JPH09324258A - Nitrided parts - Google Patents

Nitrided parts

Info

Publication number
JPH09324258A
JPH09324258A JP14146896A JP14146896A JPH09324258A JP H09324258 A JPH09324258 A JP H09324258A JP 14146896 A JP14146896 A JP 14146896A JP 14146896 A JP14146896 A JP 14146896A JP H09324258 A JPH09324258 A JP H09324258A
Authority
JP
Japan
Prior art keywords
nitriding
less
steel
ferrite
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14146896A
Other languages
Japanese (ja)
Inventor
Yutaka Kurebayashi
豊 紅林
Koji Matsumura
康志 松村
Sadayuki Nakamura
貞行 中村
Yoshiki Mizuno
孝樹 水野
Masaki Amano
政樹 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14146896A priority Critical patent/JPH09324258A/en
Publication of JPH09324258A publication Critical patent/JPH09324258A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide nitrided parts excellent in machinability and nitriding properties of the steel even if normalizing treatment after hot forging is omitted and furthermore excellent in fatigue characteristics an bending straightening properties. SOLUTION: A steel having a ferritic-pearlitic structure in which the average dimension of the crystal grains of ferrite is regulated to <=50μm and the average dimension of the crystal grains of pearlite is regulated to <=50μm as hot-forged and having a compsn. contg. 0.15 to 0.40% C, <=0.50% Si, 0.20 to 1.50% Mn and 0.05 to 0.50% Cr, and the balance Fe with inevitable impurities is prepd. The steel is subjected to gas soft-nitriding treatment to regulate the average hardening depth to >=0.3mm and the fluctuation of the hardening depth to <=0.1mm. The steel may contain <=0.50% Ni, <=0.50% Mo, 0.005 to 0.030% N, <=0.3% V, <=0.3% Nb, <=0.2% Ti, <=0.2% Zr, <=0.2% Ta, 0.01 to 0.3% S, <=0.3% Pb, <=0.05% Ca, <=0.2% Bi and <=0.05% Te.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒化処理した鋼部
品の特性改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of properties of steel parts subjected to nitriding treatment.

【0002】[0002]

【従来の技術】鋼部品の耐摩耗性や疲労特性を改善する
目的で、歯車類、シャフト部品、クランクシャフトなど
の機械部品に窒化処理が適用されている。一般の窒化処
理部品には、JIS S48Cなどの炭素鋼が使用され
ており、その製造工程は、通常、熱間鍛造→焼ならし処
理→機械加工→窒化処理→曲げ矯正の工程が取られてい
る。
2. Description of the Related Art Nitriding is applied to mechanical parts such as gears, shaft parts and crankshafts for the purpose of improving wear resistance and fatigue characteristics of steel parts. Carbon steel such as JIS S48C is used for general nitriding parts, and its manufacturing process is usually hot forging → normalizing → machining → nitriding → bending straightening. There is.

【0003】窒化処理部品の製造工程では、まず、圧延
鋼材を熱間鍛造して部品素形材を製造するが、熱間鍛造
後の素形材は、部位によって冷却速度が異なるために金
属組織や硬さが不均一となり、被削性の低下が生じる。
また、不均質な金属組織状態のままで窒化処理を施した
場合、部位による硬化深さの変動が大きくなるために、
部品の疲労特性や曲げ矯正性が著しく劣化する。
In the process of manufacturing a nitriding component, first, a rolled steel material is hot forged to produce a component raw material. However, the hot forged raw material has a metal structure because the cooling rate differs depending on the site. And hardness become non-uniform, resulting in a decrease in machinability.
In addition, when the nitriding treatment is performed with the heterogeneous metallographic structure as it is, the variation of the hardening depth depending on the site becomes large,
Fatigue properties and bend straightening properties of parts deteriorate significantly.

