JPH0932501A - Moving blade of axial flow compressor - Google Patents

Moving blade of axial flow compressor

Info

Publication number
JPH0932501A
JPH0932501A JP17976095A JP17976095A JPH0932501A JP H0932501 A JPH0932501 A JP H0932501A JP 17976095 A JP17976095 A JP 17976095A JP 17976095 A JP17976095 A JP 17976095A JP H0932501 A JPH0932501 A JP H0932501A
Authority
JP
Japan
Prior art keywords
length
tip
root
compressor
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17976095A
Other languages
Japanese (ja)
Other versions
JP3867812B2 (en
Inventor
Kuniyuki Imanari
邦之 今成
Tsuguji Nakano
嗣治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP17976095A priority Critical patent/JP3867812B2/en
Publication of JPH0932501A publication Critical patent/JPH0932501A/en
Application granted granted Critical
Publication of JP3867812B2 publication Critical patent/JP3867812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a change by a variation in a flow rate by lengthening a chord length of a moving blade of an axial flow compressor from a midway position running toward a tip part from a root part, and setting a projected length of a tip chord length to the compressor axis in a range of a projected length of a root chord length to the compressor axis. SOLUTION: Its chord length is changed from a midway position reaching up to the tip 5 in the vicinity of a casing 3 from a root part 4 of the root where a moving blade 1 of an axial flow compressor is installed on a hub 2. A root part blade shape 8 is installed at an angle of 40 degrees to the axial flow compressor axis C on which the moving blade 1 is installed, and a tip part blade shape 9 is installed at 60 degrees, and the tip part blade shape 9 is twisted by 20 degrees to the root part blade shape 8. A projected length L2 of the tip part blade shape 9 to the axis C is set in a range of a projected length L1 of the root part blade shape 8 to the axis C. Therefore, almost constant efficiency can be maintained over a wide flow rate range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガスタービンやジェ
ットエンジンに用いられる軸流圧縮機の動翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor blade of an axial compressor used in a gas turbine or a jet engine.

【0002】[0002]

【従来の技術】図6は従来のガスタービンやジェットエ
ンジンに用いられる軸流圧縮機の動翼を示し、(A)が
展開図、(B)は動翼のルート部(付根部)とチップ
(先端)部での圧縮機の軸心Cに対する角度を示す。
(A)に示すようにハブ2に取り付けられた動翼1のル
ート部4のコード長(翼弦長)とチップ部5のコード長
はほぼ同じ長さとなっている。また、(B)に示すよう
に動翼1は圧縮機軸心Cに対してルート部翼型8はθ
1,チップ部翼型9はθ2(>θ1)の角度で取り付け
られており、軸心Cに対するコード長の投影長さはルー
ト部がL1、チップ部がL2であり、L2はL1の範囲
内に納まっている。チップ部5とケーシング3の間はチ
ップ間隙6を構成する。なお、図6の動翼は高圧圧縮機
HPCを表し、ファンジェットエンジンのファンのよう
な低圧圧縮機LPCは対象外とする。以下の説明もHP
Cに対して行う。
2. Description of the Related Art FIG. 6 shows a moving blade of an axial flow compressor used in a conventional gas turbine or jet engine, (A) is a development view, and (B) is a root portion (root portion) and tip of the moving blade. The angle with respect to the axis C of the compressor at the (tip) portion is shown.
As shown in (A), the chord length (chord length) of the root portion 4 of the rotor blade 1 attached to the hub 2 and the chord length of the tip portion 5 are substantially the same. Further, as shown in (B), the rotor blade 1 has a root portion airfoil 8 of θ with respect to the compressor axis C.
1, the tip part airfoil 9 is attached at an angle of θ2 (> θ1), and the projected length of the cord length with respect to the axis C is L1 at the root part and L2 at the tip part, and L2 is within the range of L1. Is installed in. A chip gap 6 is formed between the chip portion 5 and the casing 3. The moving blades in FIG. 6 represent the high-pressure compressor HPC, and the low-pressure compressor LPC such as the fan of the fan jet engine is excluded. The following explanation is also HP
Perform on C.

