pipes 24a, 24b, 24
The ends of c are communicated with each other, and a gas reservoir 25 for accumulating the non-condensable gas is provided. In this embodiment, the inner diameter of the heat pipe 20 is 20 mm, and the inner diameter of the branch pipe is 12 mm.
On the other hand, the inner diameter of the gas reservoir 25 is 40 mm.

【0020】なお、ヒートパイプ20に作動流体と不凝
縮性ガスとを封入するにあたり、次の点に留意する。す
なわち、詳細は後述するが、本実施形態では、蒸発部2
2の温度に応じて作動流体と不凝縮性ガスとの界面が移
動することを利用して、実質的な蒸発部22および凝縮
部24の長さを可変とするので、この界面の位置が、最
低保持温度(ナトリウム−硫黄電池では約300℃)付
近では蒸発部22のうちの凝縮部24側に、最高保持温
度(ナトリウム−硫黄電池では330〜350℃)付近
では凝縮部24とガス溜め25との境界位置になるよう
に、不凝縮性ガスを封入する。
When filling the heat pipe 20 with the working fluid and the non-condensable gas, the following points should be noted. That is, although details will be described later, in the present embodiment, the evaporation unit 2
By utilizing the movement of the interface between the working fluid and the non-condensable gas depending on the temperature of 2, the substantial lengths of the evaporation section 22 and the condensation section 24 are made variable, so that the position of this interface is Near the minimum holding temperature (about 300 ° C. for the sodium-sulfur battery), on the condenser 24 side of the evaporation unit 22, near the maximum holding temperature (330-350 ° C. for the sodium-sulfur battery), the condenser 24 and the gas reservoir 25. Enclose the non-condensable gas so that it becomes the boundary position with.

【0021】上述したヒートパイプ20は、図1(B)
に示すように、一つのモジュールケース1に2組設けら
れている。次に作用を説明する。図3は本発明の電力貯
蔵用電池の放熱装置の作用を説明するための斜視図であ
り、作動流体と不凝縮性ガスが封入されたヒートパイプ
20を示している。このヒートパイプ20が作動する
と、管内の蒸気流によって不凝縮性ガスは凝縮部24の
端、すなわちガス溜め25側に押し込まれる。
The heat pipe 20 described above is shown in FIG.
As shown in FIG. 2, two sets are provided in one module case 1. Next, the operation will be described. FIG. 3 is a perspective view for explaining the operation of the heat dissipation device for a power storage battery of the present invention, showing a heat pipe 20 in which a working fluid and a noncondensable gas are enclosed. When the heat pipe 20 operates, the non-condensable gas is pushed into the end of the condenser 24, that is, the gas reservoir 25 side by the vapor flow in the pipe.

【0022】ここで、不凝縮性ガスは、環境温度に支配
され、また、作動流体の飽和圧力の温度依存性は、不凝
縮性ガスに比べて著しく大きいので、温度が上昇する
と、作動流体と不凝縮性ガスとの界面が、厳密には多少
の拡散効果があるものの、凝縮部24側に移動すること
になる。
Here, the non-condensable gas is governed by the ambient temperature, and the temperature dependence of the saturation pressure of the working fluid is significantly larger than that of the non-condensable gas. Strictly speaking, the interface with the non-condensable gas has a slight diffusion effect, but moves to the condensation section 24 side.

