JPH09324289A - Active cathode its production and its regenerating method - Google Patents

Active cathode its production and its regenerating method

Info

Publication number
JPH09324289A
JPH09324289A JP8168450A JP16845096A JPH09324289A JP H09324289 A JPH09324289 A JP H09324289A JP 8168450 A JP8168450 A JP 8168450A JP 16845096 A JP16845096 A JP 16845096A JP H09324289 A JPH09324289 A JP H09324289A
Authority
JP
Japan
Prior art keywords
cathode
nickel
layer
rhodium
active cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8168450A
Other languages
Japanese (ja)
Inventor
Takemichi Kishi
剛陸 岸
Osamu Arimoto
修 有元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP8168450A priority Critical patent/JPH09324289A/en
Publication of JPH09324289A publication Critical patent/JPH09324289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an active cathode which is low in a manufacturing cost, is capable of maintaining a low hydrogen overvoltage, is simply and easily regeneratable in case of deterioration and degradation in its activity, maintains the initial high activity and is stably usable over long period of time even after the regeneration and is highly industrially practicable. SOLUTION: This active cathode is formed of a metallic base body, a first layer mainly composed of nickel of a high surface area on this material and a second layer mainly composed of rhodium of a high surface area of the cathode operation on this first layer. The metallic base body of this active cathode is preferably a nickel metal or nickel alloy. The cathode base body formed with the first layer mainly composed of the metallic nickel of the high surface area on the metallic base body is subjected to an immersion treatment in a rhodium salt-contg. soln. or is immersed into this rhodium salt-contg. soln. and is subjected to an electrolytic treatment with the cathode base body as cathode in the rhodium salt-contg. soln., by which the second layer mainly composed of the rhodium is formed on the first layer mainly composed of the nickel and the active cathode is thus produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は活性陰極及びその製
造法並びにその再生方法に関し、詳しくはハロゲン化ア
ルカリ金属、水酸化アルカリ金属等のアルカリ金属塩の
水溶液を長期間低水素過電圧で電気分解することができ
る活性陰極及びその製造法並びにその再生方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active cathode, a method for producing the same and a method for regenerating the same, and more specifically, electrolysis of an aqueous solution of an alkali metal salt such as an alkali metal halide or an alkali metal hydroxide at a low hydrogen overvoltage for a long period of time. The present invention relates to an active cathode that can be used, a manufacturing method thereof, and a reproducing method thereof.

【0002】[0002]

【従来の技術】従来、ハロゲン化アルカリ金属水溶液又
は水酸化アルカリ金属水溶液を、隔膜法、イオン交換膜
法等で電気分解する場合、陰極として軟鉄を主体とする
材料が使用されることが一般的であった。しかし、これ
らの電気分解においては陰極で水素が発生し、その陰極
として使用される軟鉄が水素過電圧が高いという欠点が
あった。そのため、従来の軟鉄主体の陰極の過電圧より
低い水素過電圧を示す活性陰極が種々提案されている。
例えば、ラネーニッケル単体またはラネーニッケルと水
素吸蔵合金を複合メッキしたラネーニッケル系活性陰極
(特公昭61−12032号公報、特公昭61−365
90号公報)、ニッケルの合金を電気メッキしたニッケ
ル合金系活性陰極(特公昭63−4920号、特開昭6
2−253791号、特開昭62−284094号)等
がある。これら提案の活性陰極は、軟鉄等の金属基体上
に、主にニッケル、コバルト、白金族元素の金属単体又
はそれらの混合物又はそれらの酸化物を被膜として形成
されているものであり、被膜の形成方法としては、電気
メッキ法、無電解メッキ法、分散電気メッキ法、溶射
法、浸漬法等が提案されている。
2. Description of the Related Art Conventionally, when an alkali metal halide aqueous solution or an alkali metal hydroxide aqueous solution is electrolyzed by a diaphragm method, an ion exchange membrane method or the like, a material mainly containing soft iron is generally used as a cathode. Met. However, in these electrolysis, hydrogen is generated at the cathode, and the soft iron used as the cathode has a drawback that the hydrogen overvoltage is high. Therefore, various active cathodes have been proposed which exhibit a hydrogen overvoltage lower than that of conventional cathodes mainly composed of soft iron.
For example, Raney nickel alone or a Raney nickel-based active cathode in which Raney nickel and hydrogen storage alloy are composite-plated (Japanese Patent Publication No. 61-12032 and Japanese Patent Publication No. 61-365).
No. 90), a nickel alloy type active cathode electroplated with a nickel alloy (Japanese Patent Publication No. 63-4920, Japanese Patent Laid-Open No. 6-9920)
2-253791, JP-A-62-284094) and the like. These proposed active cathodes are formed on a metal substrate such as soft iron mainly as a coating of a simple substance of nickel, cobalt, a platinum group element, a mixture thereof, or an oxide thereof. As a method, an electroplating method, an electroless plating method, a dispersion electroplating method, a thermal spraying method, a dipping method and the like have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記提
案の従来の低水素過電圧活性陰極は、それぞれ問題があ
り工業的実施の観点からは未だ充分な活性陰極ではな
い。例えば、ラネーニッケル系活性陰極は、低水素過電
圧を保持する特長はあるが、空気と接触することにより
酸化され劣化され易く、また、簡便に再生できず再生コ
ストが嵩む等の欠点がある。また、ニッケル合金系活性
陰極は、水素過電圧がラネーニッケル系活性陰極の水素
過電圧より高く、その上経時的に上昇するという欠点が
ある。一方、特公平5−27712号公報には、従来の
軟鉄基体上にニッケル及びアルミニウムをメッキした活
性陰極の活性が劣化した場合に、陰極室に可溶性の白金
族化合物を添加して電解処理して活性を回復する方法が
提案されている。しかし、この方法によれば、表面活性
を回復させるためには高価な白金族金属を多量に必要と
なり経費が嵩み、また、初期活性は充分回復するが、活
性が直ぐに低下し再生処理を煩雑に行う必要があり、ま
た、再生処理を繰り返すうちに使用中に白金族金属膜が
剥離する等のおそれがあり工業的実用性には問題があっ
た。
However, the conventional low hydrogen overvoltage active cathodes proposed above have problems, and are not yet sufficient active cathodes from the viewpoint of industrial implementation. For example, although the Raney nickel-based active cathode has a feature of maintaining a low hydrogen overvoltage, it has the drawbacks that it is easily oxidized and deteriorated when it comes into contact with air, and that it cannot be easily regenerated and the regeneration cost increases. Further, the nickel alloy-based active cathode has a drawback that the hydrogen overvoltage is higher than that of the Raney nickel-based active cathode and, moreover, increases over time. On the other hand, according to Japanese Patent Publication No. 5-27712, when the activity of an active cathode obtained by plating a conventional soft iron substrate with nickel and aluminum is deteriorated, a soluble platinum group compound is added to the cathode chamber for electrolytic treatment. Methods have been proposed to restore activity. However, according to this method, a large amount of expensive platinum group metal is required to restore the surface activity, and the cost is high. Further, although the initial activity is sufficiently restored, the activity is immediately lowered and the regeneration treatment is complicated. However, the platinum group metal film may be peeled off during use while the regeneration treatment is repeated, which is a problem in industrial practicality.

