JPH09321372A - All optical clocks regenerative circuit - Google Patents

All optical clocks regenerative circuit

Info

Publication number
JPH09321372A
JPH09321372A JP13326996A JP13326996A JPH09321372A JP H09321372 A JPH09321372 A JP H09321372A JP 13326996 A JP13326996 A JP 13326996A JP 13326996 A JP13326996 A JP 13326996A JP H09321372 A JPH09321372 A JP H09321372A
Authority
JP
Japan
Prior art keywords
optical
wavelength
light
signal
ring resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13326996A
Other languages
Japanese (ja)
Inventor
正豊 ▲角▼田
Masatoyo Tsunoda
Katsumi Iwatsuki
岩月  勝美
Kenichi Suzuki
謙一 鈴木
Masaki Amamiya
正樹 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13326996A priority Critical patent/JPH09321372A/en
Publication of JPH09321372A publication Critical patent/JPH09321372A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable mode clocked control by providing a first nonlinear element for generating an optical signal of a third wavelength from optical communication signals of a first and second wavelengths by the four optical wave mixing and second nonlinear element for generating an optical signal of a first wavelength from optical signals of a second and third wavelengths by the four optical wave mixing. SOLUTION: A light of a wavelength λs passed through an optical filter 33 and an optical communication signal of wavelength λp are combined by a multiplexer 35 and fed to a first semiconductor optical amplifier 11 to generate a new optical signal of wavelength λi by the four optical wave mixing. Three output lights from the amplifier 11 are fed to a filter 13 to cut off the light of wavelength λs but only the lights of λp , λi pass through this filter to a second semiconductor optical amplifier 12 to generate a new optical signal of wavelength λs (=2λp -λi ) by the four wave mixing. Among output lights from this amplifier 12 only the light of λs runs on a ring resonator. Thus it is possible to modulate it and enable the mode locked control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気信号に変換す
ることなく光通信信号から光クロック信号を再生する全
光クロック再生回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an all-optical clock recovery circuit for recovering an optical clock signal from an optical communication signal without converting it into an electric signal.

【0002】[0002]

【従来の技術】図3は、従来のリング共振器レーザ装置
を用いた全光クロック再生回路の構成を示す。図におい
て、光増幅器31、光アイソレータ32、光フィルタ3
3が光ファイバを介してループ状に接続され、光フィル
タの通過波長に応じた発振波長を有するリング共振器レ
ーザ装置が構成される。全光クロック再生回路として
は、光フィルタ33と光増幅器31の間に、結合器3
4、合波器35、相互位相変調器36が挿入される。
2. Description of the Related Art FIG. 3 shows the configuration of an all-optical clock recovery circuit using a conventional ring resonator laser device. In the figure, an optical amplifier 31, an optical isolator 32, an optical filter 3
3 are connected in a loop through an optical fiber to form a ring resonator laser device having an oscillation wavelength according to the passing wavelength of the optical filter. As an all-optical clock recovery circuit, a coupler 3 is provided between the optical filter 33 and the optical amplifier 31.
4, a multiplexer 35 and a cross phase modulator 36 are inserted.

【0003】光通信信号は、光増幅器37で増幅され、
合波器35を介してリング共振器に入力される。相互位
相変調器36では光通信信号が発振光を変調し、レーザ
装置にモードロック制御を加える。その結果、レーザ装
置は光通信信号の周波数と同期した光パルスを発生させ
る。この光パルスを結合器34から取り出し、光クロッ
ク信号が再生される。この動作原理は、文献 (K.Smith,
et al.,"All-opticalclock recovery using a mode-lo
cked laser ", IEE Electronics Letters,vol.28, p
p.1814-1816, 1992) に記載されている。
The optical communication signal is amplified by the optical amplifier 37,
It is input to the ring resonator via the multiplexer 35. In the cross phase modulator 36, the optical communication signal modulates the oscillated light, and mode lock control is applied to the laser device. As a result, the laser device generates an optical pulse synchronized with the frequency of the optical communication signal. This optical pulse is taken out from the coupler 34, and the optical clock signal is regenerated. This operation principle is described in the literature (K. Smith,
et al., "All-optical clock recovery using a mode-lo
cked laser ", IEE Electronics Letters, vol.28, p
p.1814-1816, 1992).