【0023】したがって、この界面の位置を、図1
(A)に示すように、ナトリウム−硫黄電池の最低保持
温度である300℃付近では蒸発部22のうちの凝縮部
24側A位置に、最高保持温度である330〜350℃
付近では凝縮部24とガス溜め25との境界位置B位置
になるように不凝縮性ガスを封入する。これにより、最
低保持温度300℃に達するまでの温度では、作動流体
は不凝縮性ガスの圧力に押されて、モジュールケース1
の均熱板3部分にのみ存在することになるので、ヒート
パイプ20としての機能が抑制される。一方、これ以上
の温度になると、作動流体の圧力が不凝縮性ガスの圧力
に打ち勝って、作動流体と不凝縮性ガスとの界面が凝縮
部24側に移動するので、実質的に凝縮部24が温度上
昇にともなって徐々に拡大される。これにより、放熱量
がアナログ的に増加し、最高保持温度330〜350℃
に達すると、不凝縮性ガスは凝縮部24の端のガス溜め
25に収納されるので、最も大きい放熱効果を発揮する
こととなる。
Therefore, the position of this interface is shown in FIG.
As shown in (A), in the vicinity of the minimum holding temperature of the sodium-sulfur battery of 300 ° C., the maximum holding temperature of 330 to 350 ° C. is located at the position A on the condensation unit 24 side of the evaporation unit 22.
In the vicinity, the non-condensable gas is filled so as to be at the boundary position B between the condenser 24 and the gas reservoir 25. As a result, the working fluid is pushed by the pressure of the non-condensable gas at the temperature up to the minimum holding temperature of 300 ° C.
Since it exists only in the soaking plate 3 part, the function as the heat pipe 20 is suppressed. On the other hand, when the temperature becomes higher than this, the pressure of the working fluid overcomes the pressure of the non-condensable gas, and the interface between the working fluid and the non-condensable gas moves to the condensation section 24 side, so that the condensation section 24 is substantially formed. Is gradually expanded as the temperature rises. As a result, the amount of heat dissipation increases in an analog manner, and the maximum holding temperature is 330 to 350 ° C.
When the temperature reaches, the non-condensable gas is stored in the gas reservoir 25 at the end of the condensing part 24, and therefore the greatest heat dissipation effect is exhibited.

【0024】ここで、電池2からの熱によって蒸発部2
2にて蒸発した作動流体(蒸気状態)は、不凝縮性ガス
を押し上げながら凝縮部24へと向かうが、分岐管24
a,24b,24cでほぼ三等分されてそれぞれの分岐
管24a,24b,24cに至る。このとき、分岐管の
断面積は十分に小さいので、作動流体と不凝縮性ガスと
の界面の拡散効果が抑制され、これにより凝縮部24が
鮮明に表れるので制御性が向上することになる。
Here, the evaporator 2 is heated by the heat from the battery 2.
The working fluid (vapor state) evaporated in 2 moves toward the condensing part 24 while pushing up the non-condensable gas, but the branch pipe 24
A, 24b and 24c are divided into three substantially equal parts to reach the respective branch pipes 24a, 24b and 24c. At this time, since the cross-sectional area of the branch pipe is sufficiently small, the diffusion effect at the interface between the working fluid and the non-condensable gas is suppressed, whereby the condensing portion 24 appears clearly and the controllability is improved.

【0025】また、作動流体が分岐管24a,24b,
24cのそれぞれに分岐する際に、何れかの分岐管へ偏
って流れ込んでも、各分岐管の上端はガス溜め部25で
連通しているので、それぞれの分岐管24a,24b,
24cにおける作動流体と不凝縮性ガスとの界面位置
は、図3にCで示すように、ほぼ同じ高さとなり、これ
によっても放熱制御性が向上することになる。
Further, the working fluid is the branch pipes 24a, 24b,
When branching into each of the branch pipes 24c, even if they flow unevenly into any of the branch pipes, the upper ends of the branch pipes communicate with each other through the gas reservoir 25, so that the respective branch pipes 24a, 24b,
The interface position between the working fluid and the non-condensable gas at 24c has almost the same height as shown by C in FIG. 3, which also improves the heat dissipation controllability.

【0026】このように本実施形態の電力貯蔵用電池の
放熱装置では、放熱量を連続的に可変とすることがで
き、したがって、制御が段階的になることなく、しかも
ハンチング現象を引き起こすことなく、放熱量の微調整
が可能となる。その結果、一定温度以上に加熱された後
は、ヒートパイプ20のみによって電池温度を制御する
ことができ、ランニングコストの低減および制御機器の
削減を達成できる。
As described above, in the heat dissipation device for the power storage battery of the present embodiment, the amount of heat dissipation can be continuously varied, and therefore the control does not become stepwise and the hunting phenomenon does not occur. It is possible to finely adjust the heat radiation amount. As a result, after the battery is heated to a certain temperature or higher, the battery temperature can be controlled only by the heat pipe 20, so that the running cost and the number of control devices can be reduced.