【0004】本発明は、上記従来の活性陰極及びその再
生の現状に鑑み、酸化反応による劣化のおそれがなく、
且つ、十分に低い水素過電圧を保持でき、また、その活
性陰極の活性が低下したときには、簡便に再生でき、再
生後の活性陰極が、製造された新活性陰極とほぼ同等の
活性陰極性能を回復し長期的に安定して使用できる工業
的実用性に富む活性陰極及びその製造法並びにその再生
方法の提供を目的とする。発明者らは、上記目的のため
従来の活性陰極の構造について再検討し、水素過電圧
を低下させるため高表面積を保持させること、活性低
下した活性陰極の再生が簡便に高活性層を形成させると
共にその再生活性表面が安定であることの2点を満足さ
せることが優れた活性陰極の要件であることを確認し、
そのような要件を具備した活性陰極を得るべく鋭意検討
した。その結果、金属基体、特にニッケル又はニッケル
合金の基体を用い、その金属基体上に、ニッケル層とロ
ジウム層との2層の陰極作動表面を形成することによ
り、従来提案の軟鉄基体上に単にニッケル系金属被膜を
被覆したものに比し、酸化による劣化を防止して高活性
を維持でき、更に、活性低下した活性陰極を所定に処理
して効果的に再生できることを見出し本発明に到った。
In view of the above-mentioned conventional active cathode and the current state of its regeneration, the present invention has no fear of deterioration due to oxidation reaction,
Moreover, it can hold a sufficiently low hydrogen overvoltage, and can be easily regenerated when the activity of the active cathode is lowered, and the regenerated active cathode recovers the active cathode performance almost equal to the manufactured new active cathode. It is an object of the present invention to provide an active cathode, which can be stably used for a long period of time, and which is rich in industrial practicality, a method for producing the same, and a method for reproducing the same. The inventors have re-examined the structure of a conventional active cathode for the above purpose, hold a high surface area to reduce the hydrogen overvoltage, and regenerate the active cathode with reduced activity to easily form a high active layer. It was confirmed that satisfying the two requirements that the regenerated active surface is stable is a requirement for an excellent active cathode,
The inventors have made earnest studies to obtain an active cathode having such requirements. As a result, by using a metal substrate, particularly a nickel or nickel alloy substrate, and forming a two-layer cathode working surface of a nickel layer and a rhodium layer on the metal substrate, it is possible to simply coat nickel on a conventionally proposed soft iron substrate. The present invention has been found to be capable of preventing deterioration due to oxidation and maintaining high activity as compared with those coated with a metal-based coating, and further capable of effectively regenerating an active cathode having a reduced activity by predetermined treatment. .

【0005】[0005]

【課題を解決するための手段】本発明によれば、金属基
体、該金属基体上の高表面積のニッケル主体の第1層及
び該第1層上の陰極作動高表面積のロジウム主体の第2
層とから形成されてなることを特徴とする活性陰極が提
供される。本発明の活性陰極において、金属基体がニッ
ケル金属又はニッケル合金であることが好ましい。ま
た、ニッケル主体の第1層がラネーニッケルであること
が好ましく、前記第2層が、陰極の投影面積1m2 当た
り0.1〜5gのロジウムを有することが好ましくい。
更に、前記陰極作動面積が、陰極の投影面積1m2 に対
し30〜3000倍であることが好ましい。なお、本発
明において陰極作動面積とは、陰極の外見上の面積(投
影面積)とは異なり実質的に陰極として作動可能な部分
の表面積をいう。
According to the present invention, a metal substrate, a high surface area nickel-based first layer on the metal substrate, and a cathode operating high surface area rhodium-based second layer on the first layer.
An active cathode is provided which is formed of a layer. In the active cathode of the present invention, the metal substrate is preferably nickel metal or nickel alloy. Further, it is preferable that the first layer composed mainly of nickel is Raney nickel, and that the second layer contains 0.1 to 5 g of rhodium per 1 m 2 of the projected area of the cathode.
Further, the cathode working area is preferably 30 to 3000 times the projected area of the cathode of 1 m 2 . In the present invention, the cathode working area means a surface area of a portion which can be substantially operated as a cathode, unlike an apparent area (projected area) of the cathode.

【0006】本発明によれば、金属基体上に高表面積の
金属ニッケル主体の第1層が形成されてなる陰極基体
を、ロジウム塩含有溶液に浸漬処理、または、ロジウム
塩含有溶液に浸漬して陰分極処理して、該第1層上にロ
ジウム主体の第2層を形成することを特徴とする活性陰
極の製造法が提供される。本発明の活性陰極の製造法に
おいて、金属基体がニッケル金属又はニッケル合金であ
ることが好ましい。
According to the present invention, a cathode substrate comprising a metal substrate and a first layer mainly composed of metal nickel having a high surface area is dipped in a rhodium salt-containing solution or dipped in a rhodium salt-containing solution. There is provided a method of manufacturing an active cathode, which comprises performing a negative polarization treatment to form a second layer mainly composed of rhodium on the first layer. In the method for producing an active cathode of the present invention, it is preferable that the metal substrate is nickel metal or nickel alloy.

【0007】また、本発明は、上記の前記各活性陰極を
用いたハロゲン化アルカリ金属水溶液又は水酸化アルカ
リ金属水溶液の電解処理において、前記活性陰極の活性
低下時に電解陰極室内にロジウム塩を添加し、電解処理
を継続して活性陰極の活性を回復させることを特徴とす
る活性陰極の再生方法を提供する。本発明の活性陰極の
再生方法において、前記ロジウム塩の添加量が、陰極投
影面積1m2 当たり1×10-3〜5×10-2モルである
ことが好ましい。
Further, in the present invention, in the electrolytic treatment of an alkali metal halide aqueous solution or an alkali metal hydroxide aqueous solution using each of the above-mentioned active cathodes, a rhodium salt is added to the electrolytic cathode chamber when the activity of the active cathode is lowered. Provided is a method of regenerating an active cathode, which comprises continuing the electrolytic treatment to recover the activity of the active cathode. In the method for regenerating an active cathode of the present invention, the addition amount of the rhodium salt is preferably 1 × 10 −3 to 5 × 10 −2 mol per 1 m 2 of projected cathode area.