【0004】そこで、熱間鍛造後には鋼の金属組織の改
善および軟化を促進するため、上記における焼ならし処
理のごとき熱処理を行うのが普通である。この熱処理を
省略することができれば、窒化処理部品の生産性の向
上、省エネルギーの面で大きな効果が期待できる。ま
た、窒化処理において、複雑形状品、長尺品では変形や
曲りが発生することが避けられないので、通常、窒化処
理後に曲げ矯正が行われる。窒化処理によって表層部に
硬脆な硬化層を備える窒化処理品の曲げ矯正は極めて困
難な作業であり、窒化処理部品における曲げ矯正性を向
上することは極めて重要である。
Therefore, after the hot forging, it is usual to perform a heat treatment such as the above-mentioned normalizing treatment in order to promote the improvement and softening of the metal structure of the steel. If this heat treatment can be omitted, a great effect can be expected in terms of improving the productivity of the nitriding component and saving energy. Further, in the nitriding treatment, it is unavoidable that a product having a complicated shape or a long product is deformed or bent. Therefore, the straightening is usually performed after the nitriding treatment. Bending straightening of a nitriding product having a hard and brittle hardened layer on the surface layer by nitriding is an extremely difficult work, and it is very important to improve the bending straightening property of the nitriding component.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の現状
に鑑みてなされたもので、その目的とするところは、熱
間鍛造後の焼ならし処理を省略しても、鋼の被削性と窒
化性に優れ、かつ疲労特性と曲げ矯正性に優れる窒化部
品を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object of the present invention is to cut steel even if normalizing treatment after hot forging is omitted. It is intended to provide a nitrided component which is excellent in fatigue resistance and bending straightening property as well as in fatigue resistance and nitriding property.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の窒化処理部品は、 (1)鋼に窒化処理してなる窒化処理部品であって、前
記鋼が、合金成分として質量%で、C:0.15〜0.
40%、Si:0.50%以下、Mn:0.20〜1.
50%、Cr:0.05〜0.50%を含有し、残部F
eおよび不可避的不純物からなり、かつ、前記鋼は、熱
間加工ままで、フェライトとパーライトとからなる混合
組織を有し、前記フェライトの結晶粒の平均寸法が50
μm以下であり、前記パーライトの結晶粒の平均寸法が
50μm以下であり、前記窒化処理による平均硬化深さ
が0.3mm以上であり、かつ、前記硬化深さの変動が
0.1mm以内であることを特徴とする。 (2)上記(1)記載の窒化処理部品において、前記鋼
が、上記合金成分に加えて質量%で、Ni:0.50%
以下、Mo:0.50%以下のいずれか1種または2種
を含有することを特徴とする。 (3)上記(1)および(2)のいずれか1項記載の窒
化処理部品において、前記鋼が、上記合金成分に加えて
質量%で、N:0.005〜0.030%とV:0.3
%以下、Nb:0.3%以下、Ti:0.2%以下、Z
r:0.2%以下、Ta:0.2%以下のいずれか1種
または2種以上とを含有することを特徴とする。 (4)上記(1)、(2)および(3)のいずれか1項
記載の窒化処理部品において、前記鋼が、上記合金成分
に加えて質量%で、S:0.01〜0.3%、Pb:
0.3%以下、Ca:0.05%以下、Bi:0.2%
以下、Te:0.05%以下のいずれか1種または2種
以上を含有することを特徴とする。
In order to achieve the above-mentioned object, the nitriding component of the present invention is (1) a nitriding component obtained by nitriding steel, wherein the steel has a mass as an alloy component. %, C: 0.15 to 0.
40%, Si: 0.50% or less, Mn: 0.20 to 1.
50%, Cr: 0.05 to 0.50%, balance F
e and unavoidable impurities, and the hot-worked steel has a mixed structure of ferrite and pearlite, and the average crystal grain size of the ferrite is 50.
μm or less, the average size of the crystal grains of the pearlite is 50 μm or less, the average hardening depth by the nitriding treatment is 0.3 mm or more, and the fluctuation of the hardening depth is 0.1 mm or less. It is characterized by (2) In the nitriding component described in (1) above, the steel contains, in addition to the above alloy components, mass% and Ni: 0.50%.
Hereinafter, it is characterized by containing any one or two of Mo: 0.50% or less. (3) In the nitriding component according to any one of (1) and (2) above, the steel contains N: 0.005 to 0.030% and V: mass% in addition to the alloy components. 0.3
% Or less, Nb: 0.3% or less, Ti: 0.2% or less, Z
r: 0.2% or less, Ta: 0.2% or less, and one or more of them are contained. (4) In the nitriding component according to any one of (1), (2) and (3) above, the steel contains S: 0.01 to 0.3 in mass% in addition to the alloy components. %, Pb:
0.3% or less, Ca: 0.05% or less, Bi: 0.2%
Hereinafter, it is characterized by containing any one or more of Te: 0.05% or less.