【0003】[0003]

【発明が解決しようとする課題】多段軸流圧縮機では流
れ場を正しく算出し、それに合わせた翼型を設計する
が、流れ場の正確な算出が困難であるため、実際の流れ
と、設計した翼と、その取り付け角とを完全に適合させ
ることは極めて困難であり、殆ど不可能である。この結
果、図5の黒丸で示すように効率が流量によって大きく
変化し、特にピーク効率の流量の前後で急激に変化す
る。このため予定した流量における予定した効率を得ら
れない場合が多い。効率としては、ピーク効率より多少
低くても広い範囲の流量にわたり、ほぼ一定となること
が望ましい。
With a multi-stage axial flow compressor, the flow field is correctly calculated and the airfoil is designed according to it. However, since it is difficult to calculate the flow field accurately, the actual flow and design It is extremely difficult and almost impossible to perfectly match the installed blade and its mounting angle. As a result, the efficiency greatly changes depending on the flow rate, as shown by the black circles in FIG. 5, and in particular, changes sharply before and after the peak efficiency flow rate. For this reason, it is often impossible to obtain the planned efficiency at the planned flow rate. It is desirable that the efficiency be substantially constant over a wide range of flow rates even if it is slightly lower than the peak efficiency.

【0004】本発明は、上述の問題点に鑑みてなされた
もので、流量の変動により変化を少なくした軸流圧縮機
動翼を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an axial flow compressor rotor blade whose change is reduced due to a change in flow rate.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
請求項1の発明では、軸流圧縮機動翼のコード長を付根
部より先端部へ向かう途中位置から長くしてゆき、先端
コード長の圧縮機軸心への投影長さが付根コード長の圧
縮機軸心の投影長さの範囲内とする。
In order to achieve the above object, in the invention of claim 1, the axial length of the moving blade of the axial compressor is made longer from an intermediate position from the root portion to the tip portion, and the tip cord length is increased. The projected length on the compressor axis is within the range of the projected length of the compressor axis with the root code length.

【0006】動翼の効率が流量によって急激に変化する
のは、動翼のチップ間隙におけるもれ流れによる圧力損
失が支配的であることが三次元粘性解析による数値実験
で明らかになった。このもれ流れとは圧力の高い翼下面
から圧力の低い翼上面に向かう流れで、このもれ流れに
よる圧力損失を少なくすることにより効率の低下を少な
くし、流量の変化による効率の変化を少なくすることが
できる。もれ流れはチップコード長を大きくすると少な
くなることも上述の数値実験で明らかになったので、チ
ップコード長をできるだけ大きくする。この限度として
チップ部コード長を伸ばしても動翼の圧縮機軸方向の長
さが長くならない範囲とする。このためルート部コード
長の圧縮機の軸心への投影長さの範囲内にチップ部コー
ド長の軸心への投影長が納まる長さとすればよい。動翼
のチップ部はルート部に対して図6で示したようにねじ
れているので、ルート部コード長よりチップ部コード長
が長くてもチップ部コード長の軸心への投影範囲をルー
ト部コード長の軸心への投影範囲内に納めることができ
る。
It was revealed by a three-dimensional viscous analysis that the efficiency of the moving blade drastically changes depending on the flow rate because the pressure loss due to the leakage flow in the tip clearance of the moving blade is dominant. This leakage flow is a flow from the lower surface of the blade with high pressure to the upper surface of the blade with low pressure.By reducing the pressure loss due to this leakage flow, the decrease in efficiency is reduced and the change in efficiency due to the change in flow rate is reduced. can do. It was also clarified in the above-mentioned numerical experiment that the leakage flow decreases as the chip code length increases, so the chip code length should be increased as much as possible. The upper limit of this is set so that the length of the moving blade in the axial direction of the compressor does not become long even if the length of the tip portion cord is extended. For this reason, the projection length of the tip portion cord length on the axial center may be set within the range of the projection length of the root portion cord length on the axial center of the compressor. Since the tip portion of the rotor blade is twisted with respect to the root portion as shown in FIG. 6, even if the tip portion cord length is longer than the root portion cord length, the projection range of the tip portion cord length to the axial center is set to the root portion. It can be stored within the projection range of the code length on the axis.