【0004】[0004]

【発明が解決しようとする課題】ところで、図3に示す
従来の全光クロック再生回路では、相互位相変調器36
として例えば約1kmの光ファイバが用いられ、その非
線形効果が利用される。そのために、数Wにも及ぶ高出
力の光増幅器37が必要となり、回路全体が大型になる
問題点があった。また、光ファイバの分散により再生で
きるクロック周波数に限界があり、現在のところ約10G
Hz以上の超高速クロック信号の再生は困難であった。
By the way, in the conventional all-optical clock recovery circuit shown in FIG. 3, the mutual phase modulator 36 is used.
For example, an optical fiber of about 1 km is used, and its nonlinear effect is used. For this reason, a high output optical amplifier 37 of several W is required, and there is a problem that the entire circuit becomes large. In addition, there is a limit to the clock frequency that can be reproduced due to the dispersion of the optical fiber, and it is currently about 10G.
It was difficult to reproduce ultra-high-speed clock signals above Hz.

【0005】本発明は、小型で超高速クロック信号の再
生を可能にする全光クロック再生回路を提供することを
目的とする。
An object of the present invention is to provide a small-sized all-optical clock regenerating circuit that enables regenerating a very high speed clock signal.

【0006】[0006]

【課題を解決するための手段】本発明の全光クロック再
生回路は、リング共振器を構成して第1波長の光を発振
するレーザ装置と、第2波長の光通信信号をリング共振
器に入力して第1波長の光と合波する合波器と、第2波
長の光通信信号に同期した第1波長の光信号を光クロッ
ク信号としてリング共振器から取り出す結合器とを備
え、さらにリング共振器内に、第1波長の光と第2波長
の光通信信号から4光波混合により第3波長の光信号を
発生する第1非線形素子と、第1非線形素子の出力光の
うち第1波長の光を遮断する光フィルタと、第2波長の
光通信信号と第3波長の光信号から4光波混合により第
1波長の光信号を発生する第2非線形素子とを挿入す
る。
The all-optical clock recovery circuit of the present invention comprises a laser device that constitutes a ring resonator and oscillates light of a first wavelength, and an optical communication signal of a second wavelength in the ring resonator. A multiplexer for inputting and multiplexing with the light of the first wavelength, and a coupler for extracting an optical signal of the first wavelength synchronized with the optical communication signal of the second wavelength from the ring resonator as an optical clock signal, A first nonlinear element for generating an optical signal of a third wavelength by four-wave mixing from light of the first wavelength and an optical communication signal of the second wavelength in the ring resonator; An optical filter that blocks light of a wavelength and a second nonlinear element that generates an optical signal of a first wavelength by four-wave mixing from an optical communication signal of a second wavelength and an optical signal of a third wavelength are inserted.

【0007】このように、リング共振器内に、4光波混
合を行う2つの非線形素子(半導体光増幅器)を配置
し、その間に発振波長の光を遮断する光フィルタを挿入
する。これにより、光通信信号の有無に応じて発振波長
の光がリング共振器内を周回するか否かが決定されるの
で、その発振波長の光を光通信信号に同期した光クロッ
ク信号として取り出すことができる。
In this way, two nonlinear elements (semiconductor optical amplifiers) that perform four-wave mixing are arranged in the ring resonator, and an optical filter that blocks light of the oscillation wavelength is inserted between them. This determines whether or not the light of the oscillation wavelength circulates in the ring resonator according to the presence or absence of the optical communication signal.Therefore, the light of the oscillation wavelength is extracted as the optical clock signal synchronized with the optical communication signal. You can

【0008】[0008]

