JPH09324476A - Manufacture of ceramic sound absorbing material - Google Patents

Manufacture of ceramic sound absorbing material

Info

Publication number
JPH09324476A
JPH09324476A JP14266296A JP14266296A JPH09324476A JP H09324476 A JPH09324476 A JP H09324476A JP 14266296 A JP14266296 A JP 14266296A JP 14266296 A JP14266296 A JP 14266296A JP H09324476 A JPH09324476 A JP H09324476A
Authority
JP
Japan
Prior art keywords
sound absorbing
absorbing material
sound
ceramic
sound absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14266296A
Other languages
Japanese (ja)
Inventor
Hidenao Kawasaki
秀尚 河崎
Osamu Kawasaki
修 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP14266296A priority Critical patent/JPH09324476A/en
Publication of JPH09324476A publication Critical patent/JPH09324476A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method having the capability of eliminating the need of forming an air layer behind, or being combined with other materials, and maintaining an optimum sound absorbing characteristic, particularly under the control of the sound absorbing characteristic of a frequency lower than a sound absorbing peak frequency, depending on an application field or a noise at an installation place. SOLUTION: This sound absorbing material is made of a ceramic block having main pores of diameter between 0.2 and 2,000μm for communication, permeability equal to or above 1cm<3> .am/cm<2> .sec.cm H2 O, and porosity equal to or more than 60%. In this case, many non-through holes are drilled in one side of the sound absorbing material orthogonal with the thicknesswise direction thereof, and the back thickness of the non-through holes is changed, thereby changing acoustic absorptivity at a frequency lower than a sound absorbing peak frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐候性に優れてい
るセラミックス吸音材の吸音特性、特にその吸音ピーク
周波数より低い周波数の吸音率を、用途や設置場所の騒
音に応じて適切にコントロールするセラミックス吸音材
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention properly controls the sound absorbing characteristics of a ceramic sound absorbing material having excellent weather resistance, particularly the sound absorbing coefficient at a frequency lower than the sound absorbing peak frequency, according to the use and the noise of the installation site. The present invention relates to a method for manufacturing a ceramic sound absorbing material.

【0002】[0002]

【従来の技術】従来、吸音材としては、グラスウールや
ロックウール等の鉱物繊維系吸音材が代表的なものであ
った。しかし、鉱物繊維系吸音材は、含水すると吸音性
能が著しく低下すると共に、繊維からなるため経時的に
変形したり、高速気流により飛散又は剥離し易いなどの
欠点があった。
2. Description of the Related Art Conventionally, as a sound absorbing material, mineral fiber based sound absorbing materials such as glass wool and rock wool have been typical. However, the mineral fiber-based sound absorbing material has the drawbacks that when it contains water, the sound absorbing performance is significantly deteriorated, and because it is made of fibers, it deforms over time and is easily scattered or peeled off by a high-speed air flow.

【0003】また、石膏ボードに多数の貫通孔を設けた
吸音材も良く知られている。この穴空き石膏ボードから
なる吸音材は、貫通孔での共鳴により音エネルギーを吸
収するものであるが、特定の周波数しか吸音できない欠
点があった。この欠点を解消するため、背後に空気層を
設けたり、グラスウール等の裏打ち材を背面に取り付け
ることも行われているが、これらの方法は施工に手間が
かかるという問題があった。
[0003] Also, a sound absorbing material provided with a large number of through holes in a gypsum board is well known. The sound-absorbing material made of the perforated gypsum board absorbs sound energy by resonance in the through-hole, but has a drawback that it can only absorb a specific frequency. In order to solve this drawback, an air layer is provided in the back and a backing material such as glass wool is attached to the back, but these methods have a problem that the construction is troublesome.

【0004】最近では、耐候性に優れていて屋外でも使
用でき、不燃性で断熱効果もある吸音材として、セラミ
ックス系やセメント系の吸音材が開発されている。例え
ば、セラミックス系の吸音材は、セラミックス原料を成
形して高温で焼成したものであり、多孔質になっている
ため、細かい気孔により音エネルギーを吸収する作用が
ある。
Recently, ceramic and cement-based sound absorbing materials have been developed as sound absorbing materials which have excellent weather resistance, can be used outdoors, and are nonflammable and have a heat insulating effect. For example, a ceramic sound absorbing material is a material obtained by molding a ceramic material and firing it at a high temperature, and since it is porous, it has an action of absorbing sound energy by its fine pores.