【0007】請求項2の発明では、前記途中位置は動翼
の付根を0%、先端を100%の高さとし、50%から
80%の範囲とする。チップ部コード長を大きく伸ばす
場合は50%から増大させ、比較的伸ばしが少ない場合
は80%から伸ばすのが適切である。
According to the second aspect of the present invention, the midway position has a height of 0% at the root of the moving blade and 100% at the tip, and is in the range of 50% to 80%. It is appropriate to increase from 50% when the chip portion cord length is greatly extended and from 80% when the elongation is relatively small.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は実施例の軸流圧縮機動翼の形状を示す図
で、(A)は展開図を示し、(B)は付根部(ルート
部)と先端部(チップ部)の翼取付角を示す。(A)に
示すように動翼1はハブ2に取り付けられたルート部4
からケーシング3近傍のチップ部5まで到る途中の位置
からそのコード長が変化している。動翼1の高さをルー
ト部4で0%、チップ部5で100%とすると、ほぼ5
0%までは同一コード長で、それ以上でコード長が増大
しチップ部5で最大値となる。(B)は動翼1が取り付
けられる軸流圧縮機の軸心Cに対する動翼1の取付角度
の一例を示す。軸心Cに対し、ルート部翼型8は例えば
40°の角度で取り付けられ、チップ部翼型9は例えば
60°の角度となっている。つまり、チップ部翼型9は
ルート部翼型8に対して20°よじれている。チップ部
翼型9の軸心Cへの投影長L2はルート部翼型8の軸心
Cへの投影長L1の範囲内となっている。これはチップ
部翼型9の軸心Cへの投影長L2がルート部翼型8の軸
心Cへの投影範囲を越えて長くなると、動翼1が圧縮機
の軸方向に長くなることになり、圧縮機を軸方向に伸ば
す必要が生じる。このため圧縮機の重量も増大し、悪影
響も現れるので、動翼1が圧縮機軸方向へ大きくならな
い範囲内でチップコード長を増大する。
Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B are views showing the shape of an axial flow compressor blade of the embodiment, FIG. 1A is a development view, and FIG. 1B is a blade attachment angle of a root portion (root portion) and a tip portion (tip portion). . As shown in (A), the rotor blade 1 has a root portion 4 attached to the hub 2.
The cord length changes from the position on the way from the to the tip portion 5 in the vicinity of the casing 3. If the height of the rotor blade 1 is 0% at the root portion 4 and 100% at the tip portion 5, it is almost 5
The code length is the same up to 0%, and the code length increases beyond that and reaches the maximum value in the chip section 5. (B) shows an example of the mounting angle of the moving blade 1 with respect to the axis C of the axial flow compressor to which the moving blade 1 is mounted. The root portion airfoil 8 is attached to the axis C at an angle of, for example, 40 °, and the tip portion airfoil 9 is at an angle of, for example, 60 °. That is, the tip airfoil 9 is twisted by 20 ° with respect to the root airfoil 8. The projection length L2 of the tip airfoil 9 on the axis C is within the range of the projection length L1 of the root airfoil 8 on the axis C. This means that when the projection length L2 of the tip airfoil 9 on the axis C is longer than the projection range of the root airfoil 8 on the axis C, the rotor blade 1 becomes longer in the axial direction of the compressor. Therefore, it becomes necessary to extend the compressor in the axial direction. For this reason, the weight of the compressor also increases, and adverse effects also appear. Therefore, the tip cord length is increased within a range in which the moving blade 1 does not increase in the axial direction of the compressor.