【0007】[0007]

【発明の実施の形態】本発明の窒化処理部品は、所定の
化学組成を有する鋼を熱間加工して素形材とし、必要に
応じて機械加工し、窒化処理を施し、必要に応じて曲げ
矯正を行って製造される。本発明の窒化処理部品におい
て、鋼の化学組成を規定する理由を説明する。 C:0.15〜0.40% Cは、部品の強度を維持するために必要な元素であっ
て、そのためには少なくとも0.15%以上を含有する
必要がある。しかし、C含有量が過大となると、熱間加
工後の硬さが上昇するために被削性が劣化し、また、金
属組織においてパーライトの結晶粒径が大きくなるため
に曲げ矯正時に折損し易くなるので、C含有率の上限を
0.40%とする。 Si:0.50%以下 Siは、鋼の溶製時に鋼の脱酸元素として添加する。ま
たフェライト相を強化するために添加する。しかし、過
大に添加すればフェライト相を脆化するので含有率の上
限を0.5%とする。 Mn:0.20〜1.50% Mnは、Siと同様に鋼の溶製時に鋼の脱酸元素として
添加する。また、Sと結合して赤熱脆性を防止し、鋼の
被削性を高め、さらに鋼のミクロ組織を微細化して強度
上昇に寄与するために添加する。部品として所要の強度
を確保するために0.2%以上を添加する必要がある。
しかし、過大に添加すれば熱間加工後の硬さを高め、鋼
の被削性を劣化するので含有率の上限を1.50%とす
る。 Cr:0.05〜0.50% Crは、フェライト相を強化するために0.05%以上
を添加する。しかし、過大に添加すれば鋼の被削性を劣
化し、また窒化処理部品の曲げ矯正において折損を生じ
易くするので含有率の上限を0.50%とする。 Ni:0.50%以下、Mo:0.50%以下 NiおよびMoは、フェライトを強化し、疲労強度を高
める。しかし、鋼の焼入性を高めるので、過大に含有す
ると鋼の硬さを高め、被削性を害するのでNiおよびM
oの含有率はそれぞれ0.5%を上限として、それらの
いずれか1種または2種を含有するものとする。 N:0.005〜0.030% Nは、V、Nb、Ti、ZrおよびTaと強固な化合物
を形成してフェライト結晶粒を微細化する。そのために
は少なくとも0.005%以上を含有する必要がある。
しかし、過大に含有すると硬い窒化物を多量に形成して
鋼の被削性を害するので含有率の上限を0.030%と
する。 V:0.3%以下、Nb:0.3%以下、Ti:0.2
%以下、Zr:0.2%以下、Ta:0.2%以下 これらの元素は、Nと結合してフェライト結晶粒を微細
化するために添加する。しかし過大に添加すると鋼の被
削性を損ね、また、窒化処理時に硬脆な窒化物相を形成
して曲げ矯正を困難にする。それゆえこれらの元素は、
それぞれV:0.3%、Nb:0.3%、Ti:0.2
%、Zr:0.2%、Ta:0.2%を上限として、1
種または2種以上を含有してもよいものとする。 S:0.01〜0.3%、Pb:0.3%以下、Ca:
0.05%以下、Bi:0.2%以下、Te:0.05
%以下 これらの元素は、いずれも鋼の被削性を向上するために
添加する。特に、Sについては、鋼の被削性を維持する
ために少なくとも0.01%の添加が望ましい。しか
し、これらの元素は、いずれも過大に添加すると、鋼中
の非金属介在物を増し、疲労強度を低減するので含有率
の上限をそれぞれS:0.3%、Pb:0.3%、C
a:0.05%、Bi:0.2%、Te:0.05%と
して、1種または2種以上を含有してもよいものとす
る。 本発明の窒化処理部品を構成する鋼は、熱間加工
して素形材としたときフェライトとパーライトとからな
る混合組織を有するものとする。そして、前記の混合組
織をなすフェライトおよびパーライトの各結晶粒の平均
寸法が50μm以下であるものとする。熱間加工は、圧
延、鍛造などの通常の方法によって行うことができる。
また、本発明の鋼組成によって、容易に前記の金属組織
とすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The nitriding-processed component of the present invention is obtained by hot working a steel having a predetermined chemical composition into a raw material, machined if necessary, and subjected to nitriding, and if necessary, It is manufactured by straightening. The reason for defining the chemical composition of steel in the nitriding component of the present invention will be described. C: 0.15 to 0.40% C is an element necessary for maintaining the strength of parts, and for that purpose, it is necessary to contain at least 0.15% or more. However, if the C content becomes excessive, the machinability deteriorates because the hardness after hot working rises, and the crystal grain size of pearlite in the metal structure becomes large, so that it easily breaks during bending correction. Therefore, the upper limit of the C content is 0.40%. Si: 0.50% or less Si is added as a deoxidizing element of steel during melting of steel. Also, it is added to strengthen the ferrite phase. However, if added excessively, the ferrite phase becomes brittle, so the upper limit of the content is made 0.5%. Mn: 0.20 to 1.50% Like Si, Mn is added as a deoxidizing element of steel during the melting of steel. Further, it is added in order to combine with S to prevent red heat embrittlement, enhance the machinability of steel, and further refine the microstructure of steel to contribute to an increase in strength. It is necessary to add 0.2% or more in order to secure the required strength as a part.
However, if added excessively, the hardness after hot working increases and the machinability of steel deteriorates, so the upper limit of the content is set to 1.50%. Cr: 0.05 to 0.50% Cr is added in an amount of 0.05% or more in order to strengthen the ferrite phase. However, if added excessively, the machinability of the steel is deteriorated, and breakage easily occurs in the straightening of the nitriding component, so the upper limit of the content is made 0.50%. Ni: 0.50% or less, Mo: 0.50% or less Ni and Mo strengthen ferrite and increase fatigue strength. However, since it increases the hardenability of steel, if it is contained excessively, the hardness of steel is increased and the machinability is impaired.
The upper limit of the content of o is 0.5%, and one or two of them is contained. N: 0.005 to 0.030% N forms a strong compound with V, Nb, Ti, Zr, and Ta to refine ferrite crystal grains. For that purpose, it is necessary to contain at least 0.005% or more.
However, if the content is too large, a large amount of hard nitrides are formed and the machinability of steel is impaired, so the upper limit of the content is made 0.030%. V: 0.3% or less, Nb: 0.3% or less, Ti: 0.2
% Or less, Zr: 0.2% or less, Ta: 0.2% or less These elements are added in order to combine with N and refine the ferrite crystal grains. However, if added excessively, the machinability of steel is impaired, and a hard and brittle nitride phase is formed during the nitriding treatment, which makes bending straightening difficult. Therefore these elements are
V: 0.3%, Nb: 0.3%, Ti: 0.2
%, Zr: 0.2%, Ta: 0.2% as the upper limit, and 1
One kind or two or more kinds may be contained. S: 0.01 to 0.3%, Pb: 0.3% or less, Ca:
0.05% or less, Bi: 0.2% or less, Te: 0.05
% Or less These elements are added to improve the machinability of steel. Particularly, S is preferably added at least 0.01% in order to maintain the machinability of steel. However, if any of these elements is excessively added, non-metallic inclusions in the steel increase and fatigue strength decreases, so the upper limits of the contents are S: 0.3%, Pb: 0.3%, C
One or two or more may be contained as a: 0.05%, Bi: 0.2%, Te: 0.05%. The steel constituting the nitriding-treated component of the present invention has a mixed structure of ferrite and pearlite when hot-worked into a raw material. The average size of the crystal grains of ferrite and pearlite forming the mixed structure is 50 μm or less. The hot working can be performed by a usual method such as rolling or forging.
Moreover, the steel composition of the present invention can easily provide the above-mentioned metal structure.