【0005】[0005]

【発明が解決しようとする課題】上記した従来の多孔質
セラミックス吸音材は、気孔による空隙の程度により吸
音性能が多少異なるものの、材質によって吸音ピーク周
波数がほぼ特定されるうえ、吸音し得る周波数の領域も
狭いという欠点があった。
The above-mentioned conventional porous ceramics sound absorbing material has different sound absorbing performances depending on the degree of voids formed by pores, but the sound absorbing peak frequency is almost specified by the material, and the sound absorbing frequency There was a drawback that the area was small.

【0006】そのため、背後に空気層を設けたり、ある
いは特開平3−25108号公報等に示されるように、
多孔質セラミックス吸音材に空気層と他の多孔質材料を
組み合わせる等の工夫により、上記の欠点を克服するこ
とが試みられてきた。しかし、これらの方法では施工に
手間がかかり、コストの上昇を招くという欠点があっ
た。
Therefore, an air layer is provided at the back, or, as disclosed in Japanese Patent Laid-Open No. 3-25108,
Attempts have been made to overcome the above-mentioned disadvantages by combining a porous ceramics sound absorbing material with an air layer and another porous material. However, these methods have drawbacks in that construction is time-consuming and costs are increased.

【0007】本発明は、このような従来の事情に鑑み、
耐候性を有するセラミックス吸音材において、背後に空
気層を設けたり他の材料と組み合わせる必要がなく、用
途や設置場所の騒音に応じて最適な吸音特性、特に低周
波数側の吸音特性をコントロールしたセラミックス吸音
材の製造方法を提供することを目的とする。
The present invention has been made in view of such conventional circumstances.
A ceramic sound-absorbing material with weather resistance that does not require an air layer behind it or is combined with other materials, and that has optimum sound-absorbing characteristics according to the application and noise at the installation site, especially the sound-absorbing characteristics on the low frequency side. An object of the present invention is to provide a method for manufacturing a sound absorbing material.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、気孔径の主体が0.2〜2000μmの
連通気孔を有し、通気率が1cm3・cm/cm2・sec
・cmH2O以上、気孔率が60%以上のセラミックスブ
ロックからなる吸音材において、その吸音材の厚さ方向
に直角な一面に一定深さの多数の非貫通孔を穿設し、該
非貫通孔の背厚を変えることにより、吸音ピーク周波数
より低周波数側の吸音特性を変化させることを特徴とす
るセラミックス吸音材の製造方法を提供するものであ
る。
In order to achieve the above object, the present invention has a continuous pore having a pore size of 0.2 to 2000 μm as a main component and an air permeability of 1 cm 3 · cm / cm 2 · sec.
In a sound absorbing material composed of a ceramic block having cmH 2 O or more and a porosity of 60% or more, a large number of non-through holes having a constant depth are formed on one surface perpendicular to the thickness direction of the sound absorbing material. The present invention provides a method for manufacturing a ceramics sound absorbing material, characterized in that the sound absorption characteristics on the lower frequency side than the sound absorption peak frequency are changed by changing the back thickness of the sound absorbing material.

【0009】[0009]

【発明の実施の形態】本発明の対象となるセラミックス
ブロックとは、連通気孔をもつ多孔質のセラミックスブ
ロックであり、耐火粘土及び/又は耐火シャモットに発
泡ポリスチレンの小球や木屑などの気孔付与材を添加
し、所望に応じて更に水ガラスや長石等の無機バインダ
ーを混合して成形した後、1200〜1700℃程度の
高温で焼成して造られた耐火断熱レンガ、及び同様の構
造を持つものである。かかるセラミックスブロックは、
気孔径の主体が0.2〜2000μmの連通気孔を有す
る多孔質である。
BEST MODE FOR CARRYING OUT THE INVENTION The ceramic block which is the object of the present invention is a porous ceramic block having continuous pores, and is a pore-imparting material such as fire-resistant clay and / or fire-resistant chamotte in the form of spheres of expanded polystyrene or wood chips. , A fire-resistant heat-insulating brick made by mixing an inorganic binder such as water glass or feldspar, if desired, and molding, and then firing at a high temperature of about 1200 to 1700 ° C., and a similar structure Is. This ceramic block is
The main pore size is porous with continuous pores of 0.2 to 2000 μm.