【発明の実施の形態】図1は、本発明の全光クロック再
生回路の実施形態を示す。図において、光増幅器31、
光アイソレータ32、光フィルタ33により構成される
リング共振器レーザ装置は従来と同様である。この発振
波長をλs とする。全光クロック再生回路としては、リ
ング共振器を構成する光フィルタ33と光増幅器31の
間に、結合器34、合波器35、第1半導体光増幅器1
1、光フィルタ13、第2半導体光増幅器12が挿入さ
れる。この2つの半導体光増幅器11,12および光フ
ィルタ13が、リング共振器を伝搬する波長λs の光を
変調する手段(従来の相互位相変調器36に対応)とな
る。ここで、合波器35からリング共振器に入力される
光通信信号の波長をλp とし、光フィルタ13は波長λ
s の光を遮断するものとする。
FIG. 1 shows an embodiment of an all-optical clock recovery circuit according to the present invention. In the figure, an optical amplifier 31,
The ring resonator laser device including the optical isolator 32 and the optical filter 33 is the same as the conventional one. Let this oscillation wavelength be λs. The all-optical clock recovery circuit includes a coupler 34, a multiplexer 35, and a first semiconductor optical amplifier 1 between an optical filter 33 and an optical amplifier 31 which form a ring resonator.
1, the optical filter 13, and the second semiconductor optical amplifier 12 are inserted. The two semiconductor optical amplifiers 11 and 12 and the optical filter 13 serve as a means (corresponding to the conventional cross phase modulator 36) for modulating the light of the wavelength λs propagating through the ring resonator. Here, the wavelength of the optical communication signal input from the multiplexer 35 to the ring resonator is λp, and the optical filter 13 has a wavelength λ.
It shall block the light of s.

【0009】光フィルタ33を通過した波長λs の光と
波長λp の光通信信号は、合波器35で合波されて第1
半導体光増幅器11に入力される。第1半導体光増幅器
11では、4光波混合により波長λi (=2λp−λs)
の新たな光信号が発生する。この3つの光の波長関係を
図2に示す。第1半導体光増幅器11から出力された3
つの光は、波長λs の光を遮断する光フィルタ13に入
力され、波長λp と波長λi の光のみが通過して第2半
導体光増幅器12に入力される。第2半導体光増幅器1
2では、同様に4光波混合により波長λs (=2λp−
λi)の新たな光信号が発生する。第2半導体光増幅器
12から出力された光のうち波長λs の光のみが、光増
幅器31、光アイソレータ32、光フィルタ33、結合
器34を通過して合波器35に戻ってくる。このよう
に、光通信信号が入力されたときには、波長λs の光信
号がリング共振器を周回する。
The light having the wavelength λs and the optical communication signal having the wavelength λp, which have passed through the optical filter 33, are combined by the combiner 35 to obtain the first signal.
It is input to the semiconductor optical amplifier 11. In the first semiconductor optical amplifier 11, the wavelength λi (= 2λp−λs) is obtained by mixing four light waves.
A new optical signal of is generated. The wavelength relationship of these three lights is shown in FIG. 3 output from the first semiconductor optical amplifier 11
The two lights are input to the optical filter 13 that blocks the light having the wavelength λs, and only the lights having the wavelengths λp and λi pass and are input to the second semiconductor optical amplifier 12. Second semiconductor optical amplifier 1
In the case of 2, the wavelength λs (= 2λp-
A new optical signal of λi) is generated. Of the light output from the second semiconductor optical amplifier 12, only the light of wavelength λs passes through the optical amplifier 31, the optical isolator 32, the optical filter 33, and the coupler 34 and returns to the multiplexer 35. Thus, when the optical communication signal is input, the optical signal of wavelength λs circulates in the ring resonator.

【0010】一方、このリング共振器に光通信信号が入
力されないときには、第1半導体光増幅器11で4光波
混合が起こらず、第1半導体光増幅器11から波長λs
の光のみが出力される。しかし、この波長λs の光は光
フィルタ13で遮断されるので、リング共振器を周回し
ない。このように、光通信信号が入力されたときに、リ
ング共振器内を伝搬している光を変調でき、モードロッ
ク制御が可能となる。ここで、光増幅器31の利得をリ
ング共振器の損失より大きく設定しておくと、光増幅器
31の利得飽和効果によりリング共振器を周回する波長
λs の光の損失を完全に補償することができ、レーザ発
振の持続が可能である。したがって、本構成の光回路
は、光通信信号によりモードロック制御されるレーザ装
置として動作し、光通信信号に同期した光パルスを発生
させることができる。この光パルスを結合器34から取
り出すことにより、光クロック信号を再生することがで
きる。
On the other hand, when no optical communication signal is input to this ring resonator, four-wave mixing does not occur in the first semiconductor optical amplifier 11 and the wavelength λs from the first semiconductor optical amplifier 11 does not occur.
Only the light of is output. However, since the light of wavelength λs is blocked by the optical filter 13, it does not go around the ring resonator. Thus, when the optical communication signal is input, the light propagating in the ring resonator can be modulated, and the mode lock control can be performed. Here, if the gain of the optical amplifier 31 is set to be larger than the loss of the ring resonator, it is possible to completely compensate the loss of the light of the wavelength λs that circulates in the ring resonator due to the gain saturation effect of the optical amplifier 31. It is possible to continue the laser oscillation. Therefore, the optical circuit having this configuration can operate as a laser device that is mode-locked by the optical communication signal and generate an optical pulse synchronized with the optical communication signal. By taking out this optical pulse from the coupler 34, the optical clock signal can be regenerated.