【0008】本発明は上記のように構成され、金属基
体、好ましくはニッケルまたはニッケル合金のニッケル
系金属基体上に、ニッケル主体の、特に高活性のラネー
ニッケルで形成される広大な表面積を有する第1層と、
その上に更にロジウム主体の第2層を被覆形成すること
から、陰極の実質的作動表面である第2層のロジウム表
面が、ラネーニッケルと同様に高表面積を有し高活性と
なる。更に、第2層のロジウム金属は、浸漬析出または
電気メッキにより形成されるため、微細な粒子からな
り、より高表面積を有することになる。陰極作動表面と
なるロジウム金属は、ラネーニッケルと異なり、酸化さ
れにくく活性が低下することが少なく、低水素過電圧の
高活性を長期間保持できる。また、第1層のラネーニッ
ケルは表面に微細孔等表面が凹凸であり、第2層のロジ
ウムはその微細な凹凸のため強固に付着形成され、長期
間安定して使用することができる。
The present invention is constructed as described above, and has a large surface area formed on a metal substrate, preferably a nickel-based metal substrate of nickel or nickel alloy, which is mainly composed of Raney nickel having a high nickel activity. Layers and
Since a second layer mainly composed of rhodium is further formed thereon by coating, the rhodium surface of the second layer, which is the substantial working surface of the cathode, has a high surface area similar to Raney nickel and becomes highly active. Furthermore, the rhodium metal of the second layer is formed by immersion deposition or electroplating, and thus is composed of fine particles and has a higher surface area. Unlike Raney nickel, the rhodium metal used as the cathode operating surface is unlikely to be oxidized and its activity is less likely to decrease, and it is possible to maintain high activity with low hydrogen overvoltage for a long period of time. The Raney nickel of the first layer has irregularities such as fine pores on the surface thereof, and the rhodium of the second layer is firmly adhered and formed due to the fine irregularities, and can be used stably for a long period of time.

【0009】また、本発明の活性陰極は、ラネーニッケ
ル等の金属ニッケルまたは酸化ニッケル等のニッケル化
合物で形成されるニッケル主体の第1層は、ニッケル系
金属基体上に形成され極めて安定であり、更に、高表面
積を有する第1層表面上に微細粒子のロジウム金属を被
覆したロジウム主体の第2層が形成されることから、陰
極作動に寄与する表面積が増大し表面活性の向上を図る
ことができる。更に、長期間の使用により活性の低下し
た場合は、第2層の形成と同様にロジウム含有溶液に浸
漬し電解メッキ被覆することにより、新活性陰極と同等
の活性を有するロジウム表面を形成して再生することが
でき、再生後も安定して高活性を維持することができ
る。これらの再生後の著しい高活性の回復及びその高活
性維持の著しい向上の理由は明らかでないが、従来の軟
鉄を基体とする活性陰極に比し、基体がニッケル金属又
はニッケル合金のニッケル系金属で構成され、且つ、そ
の直上の第1層をニッケルまたはニッケル化合物で形成
し、更にその第1層の表面を被覆する第2層としてロジ
ウム金属を選択したことから、各層の接合性が優れ、安
定した高活性が得られる。また、活性低下によるロジウ
ム主体の第2層の再生が容易であり、活性の回復とその
安定性が著しく優れる。
Further, in the active cathode of the present invention, the first layer composed mainly of nickel, which is formed of metallic nickel such as Raney nickel or a nickel compound such as nickel oxide, is formed on a nickel-based metallic substrate and is extremely stable. Since the second layer composed mainly of rhodium coated with fine particles of rhodium metal is formed on the surface of the first layer having a high surface area, the surface area contributing to the cathode operation is increased and the surface activity can be improved. . Furthermore, when the activity decreases due to long-term use, the surface of the rhodium having the same activity as the new active cathode is formed by immersing in a rhodium-containing solution and performing electrolytic plating as in the case of forming the second layer. It can be regenerated, and high activity can be stably maintained after the regeneration. Although the reason for the remarkable recovery of the high activity after the regeneration and the significant improvement of the maintenance of the high activity is not clear, compared with the conventional active cathode based on soft iron, the base is made of nickel metal or nickel-based metal of nickel alloy. Since the first layer is formed of nickel or a nickel compound immediately above it and rhodium metal is selected as the second layer for covering the surface of the first layer, the bondability of each layer is excellent and stable. High activity is obtained. Further, the regeneration of the second layer mainly composed of rhodium due to the lowered activity is easy, and the recovery of the activity and its stability are remarkably excellent.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の活性陰極の金属基体の材質は特に制限さ
れないが、少なくともその表面がニッケル金属またはニ
ッケル合金のニッケル系金属で形成されるニッケル系基
体が好ましい。従って、基体そのものをニッケル金属ま
たはニッケル合金で形成してもよいし、従来の活性陰極
で使用されているステンレス鋼、ニッケル、コバルト等
の通常の金属基体の表面上にニッケル金属またはニッケ
ル合金被膜を形成したものを使用することができる。例
えば、従来の軟鉄基体上にラネーニッケル等のニッケル
系金属を被覆して形成された活性陰極が電解処理に使用
され活性低下したものを本発明の活性陰極の金属基体と
して用いることもできる。また、上記ニッケル系基体の
構造としては、平板状、エキスパンドメタル状、穿孔板
状、網状、棒状等が使用でき、特に限定されない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The material of the metal substrate of the active cathode of the present invention is not particularly limited, but a nickel-based substrate at least the surface of which is formed of nickel-based metal such as nickel metal or nickel alloy is preferable. Therefore, the substrate itself may be formed of nickel metal or nickel alloy, or a nickel metal or nickel alloy coating may be formed on the surface of a conventional metal substrate such as stainless steel, nickel, or cobalt used in conventional active cathodes. What was formed can be used. For example, an active cathode formed by coating a conventional soft iron substrate with a nickel-based metal such as Raney nickel for use in electrolytic treatment and having reduced activity can also be used as the metal substrate of the active cathode of the present invention. The structure of the nickel-based substrate may be flat plate, expanded metal, perforated plate, net, rod or the like, and is not particularly limited.

【0011】本発明の第1層は、上記ニッケル系基体上
に形成されるニッケルを主体とする層であり、従来提案
されている活性陰極と同様にして形成されたものを用い
ることができる。ニッケル主体の第1層は、ニッケル金
属、ニッケル−スズ、ニッケル−クロム等のニッケル合
金、酸化ニッケル等のニッケル化合物等で形成される。
特に、ラネーニッケルまたはラネーニッケルと水素吸蔵
合金とから形成されるラネーニッケル系が好ましい。こ
れらは、従来から広大な高表面積を有することがよく知
られている。また、金属基体として従来のニッケル系活
性陰極の活性低下したものを用いる場合は、ニッケル主
体の第1層をそのニッケル系表面上に新たに形成するこ
とが好ましい。上記のニッケル主体の第1層は、通常の
電気メッキ法、無電解メッキ法、分散電気メッキ法、溶
射法または浸漬法で形成することができ、主体ニッケル
の種類に応じ適宜選択すればよい。第1層の厚さは、1
0〜500μmであればよく、使用条件等に応じ適宜選
択することができる。通常、50〜300μmである。
The first layer of the present invention is a layer mainly composed of nickel formed on the above nickel-based substrate, and a layer formed in the same manner as the conventionally proposed active cathode can be used. The first layer mainly composed of nickel is formed of nickel metal, nickel alloy such as nickel-tin and nickel-chromium, nickel compound such as nickel oxide and the like.
In particular, Raney nickel or a Raney nickel system formed from Raney nickel and a hydrogen storage alloy is preferable. It is well known that these have a vast and high surface area conventionally. When a conventional nickel-based active cathode having a reduced activity is used as the metal substrate, it is preferable to newly form the first layer mainly containing nickel on the nickel-based surface. The nickel-based first layer can be formed by a usual electroplating method, electroless plating method, dispersion electroplating method, thermal spraying method or dipping method, and may be appropriately selected according to the type of the main nickel. The thickness of the first layer is 1
The thickness may be 0 to 500 μm, and can be appropriately selected according to usage conditions and the like. Usually, it is 50 to 300 μm.