【0027】また、作動流体および不凝縮性ガス自体が
電池温度を感温し、この電池温度に応じて自動的に放熱
量が制御されるので、温度センサなどの電子機器が不要
となる。さらに、本実施形態の電力貯蔵用電池の放熱装
置では、開閉弁などの機器を設けなくても、作動流体の
実質的領域を電池温度に応じて可変とすることができる
ので、開閉弁は勿論のこと、これに伴う制御機器なども
省略することができる。
Further, since the working fluid and the non-condensable gas itself sense the temperature of the battery and the amount of heat radiation is automatically controlled according to the battery temperature, an electronic device such as a temperature sensor becomes unnecessary. Further, in the heat dissipation device for the power storage battery of the present embodiment, the substantial region of the working fluid can be made variable according to the battery temperature without providing a device such as an on-off valve. Therefore, it is possible to omit the control device and the like accompanying this.

【0028】また、凝縮部24を分岐管24a,24
b,24cで構成しているので、作動流体と不凝縮性ガ
スとの界面の拡散効果が抑制され、放熱制御性が向上す
る。なお、本実施形態は種々に改変することができる。
例えば、図2は本発明の電力貯蔵用電池の放熱装置の他
の実施形態を示す側面図であり、凝縮部24が2本の分
岐管24a,24bから構成されている点が上記実施形
態と相違し、その他の構成は同じである。このように分
岐管の本数を変更しても、上述した実施形態と同様、各
分岐管における作動流体と不凝縮性ガスとの界面が鮮明
となり、放熱制御性が向上する。
Further, the condenser 24 is connected to the branch pipes 24a, 24.
Since it is configured by b and 24c, the diffusion effect at the interface between the working fluid and the non-condensable gas is suppressed, and the heat dissipation controllability is improved. The present embodiment can be modified in various ways.
For example, FIG. 2 is a side view showing another embodiment of the heat dissipation device for a power storage battery of the present invention, which is different from the above embodiment in that the condensing part 24 is composed of two branch pipes 24a and 24b. The other configurations are the same except for the above. Even if the number of branch pipes is changed in this manner, the interface between the working fluid and the non-condensable gas in each branch pipe becomes clear and the heat dissipation controllability is improved, as in the above-described embodiment.

【0029】本発明はさらに改変することができる。例
えば、図1,2に示す実施形態において、ヒートパイプ
20の蒸発部22を、図4に示すように、偏平管形状に
しても良い。このとき、ヒートパイプ20の蒸発部22
以外の部分は、偏平管形状であってもなくても良い。図
4に示すように、偏平の度合を示す管の長径aに対する
短径bの比b/aは、好ましくは0.5〜0.3程度で
ある。この比が余りに小さすぎると、流路抵抗が大きく
成りすぎ好ましくなく、この比が余りに大きすぎる(1
に近づく)と、偏平でなくなり、偏平とすることによる
効果が小さくなる。
The present invention can be further modified. For example, in the embodiment shown in FIGS. 1 and 2, the evaporation portion 22 of the heat pipe 20 may be formed into a flat tube shape as shown in FIG. At this time, the evaporation unit 22 of the heat pipe 20
The other portions may or may not have a flat tube shape. As shown in FIG. 4, the ratio b / a of the minor axis b to the major axis a of the tube showing the degree of flatness is preferably about 0.5 to 0.3. If this ratio is too small, the flow path resistance becomes too large, which is not preferable, and this ratio is too large (1
Approaching), the flatness disappears and the effect of flattening becomes smaller.

【0030】このように、電池モジュールケース1から
の熱が伝達される部分であるヒートパイプ20の蒸発部
22を偏平管形状にすることで、管の流路断面積を極端
に小さくすることなく、しかも必要十分な伝熱面積を確
保した状態で、ヒートパイプ20の蒸発部22が取り付
けられる均熱板3の厚さを薄くすることができる。結果
的に、電池モジュールケース1の容積の低減および軽量
化を図ることができる。同時に、ヒートパイプ20の本
数を低減することができ、加工性や製造コストの面から
有利になる。
As described above, the evaporating portion 22 of the heat pipe 20, which is a portion to which the heat from the battery module case 1 is transferred, has a flat tube shape, so that the flow passage cross-sectional area of the tube is not extremely reduced. Moreover, it is possible to reduce the thickness of the heat equalizing plate 3 to which the evaporating portion 22 of the heat pipe 20 is attached while ensuring a necessary and sufficient heat transfer area. As a result, the volume and weight of the battery module case 1 can be reduced. At the same time, the number of heat pipes 20 can be reduced, which is advantageous in terms of workability and manufacturing cost.