【0008】上記のように金属組織を調整することによ
り、熱間加工後の素形材を被削性に優れたものすること
ができる。フェライトおよびパーライトよりなる金属組
織を有する鋼を窒化するとき、フェライトの部分が優先
的に窒化されて硬化する。フェライト結晶粒およびパー
ライト結晶粒が大きいと、窒化処理によって生じる硬化
層の前面は結晶粒度に応じて大きく波をうって変動す
る。すなわち硬化深さの変動が大きい。この硬化深さの
変動が大きいと、窒化処理部品を曲げ矯正するときに折
損を生じ易く、また疲労強度も劣化する。フェライトお
よびパーライトの各結晶粒の平均寸法を50μm以下と
することにより、曲げ矯正性や疲労強度に対して、前記
硬化深さの変動が実質的に影響を及ぼすことがなくな
る。
By adjusting the metal structure as described above, it is possible to make the raw material after hot working excellent in machinability. When nitriding steel having a metallographic structure composed of ferrite and pearlite, the ferrite portion is preferentially nitrided and hardened. When the ferrite crystal grains and the pearlite crystal grains are large, the front surface of the hardened layer generated by the nitriding treatment largely undulates and changes in accordance with the crystal grain size. That is, the variation in the curing depth is large. If the variation in the hardening depth is large, the nitriding-processed component is likely to be broken when bent and the fatigue strength is also deteriorated. By setting the average size of each crystal grain of ferrite and pearlite to 50 μm or less, the variation in the hardening depth does not substantially affect the bend straightening property and the fatigue strength.