【0012】本発明の活性陰極の第2層は、上記第1層
表面をロジウムで被覆して形成される。本発明の活性陰
極の第2層を形成するロジウムの量は、第1層の種類、
水素過電圧の目標値、ロジウムの析出法等により適宜選
択することができる。通常、陰極の投影面積1m2 当た
り0.1〜5gであり、好ましくは0.2〜2gであ
る。ロジウム量が0.1g未満の場合は、過電圧低下の
効果が十分発揮できない。また、5gより多い場合は、
使用するロジウム量に見合うだけの水素過電圧低下が得
られず好ましくない。本発明において、ロジウム量は、
ニッケル主体の高表面積の第1層の少なくとも1%以
上、好ましくは全域を被覆するように第1層の表面形態
に応じて、上記範囲で適宜選択することができる。
The second layer of the active cathode of the present invention is formed by coating the surface of the first layer with rhodium. The amount of rhodium forming the second layer of the active cathode of the present invention is determined by the type of the first layer,
It can be appropriately selected depending on a target value of hydrogen overvoltage, a rhodium deposition method, and the like. Usually, it is 0.1 to 5 g, preferably 0.2 to 2 g per 1 m 2 of the projected area of the cathode. If the amount of rhodium is less than 0.1 g, the effect of lowering the overvoltage cannot be sufficiently exerted. If it is more than 5g,
It is not preferable because hydrogen overvoltage reduction corresponding to the amount of rhodium used cannot be obtained. In the present invention, the amount of rhodium is
Depending on the surface morphology of the first layer, it can be appropriately selected so as to cover at least 1% or more, preferably the entire region, of the nickel-based high surface area first layer.

【0013】本発明のロジウム主体の第2層の厚さは、
約0.001〜0.5μm、好ましくは0.005〜
0.1μmである。本発明で使用するロジウムの量は上
記のように極めて少なく、従来から白金族金属としては
白金やルテニウムがよく用いられそれら使用量の約10
分の1の使用量で同等の活性を得ることができる。この
ことは本発明者らにより初めて見いだされたものであ
る。ロジウムが水素発生の反応活性が非常に高いためと
推定される。また、当業者において、ロジウムは単価が
高く、従来白金族金属として例示されていても全く使用
が予定されなかったのに対し、本発明により初めて実用
的な僅少量での使用が可能となった。実際、白金やルテ
ニウムより安価に活性陰極を製造することができる。
The rhodium-based second layer of the present invention has a thickness of
About 0.001-0.5 μm, preferably 0.005-
0.1 μm. The amount of rhodium used in the present invention is extremely small as described above, and platinum or ruthenium has been often used as the platinum group metal and has been used in an amount of about 10%.
Equivalent activity can be obtained with a usage amount of 1 / min. This was first discovered by the present inventors. It is presumed that rhodium has a very high reaction activity for hydrogen generation. Further, for those skilled in the art, rhodium has a high unit price, and although it has not been planned to be used at all even though it has been conventionally exemplified as a platinum group metal, the present invention makes it possible to use it in a practically small amount for the first time. . In fact, active cathodes can be manufactured cheaper than platinum and ruthenium.

【0014】本発明の活性陰極の第2層は、上記したニ
ッケル主体の第1層上に形成され広大な表面積を有し、
陰極作動高面積を有する。本発明において、陰極作動表
面積とは実質的に陰極として作動する表面積をいい、陰
極作動する表面積として活性陰極の外見上の単位面積当
たり、即ち、陰極の投影面積1m2 に対して約30〜3
000倍の広さの表面積を有することが好ましい。本発
明の第2層の陰極作動表面積は、ほぼ第1層の形態に依
存する。本発明の活性陰極は、上記のようにニッケル系
基体表面が、ニッケル主体の第1層で被覆され、その第
1層表面をニッケルより化学的耐久性に優れ酸化されに
くいロジウム主体の第2層が被覆することから、電解槽
を形成した場合でもイオン交換膜を汚染することがな
く、また、活性の低下も抑制される。
The second layer of the active cathode of the present invention is formed on the above-mentioned nickel-based first layer and has a large surface area.
It has a high cathode operating area. In the present invention, the term "cathode working surface area" refers to a surface area which operates substantially as a cathode, and is about 30 to 3 per unit apparent surface area of the active cathode, that is, a projected area of the cathode of 1 m 2 as the surface area which operates as a cathode.
It is preferable to have a surface area that is 000 times as large. The cathode working surface area of the second layer of the present invention depends largely on the morphology of the first layer. In the active cathode of the present invention, as described above, the surface of the nickel-based substrate is covered with the first layer containing nickel as a main component, and the surface of the first layer is composed of the second layer containing rhodium which is more chemically durable and less likely to be oxidized than nickel. Therefore, even if an electrolytic cell is formed, the ion exchange membrane is not contaminated, and the decrease in activity is suppressed.

【0015】本発明の活性陰極の製造方法において、前
記のように従来と同様にしてニッケル系基体上に形成さ
れるニッケル主体の第1層上のロジウム主体の第2層の
形成は、第1層が形成された陰極基体を、ロジウム塩含
有溶液に浸漬処理、または浸漬し陰分極処理する方法が
採用される。即ち、可溶性ロジウム塩含有水溶液に、第
1層形成の陰極基体を浸漬保持することにより、また
は、浸漬後陰分極処理、即ち、第1層形成の陰極基体を
陰極として用い電解して電気メッキすることにより、ロ
ジウムイオンが還元されて第1層上にロジウム膜が形成
される。陰分極処理は、多めのロジウムを析出させる場
合等に有効である。また、本発明の活性陰極を用いてア
ルカリ金属塩の電気分解処理を行い、その処理中に活性
陰極が劣化した場合に、電気分解処理の陰極室に可溶性
ロジウム塩含有溶液を添加することにより、活性を回復
させ再生して使用することができる。これら浸漬析出ま
たは陰分極の電気メッキにより第1層表面を被覆する第
2層の金属ロジウムは、一般に0.001〜0.01μ
mの微細粒子となるため、第1層の高表面積に増してよ
り高表面積を得ることができる。
In the method of manufacturing an active cathode according to the present invention, as described above, the formation of the rhodium-based second layer on the nickel-based first layer formed on the nickel-based substrate is performed in the first A method of immersing the cathode substrate on which the layer is formed in a rhodium salt-containing solution or immersing the cathode substrate in a negative polarization treatment is adopted. That is, by dipping and holding the cathode substrate having the first layer formed in a soluble rhodium salt-containing aqueous solution, or after the dipping, a negative polarization treatment is performed, that is, electrolysis is performed by electrolysis using the cathode substrate having the first layer forming as a cathode. As a result, rhodium ions are reduced and a rhodium film is formed on the first layer. The negative polarization treatment is effective when a large amount of rhodium is deposited. Further, the electrolysis treatment of the alkali metal salt using the active cathode of the present invention, when the active cathode is deteriorated during the treatment, by adding a soluble rhodium salt-containing solution to the cathode chamber of the electrolysis treatment, The activity can be recovered and regenerated for use. The metal rhodium of the second layer which covers the surface of the first layer by dipping precipitation or electroplating of negative polarization is generally 0.001 to 0.01 μm.
Since the fine particles are m, it is possible to increase the surface area of the first layer to obtain a higher surface area.