【0031】なお、本発明は上述した実施形態に限定さ
れず、本発明の範囲内で種々に改変することができる。
The present invention is not limited to the above-mentioned embodiments, but can be variously modified within the scope of the present invention.

【0032】[0032]

【発明の効果】以上述べたように、本発明の電力貯蔵用
電池の放熱装置によれば、作動流体と不凝縮性ガスが封
入されたヒートパイプにより、放熱量を連続的に可変と
することができ、開閉弁などの機器を設けなくても、作
動流体の実質的な存在領域を電池温度に応じて可変とす
ることができるので、開閉弁は勿論のこと、これに伴う
制御機器なども省略することができる。また、電池温度
に応じて自動的に放熱量が制御されるので、温度センサ
などの電子機器が不要となる。これと同時に、制御機器
等が不要となるので電池モジュールの専有体積を実質的
に小さくすることができる。
As described above, according to the heat dissipation device for the electric power storage battery of the present invention, the heat dissipation amount can be continuously varied by the heat pipe in which the working fluid and the noncondensable gas are enclosed. Since it is possible to change the substantial existence region of the working fluid according to the battery temperature without providing a device such as an on-off valve, not only the on-off valve but also the control device accompanying it can be used. It can be omitted. Further, since the amount of heat radiation is automatically controlled according to the battery temperature, an electronic device such as a temperature sensor becomes unnecessary. At the same time, since a control device and the like are unnecessary, the volume occupied by the battery module can be substantially reduced.

【0033】また、本発明の電力貯蔵用電池の放熱装置
によれば、ヒートパイプの凝縮部が、並列に接続された
複数の分岐管からなるので、1本のパイプで構成した場
合に比較して、1本の分岐管の径は細くて足りる。した
がって、作動流体と不凝縮性ガスとの界面の拡散効果を
抑制することができ、鮮明な界面となるので、制御性が
向上することになる。
According to the heat dissipating device for a battery for electric power storage of the present invention, the condensing part of the heat pipe is composed of a plurality of branch pipes connected in parallel. Therefore, the diameter of one branch pipe can be thin. Therefore, the diffusion effect of the interface between the working fluid and the non-condensable gas can be suppressed, and a clear interface is provided, so that the controllability is improved.

【0034】本発明において、蒸発部と凝縮部のそれぞ
れの流路断面積を等しくすることで、必要十分な伝熱量
を確保することができる。しかも、こうすることにより
各分岐管の断面積が小さくなるので、作動流体と不凝縮
性ガスとの界面の拡散効果を抑制することができる。
In the present invention, a necessary and sufficient amount of heat transfer can be secured by making the flow passage cross-sectional areas of the evaporation portion and the condensation portion equal. Moreover, since the cross-sectional area of each branch pipe is reduced by doing so, the diffusion effect at the interface between the working fluid and the non-condensable gas can be suppressed.

【0035】本発明において、ヒートパイプの蒸発部、
ヒートパイプの蒸発部の横断面形状を、偏平管形状にす
ることで、管の流路断面積を極端に小さくすることな
く、しかも必要十分な伝熱面積を確保した状態で、ヒー
トパイプの蒸発部が取り付けられる均熱板や放熱手段な
どの厚さを薄くすることができる。結果的に、電池モジ
ュールの容積の低減および軽量化を図ることができる。
同時に、ヒートパイプの本数を低減することができ、加
工性や製造コストの面から有利になる。
In the present invention, the evaporation part of the heat pipe,
By evaporating the heat pipe without making the cross-sectional area of the flow path of the tube extremely small and ensuring a necessary and sufficient heat transfer area, by making the cross-sectional shape of the evaporation part of the heat pipe into a flat tube shape. It is possible to reduce the thickness of the heat equalizing plate, the heat radiating means, etc. to which the parts are attached. As a result, the volume and weight of the battery module can be reduced.
At the same time, the number of heat pipes can be reduced, which is advantageous in terms of workability and manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は本発明の電力貯蔵用電池の放熱装置の
実施形態を示す図であり、(A)は正面縦断面図、
(B)は側面図である。
FIG. 1 is a view showing an embodiment of a heat dissipation device for a power storage battery of the present invention, (A) is a front vertical cross-sectional view,
(B) is a side view.