【0010】この多孔質のセラミックスブロックの通気
率は、気孔付与材の種類や粒度及び焼成条件などにより
変えることができるが、所望の吸音効果を得るためには
少なくとも1cm3・cm/cm2・sec・cmH2Oの通
気率が必要である。通気率が高いほど吸音効果も優れる
が、上記方法で得られるセラミックスブロックの通気率
は20cm3・cm/cm2・sec・cmH2O程度が上限
である。また、上記方法で得られるセラミックスブロッ
クでは、気孔率が60%を下回ると通気率を1cm3・c
m/cm2・sec・cmH2O以上とすることが難しく、
また90%を越えるとハンドリング及び加工に必要な強
度が得られない。
The air permeability of this porous ceramic block can be changed depending on the type and particle size of the pore-imparting material and the firing conditions, but in order to obtain the desired sound absorbing effect, it is at least 1 cm 3 · cm / cm 2 ·. An air permeability of sec · cmH 2 O is required. The higher the air permeability is, the more excellent the sound absorbing effect is, but the air permeability of the ceramic block obtained by the above method is about 20 cm 3 · cm / cm 2 · sec · cmH 2 O as an upper limit. In the ceramic block obtained by the above method, when the porosity is less than 60%, the air permeability is reduced to 1 cm 3 · c.
m / cm 2 · sec · cm H 2 O or more is difficult,
If it exceeds 90%, the strength required for handling and processing cannot be obtained.

【0011】本発明では、上記のセラミックスブロック
に多数の非貫通孔をほぼ規則的に穿設する。非貫通孔の
直径は2〜15mmの範囲が好ましく、この直径が小さ
いと所望の開口率を得るための非貫通孔の数が多くな
り、逆に直径が大きいと穿孔時の破損が発生しやすくな
るので、8〜12mmの範囲が更に好ましい。また、非
貫通孔による開口率は5〜30%の範囲であれば所望の
吸音効果が得られるが、更に効率よく高い吸音効果を得
るためには10〜20%の範囲が好ましい。尚、非貫通
孔の深さを変えることで吸音ピーク周波数が変動する
が、非貫通孔の深さを選択して一定とする限り、吸音材
の吸音ピーク周波数は殆ど変化しない。
In the present invention, a large number of non-penetrating holes are formed in the ceramic block substantially regularly. The diameter of the non-through hole is preferably in the range of 2 to 15 mm. If this diameter is small, the number of non-through holes for obtaining the desired aperture ratio is large, and conversely, if the diameter is large, damage during drilling is likely to occur. Therefore, the range of 8 to 12 mm is more preferable. Further, a desired sound absorbing effect can be obtained if the aperture ratio of the non-through holes is in the range of 5 to 30%, but the range of 10 to 20% is preferable in order to obtain a more efficient and high sound absorbing effect. Although the sound absorption peak frequency changes by changing the depth of the non-through hole, the sound absorption peak frequency of the sound absorbing material hardly changes as long as the depth of the non-through hole is selected and made constant.

【0012】更に、セラミックスブロックに設ける非貫
通孔の背厚を変えることによって、吸音ピーク周波数よ
り低周波数側の吸音特性を変化させ得ることが分かっ
た。尚、本発明において背厚とは、非貫通孔の底からセ
ラミックスブロックの反対側の面までの厚さを言う。こ
の背厚を大きくとるほど、吸音材の吸音ピーク周波数よ
りも低周波数側の吸音率を改善することができるが、通
気率1〜20cm3・cm/cm2・sec・cmH2Oの範
囲では背厚に最適値が存在する。例えば、通気率1〜7
cm3・cm/cm2・sec・cmH2Oでは30〜50m
m、通気率7〜14cm3・cm/cm2・sec・cmH2
Oでは50〜80mm、及び通気率14〜20cm3・c
m/cm2・sec・cmH2Oでは80〜120mmの範
囲の背厚で低周波数側の吸音率の改善が最も高くなり、
これを越える背厚とすると改善効果が低下する。
Further, it has been found that the sound absorption characteristics on the lower frequency side than the sound absorption peak frequency can be changed by changing the back thickness of the non-through holes provided in the ceramic block. In the present invention, the back thickness means the thickness from the bottom of the non-through hole to the surface on the opposite side of the ceramic block. The larger the back thickness, the more the sound absorption coefficient on the lower frequency side than the sound absorption peak frequency of the sound absorbing material can be improved, but in the range of the air permeability of 1 to 20 cm 3 · cm / cm 2 · sec · cmH 2 O. There is an optimum value for the back thickness. For example, ventilation rate 1-7
30 to 50 m for cm 3 · cm / cm 2 · sec · cmH 2 O
m, ventilation rate 7 to 14 cm 3 · cm / cm 2 · sec · cmH 2
O is 50 to 80 mm, and ventilation rate is 14 to 20 cm 3 · c
With m / cm 2 · sec · cmH 2 O, the improvement in sound absorption on the low frequency side is the highest with a back thickness in the range of 80 to 120 mm,
If the thickness exceeds this, the improvement effect will be reduced.