【0009】窒化処理は、塩浴窒化、ガス軟窒化、イオ
ン窒化のいずれによってもよい。窒化処理による硬化深
さが浅い場合には疲労強度が十分に向上しない。また、
硬化深さの変動が大きいと曲げ矯正性が低下する。高い
疲労強度と優れた曲げ矯正性を得るために、本発明の窒
化処理部品では、窒化処理による平均硬化深さを0.3
mm以上とし、該硬化深さの変動を0.1mm以内とす
る。
The nitriding treatment may be any of salt bath nitriding, gas soft nitriding and ion nitriding. When the hardening depth by nitriding is shallow, the fatigue strength is not sufficiently improved. Also,
If the variation of the hardening depth is large, the bend straightening property is deteriorated. In order to obtain high fatigue strength and excellent bend straightening property, the nitriding-treated part of the present invention has an average hardening depth of 0.3 in the nitriding treatment.
mm or more, and the fluctuation of the hardening depth is within 0.1 mm.

【0010】ここに、窒化処理による硬化深さとして
は、JIS G0562に準じて窒化処理部品の表面か
ら内部に向かって硬さ分布を測定し、心部硬さより50
HV高い硬さが得られる位置における表面からの距離と
する。
Here, as the hardening depth by the nitriding treatment, the hardness distribution is measured from the surface to the inside of the nitriding treated component according to JIS G0562, and the hardness is 50 from the core hardness.
HV The distance from the surface at the position where high hardness is obtained.

【0011】[0011]

【実施例】以下、本発明の実施例について説明する。表
1に示す化学組成を有する鋼を溶製し、熱間圧延を経て
直径80mmの圧延棒鋼とした。該圧延棒鋼を1200
℃に加熱保持した後、熱間鍛造によって直径50mmの
丸棒に鍛伸して供試材とした。
Embodiments of the present invention will be described below. Steel having the chemical composition shown in Table 1 was melted and hot rolled to obtain a rolled steel bar having a diameter of 80 mm. The rolled steel bar is 1200
After heating and holding at 0 ° C., it was forged into a round bar having a diameter of 50 mm by hot forging to obtain a test material.

【0012】[0012]

【表1】 [Table 1]

【0013】前記供試材の横断面における金属組織を光
学顕微鏡および画像解析装置によって解析し、フェライ
ト結晶粒およびパーライト結晶粒の平均寸法を求めた。
すなわち、前記横断面に現れる各結晶粒について、直交
する2方向の最大径を測定してその平均値を求め、これ
を各結晶粒の直径とする。解析は、1視野0.5mm 2
として、任意の30視野について行い、これに含まれる
すべての結晶粒について直径を求め、フェライト結晶粒
およびパーライト結晶粒の各相ごとの直径の平均値をも
ってそれぞれの平均寸法とした。
The metallographic structure in the cross section of the test material was examined by light irradiation.
Analysis with a microscope and image analyzer
The average size of the grit and pearlite grains was determined.
That is, for each crystal grain appearing in the cross section,
Measure the maximum diameter in two directions and calculate the average value.
Is the diameter of each crystal grain. Analysis is 0.5 mm per field of view Two
As an example, it is included in this for any 30 fields of view.
Find the diameters of all the crystal grains and calculate the ferrite crystal grains.
And the average diameter of pearlite grains for each phase
Therefore, the average size of each is used.