【0016】本発明で使用するロジウム塩としては特に
限定されず、三塩化ロジウム3水和物、三臭化ロジウム
2水和物、硫酸ロジウム4水和物、亜硫酸ロジウム6水
和物、硝酸ロジウム2水和物、ギ酸ロジウム、酢酸ロジ
ウム、三フッ化ロジウム9水和物、ヘキサクロロロジウ
ム酸、ヘキサクロロロジウム酸塩等が使用できる。ロジ
ウム塩を水、酸、アルカリ等の適当な溶媒に溶かし、ロ
ジウム塩含有溶液を調製する。ロジウム塩含有溶液の濃
度は、第1層のニッケル形態、析出させるロジウム量、
析出被覆法としてイオン化傾向差を利用するか、または
電気メッキするかにより適宜選択することができる。通
常、10-7〜0.1モル/リットル、好ましくは10-6
〜10-2モル/リットルである。ロジウム塩濃度が10
-7モル/リットルより薄い場合は、第1層をロジウム被
覆処理するのに時間がかかり過ぎたり、大量の溶液を使
用しなくてはならない等の問題があり好ましくなく、ロ
ジウム塩溶液の濃度が0.1モル/リットルより濃い場
合は、第1層のロジウム処理が速すぎ、所定の厚みのロ
ジウム層を得るのが困難であり好ましくない。本発明の
活性陰極は、上記のようにニッケル系基体上に、ニッケ
ルを主体とする第1層及びロジウム主体の第2層が順次
形成されてなるものであり、従来の活性陰極表面、即ち
ニッケル主体の第1層表面がロジウムにより被覆され、
陰極作動表面が高活性で且つ安定なロジウムで置換され
てなるものである。
The rhodium salt used in the present invention is not particularly limited, and rhodium trichloride trihydrate, rhodium tribromide dihydrate, rhodium sulfate tetrahydrate, rhodium sulfite hexahydrate, rhodium nitrate. Dihydrate, rhodium formate, rhodium acetate, rhodium trifluoride nonahydrate, hexachlororhodic acid, hexachlororhodate, etc. can be used. A rhodium salt is dissolved in a suitable solvent such as water, acid or alkali to prepare a rhodium salt-containing solution. The concentration of the rhodium salt-containing solution depends on the nickel morphology of the first layer, the amount of rhodium to be deposited,
The precipitation coating method can be appropriately selected depending on whether an ionization tendency difference is used or electroplating is performed. Usually, 10 -7 to 0.1 mol / liter, preferably 10 -6
It is about 10 -2 mol / liter. Rhodium salt concentration is 10
If it is less than -7 mol / liter, there are problems that it takes too much time to coat the first layer with rhodium, and a large amount of solution must be used. When the concentration is more than 0.1 mol / liter, the rhodium treatment of the first layer is too fast, and it is difficult to obtain a rhodium layer having a predetermined thickness, which is not preferable. The active cathode of the present invention comprises a nickel-based substrate and a nickel-based first layer and a rhodium-based second layer, which are sequentially formed on a nickel-based substrate as described above. The first layer surface of the main body is coated with rhodium,
The cathode working surface is substituted with highly active and stable rhodium.

【0017】[0017]

【実施例】以下、本発明について実施例に基づき、更に
詳細に説明する。但し、本発明は下記の実施例に制限さ
れるものではない。 実施例1〜4及び比較例1 (金属基体上へ第1層の製造:陰極基体の製造)ニッケ
ル製エキスパンドメタル(20mm×20mm)を苛性
ソーダ溶液で脱脂後、水洗し、更に、塩酸(1+1)で
エッチングした。水洗後、表1に示す条件でニッケル基
体上にラネーニッケルを主体とする活性陰極を分散メッ
キ法で形成した。ニッケル基体上に分散メッキしたもの
を水洗後、20%苛性ソーダ溶液に70〜80℃で2時
間浸漬してアルミニウム分を除去してニッケル製基体上
にラネーニッケルの第1層を形成した。上記の操作を1
0バッチ行い、ラネーニッケルからなる第1層を有する
陰極基体サンプルを合計10本作製した。各陰極基体サ
ンプルの表面粗度を二重層容量法で測定したところ、平
均1350m2 /m2 であった。
EXAMPLES The present invention will now be described in more detail based on examples. However, the present invention is not limited to the following examples. Examples 1 to 4 and Comparative Example 1 (Production of First Layer on Metal Substrate: Production of Cathode Substrate) Nickel expanded metal (20 mm × 20 mm) was degreased with a caustic soda solution, washed with water, and further hydrochloric acid (1 + 1). It was etched in. After washing with water, an active cathode mainly containing Raney nickel was formed on the nickel substrate by the dispersion plating method under the conditions shown in Table 1. The dispersion-plated nickel substrate was washed with water, immersed in a 20% caustic soda solution at 70 to 80 ° C. for 2 hours to remove the aluminum content, and a Raney nickel first layer was formed on the nickel substrate. The above operation 1
0 batches were carried out to prepare a total of 10 cathode substrate samples having the first layer made of Raney nickel. When the surface roughness of each cathode substrate sample was measured by the double layer capacitance method, the average was 1350 m 2 / m 2 .

【0018】[0018]

【表1】 [Table 1]

【0019】(ロジウム第2層形成)上記のようにして
得られた陰極基体サンプルの5本を水洗後、空気中に1
2時間放置し活性を低下させた。活性が低下した第1層
上にロジウム層を電気メッキにより形成した。即ち、各
陰極基体サンプルを陰極、ニッケル板を陽極として、2
0%苛性ソーダに浸し、温度20〜25℃、電流密度3
0A/dm2 、処理時間20分の条件下で処理し、各陰
極基体サンプル上にそれぞれロジウム層が0.2、0.
5、1及び2g/m2 形成されるように電気メッキし
た。ロジウム層の析出量は、20%苛性ソーダ溶液への
ヘキサクロロロジウム酸添加量を変化させて調節した。
(Formation of Rhodium Second Layer) Five cathode substrate samples obtained as described above were washed with water and then exposed to 1 in air.
It was left for 2 hours to reduce the activity. A rhodium layer was formed by electroplating on the first layer with reduced activity. That is, using each cathode substrate sample as a cathode and a nickel plate as an anode,
Immerse in 0% caustic soda, temperature 20 ~ 25 ℃, current density 3
0 A / dm 2 , treatment time of 20 minutes, rhodium layers of 0.2, 0.
Electroplated to form 5, 1 and 2 g / m 2 . The amount of the rhodium layer deposited was adjusted by changing the amount of hexachlororhodic acid added to the 20% caustic soda solution.