【0013】従って、所望の吸音ピーク周波数に応じた
一定深さの非貫通孔を設ける際に、使用するセラミック
スブロックの厚さを変えることで非貫通孔の背厚を調整
でき、これにより吸音材の用途や設置場所に応じて最適
な吸音ピーク周波数をもつと同時に、低周波数側の騒音
を有効に吸音することが可能なセラミックス吸音材を得
ることができる。特に、上記通気率範囲での最適な背厚
調整により、非貫通孔の深さをセラミックスブロックの
厚さの70%未満、好ましくは30〜60%とした吸音
材は、全体の厚さを小さく抑えながら、低周波数域で大
きな吸音効果の改善が得られる。
Therefore, when a non-through hole having a constant depth corresponding to a desired sound absorption peak frequency is provided, the back thickness of the non-through hole can be adjusted by changing the thickness of the ceramic block to be used. It is possible to obtain a ceramics sound absorbing material that has an optimum sound absorption peak frequency according to the application and the installation location and is capable of effectively absorbing low frequency noise. Particularly, the sound absorbing material having the depth of the non-through holes less than 70%, preferably 30 to 60% of the thickness of the ceramic block by adjusting the optimal back thickness in the above range of air permeability has a small total thickness. While suppressing, a large improvement in sound absorption effect can be obtained in the low frequency range.

【0014】かかる本発明によれば、200〜2000
HZの周波数範囲で良好な吸音性能を示し、吸音ピーク
周波数がほぼ300〜1100Hz程度の周波数領域に
あり、その任意の吸音ピーク周波数に合わせて、それよ
り低周波数側の吸音性能をより満足できるレベルに改善
向上させることが可能となり、耐候性や耐高速気流性及
び耐久性に優れると同時に、低周波数側の騒音にも有効
なセラミックス吸音材を製造することができる。
According to the present invention, 200 to 2000
Shows good sound absorption performance in the HZ frequency range, and has a sound absorption peak frequency in the frequency range of approximately 300 to 1100 Hz. A level that can satisfy the sound absorption performance on the lower frequency side in accordance with any sound absorption peak frequency. Therefore, it is possible to manufacture a ceramics sound absorbing material which is excellent in weather resistance, high-speed airflow resistance and durability, and at the same time is effective for noise on the low frequency side.

【0015】尚、本発明における吸音率は、JIS A
1405管内法による建築材料の垂直入射吸音率測定方
法により測定したものである。また、セラミックスブロ
ックの通気率はJIS R 2115に準拠して測定し、
空気の動粘度を掛けていない値として示した。
The sound absorption coefficient according to the present invention is determined by JIS A
This was measured by a method of measuring a normal incidence sound absorption coefficient of a building material by a 1405 in-pipe method. The permeability of the ceramic block was measured in accordance with JIS R 2115,
The values are not multiplied by the kinematic viscosity of air.

【0016】[0016]

【実施例】実施例1 セラミックスブロックとして、耐火粘土と耐火シャモッ
トに気孔付与材として木屑を混合し、これを成形した後
1300℃で焼成して得られた、気孔径0.2〜200
0μmの連通孔を有し、嵩比重が0.8で、通気率が4.
2cm3・cm/cm2・sec・cmH2Oの耐火断熱レン
ガを使用した。その厚さの異なる耐火断熱レンガの一面
に、それぞれ深さ30mmで孔径8mmの多数の非貫通
孔を孔ピッチ22mmで穿設し、非貫通部の背厚をそれ
ぞれ10、20、30、40、50、70mmと変えた
6種類のセラミックス吸音材を製造した。
Example 1 As a ceramics block, a fire-resistant clay and a fire-resistant chamotte were mixed with wood chips as a porosity-imparting material, which was molded and then fired at 1300 ° C. to obtain a pore diameter of 0.2 to 200.
It has 0μm communication holes, has a bulk specific gravity of 0.8 and an air permeability of 4.
A refractory insulating brick of 2 cm 3 · cm / cm 2 · sec · cmH 2 O was used. A large number of non-penetrating holes each having a depth of 30 mm and a hole diameter of 8 mm were bored at a hole pitch of 22 mm on one surface of the refractory insulating bricks having different thicknesses, and the back thicknesses of the non-penetrating portions were 10, 20, 30, 40, respectively. Six types of ceramic sound absorbing materials having different sizes of 50 and 70 mm were manufactured.

【0017】得られた各セラミックス吸音材について吸
音率を測定し、求めた吸音特性を図1に示した。この結
果より分かるように、非貫通孔の深さを一定にして背厚
を変える(吸音材の厚さが変化する)ことにより、ほぼ
1020Hzの吸音ピーク周波数で、背厚を厚くするほ
ど吸音ピーク周波数よりも低周波数側、主に600Hz
より低い周波数域の吸音率を改善向上させることができ
た。
The sound absorption coefficient of each of the obtained ceramic sound absorbing materials was measured, and the obtained sound absorbing characteristics are shown in FIG. As can be seen from these results, by changing the back thickness (changing the thickness of the sound absorbing material) while keeping the depth of the non-through holes constant, the sound absorbing peak frequency becomes approximately 1020 Hz, and the sound absorbing peak increases as the back thickness increases. Lower than the frequency, mainly 600Hz
It was possible to improve and improve the sound absorption coefficient in the lower frequency range.