【0014】機械加工によって、前記供試材のD/4位
置から直径10mm、長さ200mmの丸棒を切出し、
これに555℃で3時間保持のガス軟窒化処理を施し
た。該窒化処理材の任意の断面10ヵ所について、ビッ
カース硬度計を用いて、表面から中心に向かう硬度分布
を測定した。中心部硬さより50HV高い硬さを示す表
面からの距離を硬化深さとし、前記10箇所の硬化深さ
の平均値を求めて、これを平均硬化深さとした。また、
前記10箇所の硬化深さのうち最大値と最小値とをと
り、その差を求めて、これを硬化深さの変動とした。
A round bar having a diameter of 10 mm and a length of 200 mm was cut out from the D / 4 position of the test material by machining,
This was subjected to gas soft nitriding treatment which was held at 555 ° C. for 3 hours. The hardness distribution from the surface to the center was measured using a Vickers hardness meter for 10 arbitrary cross sections of the nitriding material. The cure depth was defined as the distance from the surface exhibiting a hardness 50 HV higher than the hardness at the center, and the average value of the cure depths at the 10 locations was determined and defined as the average cure depth. Also,
The maximum value and the minimum value of the 10 curing depths were taken, the difference between them was determined, and this was used as the variation of the curing depth.

【0015】表2に、フェライト結晶粒の平均寸法、パ
ーライト結晶粒の平均寸法、平均硬化深さおよび硬化深
さの変動の測定結果を示す。
Table 2 shows the average size of the ferrite crystal grains, the average size of the pearlite crystal grains, the average hardening depth, and the measurement results of variations in the hardening depth.

【0016】[0016]

【表2】 [Table 2]

【0017】前記供試材を用い、バイトによる外径旋削
加工時の工具寿命によって被削性を判定した。切削条件
は、切削速度:150mm/分、送り:0.2mm/r
ev、切込み:2mmとし、工具の境界摩耗量が0.2
mmとなるまでの時間をもって工具寿命時間とした。前
記供試材から、JIS Z2274に準拠して、試験部
直径:8mm、形状係数:1.63の切欠きを有する回
転曲げ疲労試験片を削り出し、これに555℃で3時間
保持のガス軟窒化処理を施した。107 回強度を求めて
疲労特性を評価した。
The machinability was judged by the tool life during outer diameter turning with a cutting tool, using the test material. Cutting conditions: cutting speed: 150 mm / min, feed: 0.2 mm / r
ev, depth of cut: 2 mm, tool boundary wear is 0.2
The time until reaching mm was defined as the tool life time. According to JIS Z2274, a rotary bending fatigue test piece having a notch with a test portion diameter of 8 mm and a shape factor of 1.63 was carved out from the test material, and a gas soft material kept at 555 ° C. for 3 hours was cut out from the test material. Nitriding was performed. Fatigue characteristics were evaluated by obtaining 10 7 times strength.

【0018】機械加工によって、前記供試材のD/4位
置から直径10mm、長さ200mmの丸棒を切出し、
これに555℃で3時間保持のガス軟窒化処理を施して
曲げ試験片とした。曲げ試験は、支点間距離を150m
mとし、中央集中荷重を加える3点曲げ試験法によっ
た。ダイアルゲージによって、荷重点のたわみを測定
し、破断するまでの最大たわみ量をもって曲げ矯正性を
評価した。
A round bar having a diameter of 10 mm and a length of 200 mm was cut out from the D / 4 position of the test material by machining,
This was subjected to a gas soft nitriding treatment that was held at 555 ° C. for 3 hours to obtain a bending test piece. Bending test: Distance between fulcrums is 150m
m, and a three-point bending test method in which a central concentrated load is applied. The deflection at the load point was measured with a dial gauge, and the bending straightness was evaluated by the maximum deflection until breakage.

【0019】表3に、工具寿命時間、107 回強度、最
大たわみ量の測定結果を示す。
Table 3 shows the measurement results of tool life time, 10 7 times strength, and maximum deflection amount.