【0020】(水素過電圧の測定)上記のようにして作
製されたニッケル金属基体上にラネーニッケル第1層及
びロジウム第2層を有する活性陰極について、水素過電
圧をカレントインタラプター法で測定した。測定条件
は、温度80℃、NaOH32%、電流密度30A/d
2 、参照電極Hg/HgO(32%NaOH)であっ
た。また、電気メッキしなかったニッケル金属基体上に
ラネーニッケル第1層を有する陰極基体サンプル1本に
ついても同様に水素過電圧を測定した(比較例1)。そ
れらの結果を表2に示した。
(Measurement of Hydrogen Overvoltage) The hydrogen overvoltage of the active cathode having the Raney nickel first layer and the rhodium second layer on the nickel metal substrate produced as described above was measured by the current interrupter method. The measurement conditions are: temperature 80 ° C., NaOH 32%, current density 30 A / d
m 2 and the reference electrode were Hg / HgO (32% NaOH). Further, the hydrogen overvoltage was similarly measured for one cathode substrate sample having a Raney nickel first layer on a nickel metal substrate which was not electroplated (Comparative Example 1). The results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】上記実施例及び比較例から、従来のラネー
ニッケルの活性陰極表面が酸化され劣化した表面に、ロ
ジウムの第2層を電気メッキした本発明の活性陰極は、
劣化されたラネーニッケル活性陰極より、水素過電圧が
低くなることが分かる。また、表面を被覆したロジウム
量が0.2〜2.0g/m2 で増加するに従い、徐々に
低下することが分かる。
From the above examples and comparative examples, the active cathode of the present invention, in which the second layer of rhodium is electroplated on the surface of the conventional Raney nickel active cathode which has been oxidized and deteriorated,
It can be seen that the hydrogen overvoltage is lower than that of the deteriorated Raney nickel active cathode. Further, it can be seen that as the amount of rhodium coated on the surface increases at 0.2 to 2.0 g / m 2 , it gradually decreases.

【0023】実施例5〜8及び比較例2 実施例1〜4と同一に処理して作製したラネーニッケル
の第1層を有す活性陰極サンプル5本のうち、4本をイ
オン化傾向差によるロジウム析出処理をした。即ち、2
0%苛性ソーダと0.1重量%ヘキサクロロロジウム酸
溶液を混合したロジウム約0.002重量%水溶液に、
各活性陰極サンプルを浸漬し、表面にロジウムを析出さ
せた。浸漬前後のロジウム濃度の差より析出ロジウム量
を求めた。ロジウム析出量を、浸漬時間を変えることに
より変化させ、実施例1〜4と同様の析出量とした。ロ
ジウムが表3に示した量でそれぞれ被覆された各活性陰
極サンプルの水素過電圧を同様に測定した。また、ロジ
ウム処理をしなかった活性陰極サンプルの水素過電圧も
同様に測定した(比較例2)。それらの結果を表3に示
した。
Examples 5 to 8 and Comparative Example 2 Of the five active cathode samples having the first layer of Raney nickel prepared by the same treatment as in Examples 1 to 4, four were rhodium deposited due to the difference in ionization tendency. Processed. That is, 2
About 0.002% by weight aqueous solution of rhodium mixed with 0% caustic soda and 0.1% by weight hexachlororhodic acid solution,
Each active cathode sample was dipped to deposit rhodium on the surface. The amount of precipitated rhodium was determined from the difference in rhodium concentration before and after immersion. The rhodium deposition amount was changed by changing the dipping time to obtain the same deposition amount as in Examples 1 to 4. The hydrogen overvoltage of each active cathode sample coated with rhodium in the amounts shown in Table 3 was similarly measured. In addition, the hydrogen overvoltage of the active cathode sample that was not treated with rhodium was measured in the same manner (Comparative Example 2). Table 3 shows the results.

【0024】[0024]

【表3】 [Table 3]

【0025】上記実施例及び比較例から、従来のラネー
ニッケルの活性陰極表面表面に、ロジウムの第2層をイ
オン化傾向により析出した本発明の活性陰極は、劣化前
のラネーニッケル活性陰極より水素過電圧が低くなるこ
とが分かる。また、表面を被覆したロジウム量が0.2
〜2.0g/m2 で増加するに従い、徐々に低下するこ
とが分かる。
From the above Examples and Comparative Examples, the active cathode of the present invention in which the second layer of rhodium is deposited on the surface of the conventional Raney nickel active cathode by the tendency of ionization has a lower hydrogen overvoltage than the Raney nickel active cathode before deterioration. I see. The amount of rhodium coated on the surface is 0.2
It can be seen that it gradually decreases with an increase of ~ 2.0 g / m 2 .

【0026】実施例9〜11及び比較例3 ニッケル製エキスパンデッドメタル(100mm×10
0mm)をニッケル製の陰極室枠体に溶接し、枠体の外
面を合成樹脂製テープで被覆し、陽極としてPt/Ti
板(1dm2 )を用い電解槽を形成し、陰極としてのニ
ッケル製エキスパンデッドメタル部を表4に示した条件
で電気メッキした。これにより4つのニッケル−スズの
表面を有する活性陰極を作製した。
Examples 9 to 11 and Comparative Example 3 Nickel expanded metal (100 mm × 10
0 mm) is welded to a nickel cathode chamber frame body, the outer surface of the frame body is covered with a synthetic resin tape, and Pt / Ti is used as an anode.
An electrolytic cell was formed using a plate (1 dm 2 ), and a nickel expanded metal portion as a cathode was electroplated under the conditions shown in Table 4. This produced an active cathode with four nickel-tin surfaces.