【0018】実施例2 上記実施例1と同じで厚さのみが異なる各耐火断熱レン
ガに、深さを50mmとした以外は実施例1と同じ多数
の非貫通孔を穿設し、それぞれ非貫通孔の背厚を10、
20、30、40、50mmと変えた5種類のセラミッ
クス吸音材を製造した。
Example 2 The same number of non-penetrating holes as in Example 1 except that the depth was 50 mm was formed in each of the refractory insulating bricks which were the same as in Example 1 but differed only in the thickness, and each non-penetrating hole. The thickness of the hole is 10,
Five types of ceramic sound absorbing materials having different sizes of 20, 30, 40, and 50 mm were manufactured.

【0019】得られた各セラミックス吸音材について吸
音率を測定し、求めた吸音特性を図2に示した。実施例
1と同様に、非貫通孔の背厚を厚くすることにより、ほ
ぼ620Hzの吸音ピーク周波数で、その吸音ピーク周
波数よりも低周波数側、主に400Hzより低い周波数
域の吸音率を改善向上させることができた。
The sound absorption coefficient of each of the obtained ceramic sound absorbing materials was measured, and the obtained sound absorbing characteristics are shown in FIG. As in Example 1, by increasing the back thickness of the non-through holes, the sound absorption coefficient at a sound absorption peak frequency of approximately 620 Hz, which is lower than the sound absorption peak frequency, mainly in the frequency range lower than 400 Hz, is improved. I was able to do it.

【0020】実施例3 上記実施例1と同じで厚さのみが異なる各耐火断熱レン
ガに、それぞれ深さ50mmで孔径8mmの多数の非貫
通孔を孔ピッチ16mmで穿設し、非貫通孔の背厚を1
0、20、30、50mmと変えた4種類のセラミック
ス吸音材を製造した。
Example 3 A plurality of non-through holes each having a depth of 50 mm and a hole diameter of 8 mm were drilled at a hole pitch of 16 mm in each of the refractory heat insulating bricks having the same thickness as that of the above-mentioned Example 1 but having a different thickness. 1 back
Four types of ceramics sound absorbing materials were manufactured with different thicknesses of 0, 20, 30, and 50 mm.

【0021】得られた各セラミックス吸音材について吸
音率を測定し、求めた吸音特性を図3に示した。この結
果より分かるように、ほぼ620Hzの吸音ピーク周波
数で、背厚を厚くするほど吸音ピーク周波数よりも低周
波数側、主に600Hzより低い周波数域の吸音率を改
善向上させることができた。
The sound absorption coefficient of each of the obtained ceramic sound absorbing materials was measured, and the obtained sound absorbing characteristics are shown in FIG. As can be seen from these results, at a sound absorption peak frequency of approximately 620 Hz, the thicker the back thickness, the better the sound absorption coefficient in the frequency range lower than the sound absorption peak frequency, mainly in the frequency range lower than 600 Hz.

【0022】実施例4 非貫通孔の孔ピッチを30mmとした以外は上記実施例
3と同様にして、異なる厚さの耐火断熱レンガに穿設
し、それぞれの非貫通孔の背厚を10、20、30、5
0mmと変えた4種類のセラミックス吸音材を製造し
た。
Example 4 In the same manner as in Example 3 except that the hole pitch of the non-penetrating holes was set to 30 mm, the refractory insulating bricks having different thicknesses were punched, and the back thickness of each non-penetrating hole was 10, 20, 30, 5
Four types of ceramics sound absorbing materials having different thicknesses of 0 mm were manufactured.

【0023】得られた各セラミックス吸音材について吸
音率を測定し、求めた吸音特性を図4に示した。非貫通
孔の背厚を厚くすることにより、ほぼ300〜400H
zの吸音ピーク周波数で、その吸音ピーク周波数よりも
低周波数側、主に200Hzより低い周波数域の吸音率
を改善向上させることができた。
The sound absorption coefficient of each of the obtained ceramic sound absorbing materials was measured, and the obtained sound absorbing characteristics are shown in FIG. By increasing the back thickness of the non-through hole, it is almost 300-400H.
With the sound absorption peak frequency of z, it was possible to improve and improve the sound absorption coefficient in the frequency range lower than the sound absorption peak frequency, mainly in the frequency range lower than 200 Hz.