【0011】なお、半導体光増幅器の4光波混合は、特
性時間が1psec以下の非常に高速な現象であるので、本
発明の全光クロック再生回路は 100GHz以上の超高速ク
ロック信号を再生することができる。また、半導体光増
幅器は数百μm程度の大きさの素子であり、リング共振
器レーザ装置を構成する他の部品とともに集積化するこ
とができるので、容易に小型化することができる。同様
に、高速な4光波混合現象を有し、小型で他の部品と集
積化可能なものであれば、半導体光増幅器以外の非線形
素子を用いてもよい。
Since the four-wave mixing of the semiconductor optical amplifier is a very high speed phenomenon with a characteristic time of 1 psec or less, the all-optical clock regenerating circuit of the present invention can regenerate an ultrahigh speed clock signal of 100 GHz or more. it can. Further, the semiconductor optical amplifier is an element having a size of about several hundreds of μm and can be integrated with other components constituting the ring resonator laser device, so that it can be easily miniaturized. Similarly, a nonlinear element other than the semiconductor optical amplifier may be used as long as it has a high-speed four-wave mixing phenomenon, is small, and can be integrated with other components.

【0012】[0012]

【発明の効果】以上説明したように、本発明の全光クロ
ック再生回路は、4光波混合という高速な非線形動作を
利用してモードロック制御を行う構成であるので、超高
速クロック信号を再生することができる。また、例えば
半導体光増幅器のように微小な非線形素子を用いること
ができるので、小規模回路で実現することができる。
As described above, since the all-optical clock regenerating circuit of the present invention is configured to perform mode-lock control by utilizing a high-speed nonlinear operation called four-wave mixing, it regenerates an ultra-high-speed clock signal. be able to. Further, since a minute non-linear element such as a semiconductor optical amplifier can be used, it can be realized by a small scale circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全光クロック再生回路の実施形態を示
すブロック図。
FIG. 1 is a block diagram showing an embodiment of an all-optical clock recovery circuit according to the present invention.

【図2】4光波混合の各波長関係を示す図。FIG. 2 is a diagram showing wavelength relationships of four-wave mixing.

【図3】従来のリング共振器レーザ装置を用いた全光ク
ロック再生回路の構成を示すブロック図。
FIG. 3 is a block diagram showing a configuration of an all-optical clock recovery circuit using a conventional ring resonator laser device.

【符号の説明】[Explanation of symbols]

11 第1半導体光増幅器 12 第2半導体光増幅器 13 光フィルタ 31,37 光増幅器 32 光アイソレータ 33 光フィルタ 34 結合器 35 合波器 36 相互位相変調器 11 First Semiconductor Optical Amplifier 12 Second Semiconductor Optical Amplifier 13 Optical Filter 31, 37 Optical Amplifier 32 Optical Isolator 33 Optical Filter 34 Coupler 35 Combiner 36 Mutual Phase Modulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 雨宮 正樹 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Amamiya 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リング共振器を構成して第1波長の光を
発振するレーザ装置と、 第2波長の光通信信号を前記リング共振器に入力して前
記第1波長の光と合波する合波器と、 前記第2波長の光通信信号に同期した前記第1波長の光
信号を光クロック信号として前記リング共振器から取り
出す結合器とを備えた全光クロック再生回路において、 前記リング共振器内に、 前記合波器で合波された前記第1波長の光と前記第2波
長の光通信信号を入力し、4光波混合により第3波長の
光信号を発生する第1非線形素子と、 前記第1非線形素子の出力光のうち前記第1波長の光を
遮断する光フィルタと、 前記光フィルタを通過した前記第2波長の光通信信号と
前記第3波長の光信号を入力し、4光波混合により第1
波長の光信号を発生する第2非線形素子とを備えたこと
を特徴とする全光クロック再生回路。
1. A laser device that constitutes a ring resonator and oscillates light of a first wavelength, and an optical communication signal of a second wavelength is input to the ring resonator and multiplexed with the light of the first wavelength. An all-optical clock recovery circuit comprising a multiplexer and a coupler that extracts the optical signal of the first wavelength synchronized with the optical communication signal of the second wavelength from the ring resonator as an optical clock signal, wherein the ring resonance A first nonlinear element for inputting the light of the first wavelength and the optical communication signal of the second wavelength, which are multiplexed by the multiplexer, and generating an optical signal of the third wavelength by mixing four light waves; An optical filter that blocks light of the first wavelength of the output light of the first nonlinear element, and an optical communication signal of the second wavelength and an optical signal of the third wavelength that have passed through the optical filter are input, First by four-wave mixing
An all-optical clock recovery circuit, comprising: a second nonlinear element that generates an optical signal of a wavelength.
【請求項2】 第1非線形素子および第2非線形素子は
半導体光増幅器であることを特徴とする請求項1に記載
の全光クロック再生回路。
2. The all-optical clock recovery circuit according to claim 1, wherein the first nonlinear element and the second nonlinear element are semiconductor optical amplifiers.
JP13326996A 1996-05-28 1996-05-28 All optical clocks regenerative circuit Pending JPH09321372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13326996A JPH09321372A (en) 1996-05-28 1996-05-28 All optical clocks regenerative circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13326996A JPH09321372A (en) 1996-05-28 1996-05-28 All optical clocks regenerative circuit