【0027】[0027]

【表4】 [Table 4]

【0028】次いで、得られた4つの活性陰極を、陽イ
オン交換膜(デュポン社製ナフィオン962)及び食塩
電解用不溶性陽極(ペルメレック社製)を使用して、電
極間距離を2mmとして電解槽に組立て、温度85℃、
電流密度30A/dm2 、陰極液として32重量%水酸
化ナトリウム水溶液、陽極室から流出する淡塩水濃度を
200g/リットルとし、45日間連続して食塩水の電
気分解を行った。運転日数が46日目に運転を停止し、
陽極と陰極とを銅線で導電接続する短絡試験を1時間毎
に10回実施した。短絡試験後、3つの電解槽の陰極室
にヘキサクロロロジウム酸溶液(Rhとして1.1g/
リットル含有)をそれぞれ0.6(実施例9)、1.5
(実施例10)、3.0(実施例11)ミリリットル加
えた。同量のヘキサクロロロジウム酸溶液を運転日数4
7日目と48日目にも加えた。ロジウム析出量と電解電
圧の関係を表5に示した。また、ロジウムを添加しない
場合の電解電圧も表5に示した(比較例3)。
Then, the four active cathodes thus obtained were put into an electrolytic cell using a cation exchange membrane (Nafion 962 manufactured by DuPont) and an insoluble anode for salt electrolysis (manufactured by Permelek) with an electrode distance of 2 mm. Assembly, temperature 85 ℃,
With a current density of 30 A / dm 2 , a 32 wt% aqueous sodium hydroxide solution as the catholyte, and a concentration of fresh salt water flowing out of the anode chamber of 200 g / liter, saline was electrolyzed continuously for 45 days. Stops driving on the 46th day,
A short circuit test in which the anode and the cathode were conductively connected with a copper wire was carried out 10 times every hour. After the short circuit test, hexachlororhodic acid solution (Rh of 1.1 g /
(Containing liter) 0.6 (Example 9) and 1.5, respectively.
(Example 10), 3.0 (Example 11) ml was added. Operate the same amount of hexachlororhodic acid solution for 4 days
It was also added on days 7 and 48. Table 5 shows the relationship between the amount of rhodium deposited and the electrolysis voltage. In addition, the electrolytic voltage when rhodium was not added is also shown in Table 5 (Comparative Example 3).

【0029】[0029]

【表5】 [Table 5]

【0030】電解槽の陰極室にロジウム塩含有水溶液を
添加して電解することにより、電解電圧が上昇して劣化
したニッケル−スズ表面の活性陰極が再生され電解電圧
が低下することが分かる。また、表面析出Rh量が多く
なるに従い、活性が増加することが分かる。
It can be seen that by adding a rhodium salt-containing aqueous solution to the cathode chamber of the electrolytic cell for electrolysis, the active cathode on the surface of the nickel-tin which has deteriorated due to the increase in the electrolysis voltage is regenerated and the electrolysis voltage decreases. Further, it can be seen that the activity increases as the amount of Rh deposited on the surface increases.

【0031】比較4〜7 ステンレス製エキスパンドメタル(100mm×100
mm)をステンレス製枠体に溶接し、枠の外面を合成樹
脂テープで被覆した後に、電解エッチング→水洗→
ストライクメッキ→水洗→分散メッキ→水洗→
分散メッキ→水洗の操作で、活性炭と硫黄を含むニ
ッケル分散メッキ層を有する活性陰極を作製した。この
活性陰極を用い、陽イオン交換膜(旭硝子製フレミオン
893)、食塩電解用不溶性陽極(ペルメレック社製)
を使用し、電極間距離を2mmとして3つの電解室を有
する電解槽を形成した。形成した電解槽において、温度
85℃、電流密度30A/dm2 、陰極液として32重
量%水酸化ナトリウム水溶液、陽極室から流出する淡塩
水濃度200g/リットルとし、食塩水の電気分解を2
00日連続して行った。運転日数が201日目に電解槽
の3つの陰極室にヘキサクロロロジウム酸(Rhとして
1.1g/リットル含有水溶液)をそれぞれ0.6(比
較例4)、1.5(比較例5)、3.0(比較例6)及
び0(比較例7)ミリリットル加えた。同量のヘキサク
ロロロジウム酸溶液を運転日数202日目と203日目
にも加えた。電解槽の陰極室にヘキサクロロロジウム酸
溶液を添加する方法は、陰極室へ送入する純水の注加ラ
インに所定量のヘキサクロロロジウム酸溶液を一度で加
えることで行った。ロジウム析出量と電解電圧の関係を
表6に示した。
Comparison 4-7 Stainless steel expanded metal (100 mm × 100
mm) is welded to a stainless steel frame and the outer surface of the frame is covered with a synthetic resin tape, followed by electrolytic etching → washing with water →
Strike plating → Washing → Dispersion plating → Washing →
An active cathode having a nickel-dispersed plating layer containing activated carbon and sulfur was produced by the operations of dispersion plating and washing with water. Using this active cathode, a cation exchange membrane (Flemion 893 made by Asahi Glass), an insoluble anode for salt electrolysis (made by Permelek)
Was used to form an electrolytic cell having three electrolytic chambers with an interelectrode distance of 2 mm. In the formed electrolytic cell, the temperature was 85 ° C., the current density was 30 A / dm 2 , the aqueous solution of 32 wt% sodium hydroxide was used as the catholyte, the concentration of fresh salt water flowing out from the anode chamber was 200 g / liter, and the electrolysis of saline solution was performed to 2
It was carried out continuously for 00 days. On the 201st day of operation, hexachlororhodic acid (1.1 g / liter aqueous solution containing Rh) was added to each of the three cathode chambers of the electrolytic cell at 0.6 (Comparative Example 4), 1.5 (Comparative Example 5), and 3 respectively. 0 (Comparative Example 6) and 0 (Comparative Example 7) milliliters were added. The same amount of hexachlororhodic acid solution was also added to the operation days 202 and 203. The hexachlororhodic acid solution was added to the cathode chamber of the electrolytic cell by adding a predetermined amount of the hexachlororhodic acid solution at once to the pure water pouring line fed into the cathode chamber. Table 6 shows the relationship between the amount of rhodium deposited and the electrolysis voltage.

【0032】[0032]

【表6】 [Table 6]

【0033】上記の比較例より、ニッケル系基体でない
通常の金属基体表面に活性炭と硫黄を含むニッケル分散
メッキ層を有する活性陰極を用いて食塩の電解処理を行
い、電解電圧が上昇し活性陰極が劣化した場合に、活性
陰極の陰極室にロジウム塩含有水溶液を添加して電解す
ることにより、劣化した活性陰極が再生され電解電圧が
低下するが、上記実施例9〜11に比しその電圧が高く
ニッケル系基体を用いた活性陰極がロジウム被覆再生後
の活性に優れることが分かる。
From the above comparative example, electrolytic treatment of sodium chloride was performed using an active cathode having a nickel-dispersed plating layer containing activated carbon and sulfur on the surface of an ordinary metal substrate which is not a nickel-based substrate, and the electrolytic voltage was increased to raise the active cathode. In the case of deterioration, by adding a rhodium salt-containing aqueous solution to the cathode chamber of the active cathode and electrolyzing, the deteriorated active cathode is regenerated and the electrolysis voltage decreases, but the voltage is lower than in Examples 9 to 11 above. It can be seen that the active cathode using a nickel-based substrate is highly excellent in activity after regeneration of the rhodium coating.