【0024】実施例5 セラミックスブロックとして、気孔径0.2〜2000
μmの連通孔を有し、嵩比重が0.45で、通気率が6.
0cm3・cm/cm2・sec・cmH2Oの耐火断熱レン
ガを使用した。その厚さの異なる各耐火断熱レンガの一
面に、それぞれ深さ30mmで孔径8mmの多数の非貫
通孔を孔ピッチ22mmで穿設し、非貫通部の背厚をそ
れぞれ10、20、30、40、50mmと変えた5種
類のセラミックス吸音材を製造した。
Example 5 A ceramic block having a pore size of 0.2 to 2000
It has a communication hole of μm, a bulk specific gravity of 0.45 and an air permeability of 6.
A refractory insulating brick of 0 cm 3 · cm / cm 2 · sec · cmH 2 O was used. A large number of non-penetrating holes each having a depth of 30 mm and a hole diameter of 8 mm are bored at a hole pitch of 22 mm on one surface of each refractory insulating brick having different thicknesses, and the back thicknesses of the non-penetrating portions are 10, 20, 30, 40, respectively. , 50 mm, and 5 types of ceramic sound absorbing materials were manufactured.

【0025】得られた各セラミックス吸音材について吸
音率を測定し、求めた吸音特性を図5に示した。非貫通
孔の背厚を厚くすることにより、ほぼ800Hzの吸音
ピーク周波数で、吸音ピーク周波数よりも低周波数側、
主に500Hzより低い周波数域の吸音率を改善向上さ
せることができた。
The sound absorption coefficient of each of the obtained ceramic sound absorbing materials was measured, and the obtained sound absorbing characteristics are shown in FIG. By increasing the thickness of the non-through holes, the sound absorption peak frequency is approximately 800 Hz, which is lower than the sound absorption peak frequency.
The sound absorption coefficient mainly in the frequency range lower than 500 Hz could be improved and improved.

【0026】実施例6 上記実施例5と同じで厚さのみが異なる各耐火断熱レン
ガに、深さを50mmとした以外は実施例5と同じ多数
の非貫通孔を穿設し、非貫通孔の背厚をそれぞれ10、
20、30、40、50mmと変えた5種類のセラミッ
クス吸音材を製造した。
Example 6 The same large number of non-penetrating holes as in example 5 except that the depth was 50 mm was formed in each refractory insulating brick similar to the above-mentioned example 5 except for the thickness. Each has a back thickness of 10,
Five types of ceramic sound absorbing materials having different sizes of 20, 30, 40, and 50 mm were manufactured.

【0027】得られた各セラミックス吸音材について吸
音率を測定し、求めた吸音特性を図6に示した。非貫通
孔の背厚を厚くすることにより、ほぼ500Hzの吸音
ピーク周波数で、その吸音ピーク周波数よりも低周波数
側、主に400Hzより低い周波数域の吸音率を改善向
上させることができた。
The sound absorption coefficient of each of the obtained ceramic sound absorbing materials was measured, and the obtained sound absorbing characteristics are shown in FIG. By increasing the thickness of the non-penetrating holes, it was possible to improve and improve the sound absorption coefficient at a sound absorption peak frequency of about 500 Hz and on a lower frequency side than the sound absorption peak frequency, mainly in a frequency range lower than 400 Hz.

【0028】実施例7 セラミックスブロックとして、気孔径0.2〜2000
μmの連通孔を有し、嵩比重が0.32で、通気率が2
0cm3・cm/cm2・sec・cmH2Oの耐火断熱レン
ガを使用した。その厚さの異なる各耐火断熱レンガの一
面に、それぞれ深さ30mmで孔径8mmの多数の非貫
通孔を孔ピッチ22mmで穿設し、非貫通部の背厚をそ
れぞれ10、20、30、40、50mmと変えた5種
類のセラミックス吸音材を製造した。
Example 7 A ceramic block having a pore diameter of 0.2 to 2000
It has a communication hole of μm, a bulk density of 0.32, and an air permeability of 2
A refractory insulating brick of 0 cm 3 · cm / cm 2 · sec · cmH 2 O was used. A large number of non-through holes each having a depth of 30 mm and a hole diameter of 8 mm are bored at a hole pitch of 22 mm on one surface of each refractory heat insulating brick having different thicknesses, and the back thicknesses of the non-through portions are 10, 20, 30, 40, respectively. , 50 mm, and 5 types of ceramic sound absorbing materials were manufactured.