【0020】[0020]

【表3】 [Table 3]

【0021】表3から明らかなように、本発明の実施例
においては、比較例に比べて鍛造ままの状態における工
具寿命時間が長く、被削性に優れている。また、ガス軟
窒化処理後の疲労特性も高く、特に曲げ矯正性に優れて
いることが判る。
As is clear from Table 3, in the examples of the present invention, the tool life in the as-forged state is longer and the machinability is superior to the comparative examples. Further, it can be seen that the fatigue characteristics after the gas nitrocarburizing treatment are also high, and particularly the bending straightening property is excellent.

【0022】[0022]

【発明の効果】上記のように本発明によれば、鋼の化学
組成、金属組織および窒化処理硬化深さを調整すること
により、鋼の熱間加工後に焼ならしなどの熱処理を行う
ことなく、被削性に優れ、窒化処理後の矯正が容易で、
かつ、疲労強度が高い窒化処理部品を経済的提供するこ
とができる。
As described above, according to the present invention, the chemical composition, metallographic structure and nitriding hardening depth of steel can be adjusted without heat treatment such as normalizing after hot working of steel. , Excellent in machinability, easy to straighten after nitriding,
In addition, it is possible to economically provide a nitriding component having high fatigue strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 孝樹 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 天野 政樹 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takaki Mizuno 1-4-1 Chuo, Wako-shi, Saitama Inside the Honda R & D Co., Ltd. (72) Inventor Masaki Amano 1-4-1 Wako, Saitama Prefecture Stock Company Honda Technical Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼に窒化処理してなる窒化処理部品であ
って、前記鋼が、合金成分として質量%で、C:0.1
5〜0.40%、Si:0.50%以下、Mn:0.2
0〜1.50%、Cr:0.05〜0.50%を含有
し、残部Feおよび不可避的不純物からなり、かつ、前
記鋼は、熱間加工ままで、フェライトとパーライトとか
らなる混合組織を有し、前記フェライトの結晶粒の平均
寸法が50μm以下であり、前記パーライトの結晶粒の
平均寸法が50μm以下であり、前記窒化処理による平
均硬化深さが0.3mm以上であり、かつ、前記硬化深
さの変動が0.1mm以内であることを特徴とする窒化
処理部品。
1. A nitriding component obtained by nitriding steel, wherein the steel is C: 0.1 in mass% as an alloy component.
5 to 0.40%, Si: 0.50% or less, Mn: 0.2
0 to 1.50%, Cr: 0.05 to 0.50%, the balance Fe and unavoidable impurities, and the steel is a hot-worked as-mixed structure composed of ferrite and pearlite. The average size of the crystal grains of the ferrite is 50 μm or less, the average size of the crystal grains of the pearlite is 50 μm or less, the average hardening depth by the nitriding treatment is 0.3 mm or more, and A nitriding component, wherein the variation of the hardening depth is within 0.1 mm.
【請求項2】 請求項1記載の窒化処理部品において、
前記鋼が、上記合金成分に加えて質量%で、Ni:0.
50%以下、Mo:0.50%以下のいずれか1種また
は2種を含有することを特徴とする窒化処理部品。
2. The nitriding component according to claim 1,
The steel contains Ni: 0.
A nitriding component containing 50% or less and Mo: 0.50% or less any one kind or two kinds.
【請求項3】 請求項1および請求項2のいずれか1項
記載の窒化処理部品において、前記鋼が、上記合金成分
に加えて質量%で、N:0.005〜0.030%と
V:0.3%以下、Nb:0.3%以下、Ti:0.2
%以下、Zr:0.2%以下、Ta:0.2%以下のい
ずれか1種または2種以上とを含有することを特徴とす
る窒化処理部品。
3. The nitriding component according to claim 1, wherein the steel contains N: 0.005 to 0.030% and V in mass% in addition to the alloy components. : 0.3% or less, Nb: 0.3% or less, Ti: 0.2
% Or less, Zr: 0.2% or less, Ta: 0.2% or less, and one or more kinds of nitriding-treated parts.
【請求項4】 請求項1、請求項2および請求項3のい
ずれか1項記載の窒化処理部品において、前記鋼が、上
記合金成分に加えて質量%で、S:0.01〜0.3
%、Pb:0.3%以下、Ca:0.05%以下、B
i:0.2%以下、Te:0.05%以下のいずれか1
種または2種以上を含有することを特徴とする窒化処理
部品。
4. The nitriding component according to any one of claims 1, 2 and 3, wherein the steel contains, in mass% in addition to the alloy components, S: 0.01 to 0. Three
%, Pb: 0.3% or less, Ca: 0.05% or less, B
i: 0.2% or less, Te: 0.05% or less 1
A nitriding component, which contains one or more species.
JP14146896A 1996-06-04 1996-06-04 Nitrided parts Pending JPH09324258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14146896A JPH09324258A (en) 1996-06-04 1996-06-04 Nitrided parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14146896A JPH09324258A (en) 1996-06-04 1996-06-04 Nitrided parts