【0009】次にこのようにチップ部5のコード長をル
ート部4のコード長より大きくした動翼1の性能につい
て説明する。図2は図1の動翼の形状を三次元で表示し
たものである。図3は図2に示した動翼1のコード長さ
を表す図である。コード長はハブ2から50%程度まで
はほぼ同じ長さで、50%を越えると長くなっている。
Next, the performance of the rotor blade 1 in which the cord length of the tip portion 5 is larger than the cord length of the root portion 4 will be described. FIG. 2 shows the shape of the moving blade in FIG. 1 in three dimensions. FIG. 3 is a diagram showing the cord length of the rotor blade 1 shown in FIG. The cord length is almost the same from the hub 2 to about 50%, and becomes longer when it exceeds 50%.

【0010】図4は図2に示した1段の動翼の三次元粘
性解析による数値実験結果で、流量に対する圧力比を示
す。白丸が図2に示す動翼を示し、黒丸はコード長さが
ほぼ一定の従来の動翼を示す。両者はほぼ同一の曲線と
なり、チップ部コード長を長くしても圧力比には殆ど影
響を及ぼさないことを示している。
FIG. 4 shows the pressure ratio with respect to the flow rate as a result of a numerical experiment by three-dimensional viscous analysis of the one-stage moving blade shown in FIG. The white circles indicate the blade shown in FIG. 2, and the black circles indicate the conventional blade having a substantially constant cord length. Both curves have almost the same curve, indicating that the pressure ratio is hardly affected even if the length of the tip portion cord is increased.

【0011】図5は図2に示した1段の動翼の三次元粘
性解析による数値実験結果で、流量に対する断熱効率を
示す。白丸が図2に示す動翼を示し、黒丸はコード長さ
がほぼ一定の従来の動翼を示す。従来の動翼では流量に
よって断熱効率が変化し、ピーク値を有するが、図2に
示す動翼では、断熱効率は流量が変化してもほぼ一定の
値となっている。この一定値は従来の動翼のピーク値よ
りも小さいが、ピーク値近傍以外では従来の動翼よりも
断熱効率が高くなっており、本実施例の動翼は流量の広
い範囲にわたり、高い断熱効率を維持することがわか
る。
FIG. 5 shows the adiabatic efficiency with respect to the flow rate, which is the result of a numerical experiment by three-dimensional viscosity analysis of the one-stage rotor blade shown in FIG. The white circles indicate the blade shown in FIG. 2, and the black circles indicate the conventional blade having a substantially constant cord length. In the conventional moving blade, the adiabatic efficiency changes depending on the flow rate and has a peak value, but in the moving blade shown in FIG. 2, the adiabatic efficiency is a substantially constant value even if the flow rate changes. This constant value is smaller than the peak value of the conventional moving blade, but the adiabatic efficiency is higher than that of the conventional moving blade except in the vicinity of the peak value. It turns out to maintain efficiency.

【0012】図2に示した動翼ではチップ部コード長が
大きいのでコード長の増大はハブ2から50%を越えた
位置から行ったが、チップ部コード長がそれ程大きくな
い場合は、ハブ2から80%程度の位置からコード長を
増大させても図5に示すように流量の広い範囲に対し断
熱効率を高い値で一定とすることができる。
In the blade shown in FIG. 2, since the tip portion cord length is large, the cord length is increased from a position exceeding 50% from the hub 2. However, if the tip portion cord length is not so large, the hub 2 Even if the cord length is increased from a position of about 80%, the adiabatic efficiency can be kept constant at a high value over a wide range of flow rate as shown in FIG.