【0029】得られた各セラミックス吸音材について吸
音率を測定し、求めた吸音特性を図7に示した。非貫通
孔の背厚を厚くすることにより、ほぼ500〜1000
Hzの吸音ピーク周波数で、その吸音ピーク周波数より
も低周波数側、主に800Hzより低い周波数域の吸音
率を改善向上させることができた。
The sound absorption coefficient of each of the obtained ceramic sound absorbing materials was measured, and the obtained sound absorbing characteristics are shown in FIG. By increasing the back thickness of the non-through hole, it is almost 500-1000.
With the sound absorption peak frequency of Hz, it was possible to improve and improve the sound absorption coefficient in the frequency range lower than the sound absorption peak frequency, mainly in the frequency range lower than 800 Hz.

【0030】比較例 セラミックスブロックとして、気孔径0.2〜2000
μmの連通孔を有し、嵩比重が1.1で、通気率が1.3
cm3・cm/cm2・sec・cmH2Oの耐火断熱レンガ
を使用した。その厚さの異なる各耐火断熱レンガの一面
に、それぞれ深さ30mmで孔径8mmの多数の非貫通
孔を孔ピッチ22mmで穿設し、非貫通部の背厚をそれ
ぞれ10、20、30mmと変えた3種類のセラミック
ス吸音材を製造した。
Comparative Example A ceramic block having a pore size of 0.2 to 2000
Has communication holes of μm, bulk specific gravity of 1.1, and air permeability of 1.3
A refractory insulating brick of cm 3 · cm / cm 2 · sec · cmH 2 O was used. A large number of non-penetrating holes each having a depth of 30 mm and a hole diameter of 8 mm were bored at a hole pitch of 22 mm on one surface of each refractory insulating brick having different thicknesses, and the back thicknesses of the non-penetrating parts were changed to 10, 20, and 30 mm, respectively. Three types of ceramic sound absorbing materials were manufactured.

【0031】得られた各セラミックス吸音材について吸
音率を測定し、求めた吸音特性を図8に示した。この結
果より、嵩比重が1.0を越えるセラミックスブロック
に非貫通孔を穿設し、その背厚を変えても低い周波数域
の吸音率を変えることができなかった。
The sound absorption coefficient of each of the obtained ceramic sound absorbing materials was measured, and the obtained sound absorbing characteristics are shown in FIG. From this result, it was not possible to change the sound absorption coefficient in the low frequency range by forming a non-through hole in the ceramic block having a bulk specific gravity of more than 1.0 and changing its back thickness.

【0032】[0032]

【発明の効果】本発明によれば、背後に空気層を設けた
り他の材料と組み合わせる必要がなく、セラミックス吸
音材の吸音特性、特に吸音ピーク周波数よりも低い周波
数領域の吸音率を、用途や設置場所の騒音に応じて変え
ることができる。
EFFECTS OF THE INVENTION According to the present invention, it is not necessary to provide an air layer behind or combine with other materials, and the sound absorbing characteristics of ceramic sound absorbing materials, particularly the sound absorbing coefficient in the frequency region lower than the sound absorbing peak frequency, can be used in applications and It can be changed according to the noise of the installation site.

【0033】従って、工場や各種プラント並びに機器類
の防音をはじめ、道路や鉄道などの屋外の防音用とし
て、耐候性や耐高速気流性及び耐久性に優れると同時
に、防音対象となる低周波数の騒音に合わせて最適な吸
音特性を備えたセラミックス吸音材を製造することが可
能となる。
Therefore, it has excellent weather resistance, high-speed airflow resistance and durability as well as soundproofing for factories, various plants and equipment, and for soundproofing outdoors such as roads and railways. It is possible to manufacture a ceramics sound absorbing material having optimum sound absorbing characteristics according to noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の非貫通孔の背厚を変えた各セラミッ
クス吸音材における吸音率を示すグラフである。
FIG. 1 is a graph showing the sound absorption coefficient of each ceramic sound absorbing material of Example 1 in which the back thickness of a non-through hole is changed.

【図2】実施例2の非貫通孔の背厚を変えた各セラミッ
クス吸音材における吸音率を示すグラフである。
FIG. 2 is a graph showing the sound absorption coefficient of each ceramic sound absorbing material of Example 2 in which the back thickness of the non-through holes is changed.

【図3】実施例3の非貫通孔の背厚を変えた各セラミッ
クス吸音材における吸音率を示すグラフである。
FIG. 3 is a graph showing the sound absorption coefficient of each ceramics sound absorbing material of Example 3 in which the back thickness of the non-through holes is changed.

【図4】実施例4の非貫通孔の背厚を変えた各セラミッ
クス吸音材における吸音率を示すグラフである。
FIG. 4 is a graph showing the sound absorption coefficient of each ceramic sound absorbing material of Example 4 in which the back thickness of the non-through holes is changed.