Publications (1)

Publication Number Publication Date
JPH09324258A true JPH09324258A (en) 1997-12-16

Family

ID=15292593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14146896A Pending JPH09324258A (en) 1996-06-04 1996-06-04 Nitrided parts

Country Status (1)

Country Link
JP (1) JPH09324258A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391124B1 (en) 1999-11-05 2002-05-21 Sumitomo Metals (Kokura) Ltd. Non-heat treated, soft-nitrided steel parts
WO2005045086A1 (en) * 2003-11-03 2005-05-19 Metabowerke Gmbh Driving gear used to transmit power
EP1584700A1 (en) * 2003-01-17 2005-10-12 JFE Steel Corporation High-strength steel product excelling in fatigue strength and process for producing the same
US7416616B2 (en) 2003-09-01 2008-08-26 Sumitomo Metal Industries, Ltd. Non-heat treated steel for soft-nitriding
JP2010090457A (en) * 2008-10-10 2010-04-22 Sumitomo Metal Ind Ltd Non-heat-treated steel to be nitrocarburized

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391124B1 (en) 1999-11-05 2002-05-21 Sumitomo Metals (Kokura) Ltd. Non-heat treated, soft-nitrided steel parts
EP1584700A1 (en) * 2003-01-17 2005-10-12 JFE Steel Corporation High-strength steel product excelling in fatigue strength and process for producing the same
EP1584700A4 (en) * 2003-01-17 2007-03-28 Jfe Steel Corp High-strength steel product excelling in fatigue strength and process for producing the same
US7416616B2 (en) 2003-09-01 2008-08-26 Sumitomo Metal Industries, Ltd. Non-heat treated steel for soft-nitriding
WO2005045086A1 (en) * 2003-11-03 2005-05-19 Metabowerke Gmbh Driving gear used to transmit power
JP2010090457A (en) * 2008-10-10 2010-04-22 Sumitomo Metal Ind Ltd Non-heat-treated steel to be nitrocarburized

Similar Documents

Publication Publication Date Title
EP2444511B1 (en) Steel for nitriding and nitrided steel components
US6083455A (en) Steels, steel products for nitriding, nitrided steel parts
JP4385019B2 (en) Manufacturing method for steel nitrocarburized machine parts
EP3216889B1 (en) High-carbon cold-rolled steel sheet and method for manufacturing same
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
US11427901B2 (en) Wire rod for cutting work
JP6614238B2 (en) Product member manufacturing method and product member
JP6558016B2 (en) Carburized machine structural parts
JP6911606B2 (en) Nitriding parts and nitriding method
JP2017171977A (en) Crankshaft, manufacturing method therefor, and steel for crankshaft
JP6314648B2 (en) Surface hardened component and method for manufacturing surface hardened component
JP6606978B2 (en) Product member manufacturing method and product member
JPH09324258A (en) Nitrided parts
JP6477129B2 (en) Product member manufacturing method and product member
WO2009122653A1 (en) Material for soft-nitrided crankshaft and process for producing the same
JP2012077333A (en) Nitriding steel excellent in machinability, and nitrided part
CN113260717B (en) Steel material
JPH11229032A (en) Production of steel for soft-nitriding and soft-nitrided parts using the steel
JPH09291339A (en) Nitriding steel
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JP4526440B2 (en) Soft nitriding steel and soft nitriding parts
JPWO2018056332A1 (en) Shaft parts
JP2000309846A (en) Non-heat treated steel for soft nitriding
JP2003183773A (en) Case hardened steel superior in cold workability and hardenability, steel material of case hardened steel, and machine structural component
JP3053605B2 (en) Metal members with excellent toughness and wear resistance