【0013】[0013]

【発明の効果】以上の説明より明らかなように、本発明
は、軸流圧縮機の動翼のコード長をチップ部へ近づくに
つれて大きくしてゆくことにより、従来の動翼に比べて
流量の広い範囲にわたって、ほぼ一定の高い効率を維持
することができる。
As is apparent from the above description, according to the present invention, by increasing the cord length of the moving blade of the axial compressor toward the tip portion, the flow rate of the moving blade can be increased as compared with the conventional moving blade. A substantially constant high efficiency can be maintained over a wide range.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の動翼の形状を示し、(A)は展開図、
(B)は軸流圧縮機の軸心に対する付根部と先端部の翼
角度の一例を示す図である。
FIG. 1 shows a shape of a moving blade of an embodiment, (A) is a development view,
(B) is a figure which shows an example of the blade angle of the root part and the front-end | tip part with respect to the axial center of an axial flow compressor.

【図2】性能解析に用いた動翼の三次元表示図を示す。FIG. 2 shows a three-dimensional display diagram of a moving blade used for performance analysis.

【図3】図2に示す動翼のコード長さを示す図である。FIG. 3 is a diagram showing a cord length of the rotor blade shown in FIG.

【図4】図2に示す動翼の圧力比を従来の動翼と比較し
た図である。
FIG. 4 is a diagram comparing the pressure ratio of the moving blade shown in FIG. 2 with that of a conventional moving blade.

【図5】図2に示す動翼の断熱効率を従来の動翼と比較
した図である。
FIG. 5 is a diagram comparing the heat insulating efficiency of the moving blade shown in FIG. 2 with that of a conventional moving blade.

【図6】従来の動翼の形状を示し、(A)は展開図、
(B)は軸流圧縮機の軸心に対する付根部と先端部の翼
角度を示す図である。
FIG. 6 shows a shape of a conventional moving blade, (A) is a development view,
(B) is a figure which shows the blade angle of the root part and the front-end | tip part with respect to the axial center of an axial flow compressor.

【符号の説明】[Explanation of symbols]

1 動翼 2 ハブ 3 ケーシング 4 ルート部 5 チップ部 6 チップ間隙 8 ルート部翼型 9 チップ部翼型 C 圧縮機軸心 L1 圧縮機軸心Cに対するルート部コード長の投影長
さ L2 圧縮機軸心Cに対するチップ部コード長の投影長
1 rotor blade 2 hub 3 casing 4 root portion 5 tip portion 6 tip gap 8 root portion blade type 9 tip portion blade type C compressor shaft center L1 projected length of root part cord length to compressor shaft center C L2 to compressor shaft center C Projection length of chip code

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軸流圧縮機動翼のコード長を付根部より
先端部へ向かう途中位置から長くしてゆき、先端コード
長の圧縮機軸心への投影長さが付根コード長の圧縮機軸
心の投影長さの範囲内となっていることを特徴とする軸
流圧縮機動翼。
1. A cord length of an axial flow compressor blade is made longer from a position midway from a root portion toward a tip portion, and a projection length of the tip cord length on the compressor shaft center is a root cord length of the compressor shaft center. An axial compressor blade characterized by being within the projected length range.
【請求項2】 前記途中位置は動翼の付根を0%、先端
を100%の高さとし、50%から80%の範囲とする
ことを特徴とする請求項1記載の軸流圧縮機動翼。
2. The axial compressor blade according to claim 1, wherein the midway position has a root of the blade of 0%, a tip of 100% in height, and a range of 50% to 80%.
JP17976095A 1995-07-17 1995-07-17 Axial compressor blade Expired - Lifetime JP3867812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17976095A JP3867812B2 (en) 1995-07-17 1995-07-17 Axial compressor blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17976095A JP3867812B2 (en) 1995-07-17 1995-07-17 Axial compressor blade

Publications (2)

Publication Number Publication Date
JPH0932501A true JPH0932501A (en) 1997-02-04
JP3867812B2 JP3867812B2 (en) 2007-01-17