Publications (1)

Publication Number Publication Date
JPH09321372A true JPH09321372A (en) 1997-12-12

Family

ID=15100680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13326996A Pending JPH09321372A (en) 1996-05-28 1996-05-28 All optical clocks regenerative circuit

Country Status (1)

Country Link
JP (1) JPH09321372A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7561811B1 (en) * 1999-05-14 2009-07-14 Fujitsu Limited Method, device, and system for regeneration and application of optical clock
US7688502B2 (en) * 2004-07-30 2010-03-30 Yoshinobu Maeda Three-terminal optical signal amplifying device
JPWO2021246531A1 (en) * 2020-06-05 2021-12-09

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7561811B1 (en) * 1999-05-14 2009-07-14 Fujitsu Limited Method, device, and system for regeneration and application of optical clock
US7688502B2 (en) * 2004-07-30 2010-03-30 Yoshinobu Maeda Three-terminal optical signal amplifying device
JPWO2021246531A1 (en) * 2020-06-05 2021-12-09

Similar Documents

Publication Publication Date Title
US5264960A (en) Optical wavelength shifter
JP3458613B2 (en) Wavelength conversion device and optical operation device
JP4397567B2 (en) Optical AND gate and waveform shaping device
US5953138A (en) All-optical processing in communications systems
JP2003209516A (en) Method and device for shaping waveform of signal light
JP4961634B2 (en) Optical gate device
JPH06303216A (en) Optical clock extraction device and optical time division demultiplexing device
KR19990055420A (en) Fully Optical Wavelength Converter Using Semiconductor Optical Amplifier and Polarization Interferometer
JP4813791B2 (en) Method and apparatus for multi-band optical switching using multi-pump parametric devices
US7277222B2 (en) Apparatus and method for wavelength conversion and clock signal extraction using semiconductor optical amplifiers
JP2583474B2 (en) Optical demultiplexer
JPH09321372A (en) All optical clocks regenerative circuit
JPH1172757A (en) Optical pulse multiplexing apparatus
JP2570204B2 (en) All-optical repeater
JP2006060794A (en) Optical clock signal extracting apparatus
US6650845B1 (en) Optical repeater using two mode-locked laser diodes for regenerating output pulses of same wavelength as incident optical pulses
JP3513675B2 (en) Optical frequency converter
JP3381668B2 (en) Optical clock extraction circuit
JP3787617B2 (en) Four-wave mixing device using a ring laser
JP2000047274A (en) In-line reproducing device of soliton optical signal by synchronous modulation, and transmission system including the same
JP3280185B2 (en) Demultiplexing method and apparatus for time division multiplexed optical signal
JPH10336117A (en) Optical signal generating device
JP2001094199A (en) Optical clock sampling circuit and optical communication system
JP3919737B2 (en) Optical signal regeneration method and optical signal regeneration apparatus
JPH098741A (en) Optical clock extracting circuit