【図2】 図2は本発明の電力貯蔵用電池の放熱装置の
他の実施形態を示す側面図である。
FIG. 2 is a side view showing another embodiment of the heat dissipation device of the power storage battery of the present invention.

【図3】 図3は本発明の電力貯蔵用電池の放熱装置の
作用を説明するための斜視図である。
FIG. 3 is a perspective view for explaining the operation of the heat dissipation device of the power storage battery of the present invention.

【図4】 図4は本発明の電力貯蔵用電池の放熱装置の
その他の実施形態を示すヒートパイプの横断面図であ
る。
FIG. 4 is a cross-sectional view of a heat pipe showing another embodiment of the heat dissipation device for the power storage battery of the present invention.

【符号の説明】[Explanation of symbols]

1…モジュールケース 2…単電池 3…均熱板 20…不凝縮性ガス入りヒートパイプ 22…蒸発部 24…凝縮部 24a,24b,24c…分岐管 25…ガス溜め 26…放熱フィン DESCRIPTION OF SYMBOLS 1 ... Module case 2 ... Single cell 3 ... Soaking plate 20 ... Noncondensable gas-containing heat pipe 22 ... Evaporating part 24 ... Condensing part 24a, 24b, 24c ... Branch pipe 25 ... Gas reservoir 26 ... Radiating fin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 贄川 潤 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 渡辺 健次 神奈川県横浜市鶴見区江ケ崎町4−1 東 京電力株式会社エネルギー・環境研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Sakaigawa 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Kenji Watanabe 4-1 Egasaki-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Energy and Environmental Research Laboratory, Tokyo Electric Power Company

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電力貯蔵用電池モジュールに取り付けら
れる放熱装置であって、作動流体と不凝縮性ガスが封入
され凝縮部の端部にガス溜め部を有するヒートパイプを
備えた電力貯蔵用電池の放熱装置において、 前記ヒートパイプの凝縮部が、並列に接続された複数の
分岐管からなることを特徴とする電力貯蔵用電池の放熱
装置。
1. A heat dissipation device attached to a power storage battery module, comprising a heat pipe having a working fluid and a non-condensable gas sealed therein and having a gas reservoir at an end of the condenser. In the heat dissipation device, the heat dissipation device of the power storage battery, wherein the condensing part of the heat pipe is composed of a plurality of branch pipes connected in parallel.
【請求項2】 前記ガス溜め部が、前記複数の分岐管の
端部で連通されていることを特徴とする請求項1記載の
電力貯蔵用電池の放熱装置。
2. The heat dissipating device for a power storage battery according to claim 1, wherein the gas reservoirs are connected to each other at ends of the plurality of branch pipes.
【請求項3】 前記複数の分岐管が、前記凝縮部に設け
られた放熱手段に対して略等間隔で取り付けられている
ことを特徴とする請求項1または2記載の電力貯蔵用電
池の放熱装置。
3. The heat radiation of the battery for electric power storage according to claim 1, wherein the plurality of branch pipes are attached to the heat radiation means provided in the condenser at substantially equal intervals. apparatus.
【請求項4】 前記複数の分岐管の総断面積と前記ヒー
トパイプの蒸発部の断面積が略等しいことを特徴とする
請求項1〜3何れかに記載の電力貯蔵用電池の放熱装
置。
4. The heat dissipation device for a power storage battery according to claim 1, wherein a total cross-sectional area of the plurality of branch pipes and a cross-sectional area of an evaporation portion of the heat pipe are substantially equal to each other.
【請求項5】 前記ヒートパイプの蒸発部の横断面が、
偏平管形状である請求項1〜4の何れかに記載の電力貯
蔵用電池の放熱装置。
5. The cross section of the evaporation part of the heat pipe comprises:
The heat dissipation device for a battery for electric power storage according to any one of claims 1 to 4, which has a flat tube shape.
JP14394996A 1996-06-06 1996-06-06 Heat radiator of battery for power storage Pending JPH09326266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14394996A JPH09326266A (en) 1996-06-06 1996-06-06 Heat radiator of battery for power storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14394996A JPH09326266A (en) 1996-06-06 1996-06-06 Heat radiator of battery for power storage