【図5】実施例5の非貫通孔の背厚を変えた各セラミッ
クス吸音材における吸音率を示すグラフである。
FIG. 5 is a graph showing the sound absorption coefficient of each ceramic sound absorbing material of Example 5 in which the back thickness of the non-through holes is changed.

【図6】実施例6の非貫通孔の背厚を変えた各セラミッ
クス吸音材における吸音率を示すグラフである。
FIG. 6 is a graph showing the sound absorption coefficient of each ceramics sound absorbing material of Example 6 in which the back thickness of the non-through holes is changed.

【図7】実施例7の非貫通孔の背厚を変えた各セラミッ
クス吸音材における吸音率を示すグラフである。
FIG. 7 is a graph showing the sound absorption coefficient of each ceramics sound absorbing material of Example 7 in which the back thickness of the non-through holes is changed.

【図8】比較例の非貫通孔の背厚を変えた各セラミック
ス吸音材における吸音率を示すグラフである。
FIG. 8 is a graph showing the sound absorption coefficient of each ceramic sound absorbing material in which the back thickness of the non-through hole of the comparative example is changed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気孔径の主体が0.2〜2000μmの
連通気孔を有し、通気率が1cm3・cm/cm2・sec
・cmH2O以上、気孔率が60%以上のセラミックスブ
ロックからなる吸音材において、その吸音材の厚さ方向
に直角な一面に一定深さの多数の非貫通孔を穿設し、該
非貫通孔の背厚を変えることにより、吸音ピーク周波数
より低周波数側の吸音特性を変化させることを特徴とす
るセラミックス吸音材の製造方法。
1. The main pore size is 0.2 to 2000 μm, and the ventilation rate is 1 cm 3 · cm / cm 2 · sec.
In a sound absorbing material composed of a ceramic block having cmH 2 O or more and a porosity of 60% or more, a large number of non-through holes having a constant depth are formed on one surface perpendicular to the thickness direction of the sound absorbing material. A method for manufacturing a ceramics sound absorbing material, characterized in that the sound absorbing characteristics on the low frequency side of the sound absorbing peak frequency are changed by changing the back thickness of the sound absorbing material.
【請求項2】 セラミックスブロックが、気孔付与材を
混合した耐火粘土及び/又は耐火シャモットを焼成して
得られたものであることを特徴とする、請求項1に記載
のセラミックス吸音材の製造方法。
2. The method for producing a ceramic sound-absorbing material according to claim 1, wherein the ceramic block is obtained by firing refractory clay and / or refractory chamotte mixed with a pore-forming material. .
JP14266296A 1996-06-05 1996-06-05 Manufacture of ceramic sound absorbing material Pending JPH09324476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14266296A JPH09324476A (en) 1996-06-05 1996-06-05 Manufacture of ceramic sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14266296A JPH09324476A (en) 1996-06-05 1996-06-05 Manufacture of ceramic sound absorbing material

Publications (1)

Publication Number Publication Date
JPH09324476A true JPH09324476A (en) 1997-12-16

Family

ID=15320583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14266296A Pending JPH09324476A (en) 1996-06-05 1996-06-05 Manufacture of ceramic sound absorbing material

Country Status (1)

Country Link
JP (1) JPH09324476A (en)

Similar Documents

Publication Publication Date Title
CN104499591A (en) Plate
US6615951B1 (en) Absorbent material, consisting of a porous substance with double porosity
JP2820670B2 (en) Ceramic sound absorbing wall
CN105220785B (en) Composite heat insulation sound insulation plate
JPH09328833A (en) Ceramic sound absorbing material
US6416852B1 (en) Ceramics sound absorption material
JP2793570B2 (en) Ceramic sound absorbing material
CN206591666U (en) Absorbing sound and lowering noise partition plate
JPS61219742A (en) Manufacture of glassy cellular inorganic substance
KR100654685B1 (en) Noise-absorbing plaster panel
JPH09324476A (en) Manufacture of ceramic sound absorbing material
JPH0325108A (en) Sound absorbing wall structure
JPH0518042A (en) Compound panel material
JP3045294B1 (en) Sound absorbing wall
JP4906318B2 (en) Low frequency sound absorber made of closed cell glass foam
JPH09324475A (en) Manufacture of ceramic sound absorbing material
US1946914A (en) Sound absorbing and insulating composition
JPH09324478A (en) Ceramic sound absorbing material
CN205116452U (en) Compound incubation acoustic celotex board
JPH102037A (en) Sound absorbing wall
DE102016007248B4 (en) Sound absorption device for reducing sound pressure levels
JPH09324477A (en) Sound absorbing material
JPH10331117A (en) Sound absorbing wall structure
KR200411167Y1 (en) sound-proof floor material of construction
JP4074391B2 (en) Sound absorbing structure