【0034】[0034]

【発明の効果】本発明の活性陰極は、ニッケル系基板上
にニッケル系の陰極作動表面を形成した活性陰極を陰極
基体として用い、更に、そのニッケル系表面を第1層と
して、その上に化学的に安定で活性の高いロジウムを第
2層として被覆し、特に広大な陰極作動面積を有すよう
に形成される。そのため、本発明の活性陰極は、水素過
電圧が低下し活性を安定に維持することができる。ま
た、使用するロジウムが少量でよく、安価に、且つ簡便
に製造することができる。更に、活性が低下した従来公
知の活性陰極の活性を簡単な操作で再生することができ
る。
In the active cathode of the present invention, an active cathode having a nickel-based cathode working surface formed on a nickel-based substrate is used as a cathode substrate, and further, the nickel-based surface is used as a first layer and a chemical layer is formed thereon. Is coated with a relatively stable and highly active rhodium as a second layer and is formed to have a particularly large cathode working area. Therefore, the active cathode of the present invention has a reduced hydrogen overvoltage and can stably maintain the activity. In addition, a small amount of rhodium may be used, and it can be manufactured inexpensively and easily. Furthermore, the activity of a conventionally known active cathode whose activity has decreased can be regenerated by a simple operation.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 金属基体、該金属基体上の高表面積のニ
ッケル主体の第1層及び該第1層上の陰極作動高表面積
のロジウム主体の第2層とから形成されてなることを特
徴とする活性陰極。
1. A metal substrate, a high surface area nickel-based first layer on the metal substrate, and a cathode operating high surface area rhodium-based second layer on the first layer. Active cathode.
【請求項2】 前記金属基体が、ニッケル金属又はニッ
ケル合金である請求項1記載の活性陰極。
2. The active cathode according to claim 1, wherein the metal substrate is nickel metal or nickel alloy.
【請求項3】 前記ニッケル主体の第1層がラネーニッ
ケルである請求項1または2記載の活性陰極。
3. The active cathode according to claim 1, wherein the nickel-based first layer is Raney nickel.
【請求項4】 前記第2層が、陰極の投影面積1m2
たり0.1〜5gのロジウムを有する請求項1、2また
は3記載の活性陰極。
4. The active cathode according to claim 1, 2 or 3, wherein the second layer has 0.1 to 5 g of rhodium per 1 m 2 of projected area of the cathode.
【請求項5】 前記陰極作動面積が、陰極の投影面積1
2 に対し30〜3000倍である請求項1〜4のいず
れか記載の活性陰極。
5. The cathode working area is the projected area 1 of the cathode.
The active cathode according to any one of claims 1 to 4, which has a ratio of 30 to 3000 times m 2 .
【請求項6】 金属基体上に高表面積の金属ニッケル主
体の第1層が形成されてなる陰極基体を、ロジウム塩含
有溶液に浸漬処理、または、ロジウム塩含有溶液に浸漬
して陰分極処理して、該第1層上にロジウム主体の第2
層を形成することを特徴とする活性陰極の製造法。
6. A cathode substrate comprising a metal substrate and a first layer mainly composed of a metal nickel having a high surface area formed on the metal substrate is dipped in a solution containing rhodium salt or dipped in a solution containing rhodium salt and subjected to negative polarization treatment. A rhodium-based second layer on the first layer.
A method for manufacturing an active cathode, which comprises forming a layer.
【請求項7】 前記金属基体が、ニッケル金属又はニッ
ケル合金である請求項6記載の活性陰極。
7. The active cathode according to claim 6, wherein the metal substrate is nickel metal or nickel alloy.
【請求項8】 前記請求項第1〜5のいずれか記載の活
性陰極を用いたハロゲン化アルカリ金属水溶液又は水酸
化アルカリ金属水溶液の電解処理において、前記活性陰
極の活性低下時に電解陰極室内にロジウム塩を添加し、
電解処理を継続して活性陰極の活性を回復させることを
特徴とする活性陰極の再生方法。
8. In the electrolytic treatment of an alkali metal halide aqueous solution or an alkali metal hydroxide aqueous solution using the active cathode according to claim 1, rhodium is contained in the electrolytic cathode chamber when the activity of the active cathode decreases. Add salt,
A method for regenerating an active cathode, which comprises continuing the electrolytic treatment to recover the activity of the active cathode.
【請求項9】 前記ロジウム塩の添加量が、陰極投影面
積1m2 当たり1×10-3〜5×10-2モルである請求
項8記載の活性陰極の再生方法。
9. The method for regenerating an active cathode according to claim 8, wherein the addition amount of the rhodium salt is 1 × 10 −3 to 5 × 10 −2 mol per 1 m 2 of the projected area of the cathode.
JP8168450A 1996-06-07 1996-06-07 Active cathode its production and its regenerating method Pending JPH09324289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8168450A JPH09324289A (en) 1996-06-07 1996-06-07 Active cathode its production and its regenerating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8168450A JPH09324289A (en) 1996-06-07 1996-06-07 Active cathode its production and its regenerating method

Publications (1)

Publication Number Publication Date
JPH09324289A true JPH09324289A (en) 1997-12-16

Family

ID=15868342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8168450A Pending JPH09324289A (en) 1996-06-07 1996-06-07 Active cathode its production and its regenerating method

Country Status (1)

Country Link
JP (1) JPH09324289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2365023A (en) * 2000-07-18 2002-02-13 Ionex Ltd Increasing the surface area of an electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2365023A (en) * 2000-07-18 2002-02-13 Ionex Ltd Increasing the surface area of an electrode
GB2365023B (en) * 2000-07-18 2002-08-21 Ionex Ltd A process for improving an electrode

Similar Documents

Publication Publication Date Title
US7959774B2 (en) Cathode for hydrogen generation
US4900419A (en) Cathode for electrolysis and process for producing the same
US8070924B2 (en) Electrode for generation of hydrogen
US4585540A (en) Composite catalytic material particularly for electrolysis electrodes and method of manufacture
US3974058A (en) Ruthenium coated cathodes
JP3612365B2 (en) Active cathode and method for producing the same
US4354915A (en) Low overvoltage hydrogen cathodes
US4184941A (en) Catalytic electrode
US4414064A (en) Method for preparing low voltage hydrogen cathodes
US5035789A (en) Electrocatalytic cathodes and methods of preparation
US4586998A (en) Electrolytic cell with low hydrogen overvoltage cathode
US5164062A (en) Electrocatalytic cathodes and method of preparation
JPH0633492B2 (en) Electrolytic cathode and method of manufacturing the same
US5227030A (en) Electrocatalytic cathodes and methods of preparation
NL8004057A (en) PROCESS FOR MANUFACTURING CATHODES WITH LOW HYDROGEN SPAN.
JP4115575B2 (en) Activated cathode
EP0136794B1 (en) Treatment of cathodes for use in electrolytic cell
JP3676554B2 (en) Activated cathode
JPH0633481B2 (en) Electrolytic cathode and method of manufacturing the same
JPH09324289A (en) Active cathode its production and its regenerating method
EP0174413A1 (en) Composite catalytic material particularly for electrolysis electrodes and method of manufacture
US5066380A (en) Electrocatalytic cathodes and method of preparation
JP6926782B2 (en) Hydrogen generation electrode and its manufacturing method and electrolysis method using hydrogen generation electrode
JP6753195B2 (en) Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode
JPH0625879A (en) Production of alkali hydroxide