Publications (1)

Publication Number Publication Date
JPH09326266A true JPH09326266A (en) 1997-12-16

Family

ID=15350805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14394996A Pending JPH09326266A (en) 1996-06-06 1996-06-06 Heat radiator of battery for power storage

Country Status (1)

Country Link
JP (1) JPH09326266A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007053992A1 (en) * 2005-11-08 2007-05-18 Byd Company Limited A heat dissipating device for a battery pack, and a battery pack using the same
JP2008196787A (en) * 2007-02-14 2008-08-28 Furukawa Electric Co Ltd:The Heat pipe
JP2010060164A (en) * 2008-09-01 2010-03-18 Sumitomo Light Metal Ind Ltd Heat pipe type heat sink
JP2014220087A (en) * 2013-05-08 2014-11-20 小島プレス工業株式会社 Battery pack
US20150188201A1 (en) * 2013-12-31 2015-07-02 Uer Technology (Shenzhen) Limited Battery module
CN105680116A (en) * 2016-04-21 2016-06-15 东软集团股份有限公司 Liquid cooling system for power battery and temperature balancing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007053992A1 (en) * 2005-11-08 2007-05-18 Byd Company Limited A heat dissipating device for a battery pack, and a battery pack using the same
JP2009515305A (en) * 2005-11-08 2009-04-09 ビーワイディー カンパニー リミテッド Heat dissipating device for battery pack and battery pack using the same
US8574739B2 (en) 2005-11-08 2013-11-05 Byd Company Limited Heat dissipating device for a battery pack, and a battery pack using the same
JP2008196787A (en) * 2007-02-14 2008-08-28 Furukawa Electric Co Ltd:The Heat pipe
JP2010060164A (en) * 2008-09-01 2010-03-18 Sumitomo Light Metal Ind Ltd Heat pipe type heat sink
JP2014220087A (en) * 2013-05-08 2014-11-20 小島プレス工業株式会社 Battery pack
US20150188201A1 (en) * 2013-12-31 2015-07-02 Uer Technology (Shenzhen) Limited Battery module
CN105680116A (en) * 2016-04-21 2016-06-15 东软集团股份有限公司 Liquid cooling system for power battery and temperature balancing method

Similar Documents

Publication Publication Date Title
JPH09326264A (en) Heat radiator for electric power storing battery
US4513732A (en) Passive integral solar heat collector system
US4993483A (en) Geothermal heat transfer system
CA1120029A (en) Heat pipe bag system
US3785365A (en) Temperature conditioning means
EP2403034B1 (en) Battery pack
US20030037907A1 (en) Solar energy heater with heat pipe and heat exchanger
US5054297A (en) Cold storage system
US4135490A (en) Recirculating natural convection solar energy collector
US4616699A (en) Wick-fin heat pipe
US10060681B2 (en) Heat pipe augmented passive solar heating system
IE46820B1 (en) Heat collector apparatus
US4280333A (en) Passive environmental temperature control system
WO2009142463A2 (en) Air source heat exchange system and method utilizing temperature gradient and water
JPH09326266A (en) Heat radiator of battery for power storage
CN110906428B (en) Phase-change heat storage type solar heat pipe heater
JPH1055827A (en) Heat radiator device for power storage battery
US4441484A (en) Chemical heat pump
JP2008286480A (en) Cooling system of power converter
JPH09326263A (en) Heat radiator for electric power storing battery
US20020023439A1 (en) System of solar and gravitational energy
JPH09326265A (en) Heat radiator for electric power storing battery
US4224803A (en) Chemical heat pump
GB2086563A (en) Energy transfer apparatus
CN211650792U (en) Portable small solar heat pipe heater