Family

ID=16071411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17976095A Expired - Lifetime JP3867812B2 (en) 1995-07-17 1995-07-17 Axial compressor blade

Country Status (1)

Country Link
JP (1) JP3867812B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582695A1 (en) * 2004-03-26 2005-10-05 Siemens Aktiengesellschaft Turbomachine blade
JP2007051642A (en) * 2005-08-16 2007-03-01 General Electric Co <Ge> Airfoil with less vibration to be induced and gas turbine engine therewith
JP2009511811A (en) * 2005-10-11 2009-03-19 アルストム テクノロジー リミテッド Turbomachinery wing
JP2011524490A (en) * 2008-07-04 2011-09-01 マン・ディーゼル・アンド・ターボ・エスイー Cascade for fluid engine and fluid engine having such cascade
CN102483072A (en) * 2009-09-04 2012-05-30 西门子公司 Compressor blade for an axial compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582695A1 (en) * 2004-03-26 2005-10-05 Siemens Aktiengesellschaft Turbomachine blade
JP2007051642A (en) * 2005-08-16 2007-03-01 General Electric Co <Ge> Airfoil with less vibration to be induced and gas turbine engine therewith
JP2009511811A (en) * 2005-10-11 2009-03-19 アルストム テクノロジー リミテッド Turbomachinery wing
JP2012207668A (en) * 2005-10-11 2012-10-25 Alstom Technology Ltd Turbo machine blade
JP2011524490A (en) * 2008-07-04 2011-09-01 マン・ディーゼル・アンド・ターボ・エスイー Cascade for fluid engine and fluid engine having such cascade
CN102483072A (en) * 2009-09-04 2012-05-30 西门子公司 Compressor blade for an axial compressor
JP2013503999A (en) * 2009-09-04 2013-02-04 シーメンス アクティエンゲゼルシャフト Compressor blade for axial compressor
US8911215B2 (en) 2009-09-04 2014-12-16 Siemens Aktiengesellschaft Compressor blade for an axial compressor

Also Published As

Publication number Publication date
JP3867812B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
US6375419B1 (en) Flow directing element for a turbine engine
RU2603204C2 (en) Turbomachine blade, turbomachine compressor, turbomachine turbine and turbomachine
EP1798377B1 (en) Airfoil embodying mixed loading conventions
RU2255248C2 (en) Swept convex blade (version)
JP5546855B2 (en) Diffuser
CA2727664C (en) Vane or blade for an axial flow compressor
EP2623794B1 (en) Centrifugal compressor diffuser
RU2626886C2 (en) Lash of the turbojet motor fan, turbojet engine fan and turbojet engine
JP3982261B2 (en) Turbine blade
US7476081B2 (en) Centrifugal compressing apparatus
AU2001233889A1 (en) Aerofoil for an axial flow turbomachine
CN105332948B (en) A kind of implementation method of the bionical movable vane of compressor
JP4888436B2 (en) Centrifugal compressor, its impeller and its operating method
US6666654B2 (en) Turbine blade airfoil and turbine blade for axial-flow turbine
JPH03138404A (en) Rotor for steam turbine
US20070071606A1 (en) Turbine blade
JPH03138491A (en) Movable blade of axial flow machinery
JPH0932501A (en) Moving blade of axial flow compressor
US20090004019A1 (en) Axial Flow Fan
US7293964B2 (en) Repair method for a blade of a turbomachine
JPH10331791A (en) Vane for axial flow compressor and axial flow compressor using the vane
JP4691788B2 (en) Axial fan blades
JPH09100799A (en) Centrifugal compressor
RU2794951C2 (en) Gas turbine engine blade with maximum thickness rule with high flutter strength
RU2792505C2 (en) Gas turbine engine blade made according to the rule of deflection of the blade profile with a large flutter margin

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

EXPY Cancellation because of completion of term