JPH09321035A - Method and apparatus for transporting thin film forming materials - Google Patents

Method and apparatus for transporting thin film forming materials

Info

Publication number
JPH09321035A
JPH09321035A JP13389096A JP13389096A JPH09321035A JP H09321035 A JPH09321035 A JP H09321035A JP 13389096 A JP13389096 A JP 13389096A JP 13389096 A JP13389096 A JP 13389096A JP H09321035 A JPH09321035 A JP H09321035A
Authority
JP
Japan
Prior art keywords
thin film
film forming
raw material
forming raw
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13389096A
Other languages
Japanese (ja)
Inventor
Masakazu Muroyama
雅和 室山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13389096A priority Critical patent/JPH09321035A/en
Publication of JPH09321035A publication Critical patent/JPH09321035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To transform stably thin film forming materials in a simple method in thin film forming operation. SOLUTION: An apparatus 10 is provided with a double pipe arrangement for transportation. TEOS(tetra-ethoxy-silane) as thin film forming material flows in an inner tube 13 of the tube arrangement and an outer tube 12 is filled with ethanol as heating medium. A heater 14 is further placed around the perimeter of the outer tube 12. The material for forming thin film is indirectly heated by the heating medium having a heat capacity larger than it, and the heat capacity of the heating medium is used as buffer for temperature variations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイスの
製造工程等における薄膜形成に用いる薄膜形成原料を一
定温度で輸送する方法及びそのための装置に関する。特
には、温度制御精度がきわめて高く、薄膜作製の均一化
と高品質化に貢献できる薄膜形成原料輸送方法及び薄膜
形成原料輸送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for transporting a thin film forming raw material used for thin film formation in a semiconductor device manufacturing process or the like at a constant temperature, and an apparatus therefor. In particular, the present invention relates to a thin film forming raw material transporting method and a thin film forming raw material transporting device which have extremely high temperature control accuracy and can contribute to uniformization and high quality of thin film production.

【0002】[0002]

【従来の技術】半導体薄膜を例にとって従来技術を説明
する。デバイスルールの微細化が進行する中で、薄膜特
性に対する要求が厳しくなってきている。その要求に応
えるため、様々な新しい薄膜形成技術とそのための薄膜
形成原料が開発されている。例えば、成膜時における段
差被覆性の改善を行うべく、成膜用原料ガスの分子構造
に着目し、より段差被覆性を向上した成膜用ガスが開発
されている。
2. Description of the Related Art A conventional technique will be described by taking a semiconductor thin film as an example. As device rules become finer, the requirements for thin film characteristics are becoming more stringent. In order to meet the demand, various new thin film forming techniques and thin film forming raw materials therefor have been developed. For example, in order to improve the step coverage during film formation, attention has been paid to the molecular structure of the film-forming raw material gas, and a film formation gas having an improved step coverage has been developed.

【0003】具体的には、層間絶縁膜の形成用ガスとし
ては、従来よりSiH4 /N2 Oが広く用いられている
が、SiH4 に代わり、有機金属化合物であるTEOS
(Tetra ethoxy silane)を用いることにより付着確率を
制御し、段差被覆性を改善するとの技術がある。また、
近年多層金属配線における接続技術としてWプラグ形成
が提案されており、W膜の密着性を確保する目的でTi
N層に代表される密着層が提案されている。密着層の形
成方法としては、従来からスパッタ法が用いられている
が高アスペクト比のコンタクトホールに適用する場合に
はコンタクトホール底での段差被覆性が低いことから段
差被覆性の高いCVDによるTiN膜の形成が提案され
ている。CVDによるTiN膜の形成方法としては、原
料ガスにTiCl4 及び窒素又はアンモニアに代表され
る窒素の水素化物を用いる方法や有機金属化合物に代表
されるテトラジメチルアミノチタン(Tetra dimethyl a
mino titan) を用いた形成方法が提案されている。この
種の技術についてはこれまで多数報告されており、例え
ば第43回応用物理学関係連合講演会予稿工集28a-Q-10
p.792に記載されている。特に、有機金属化合物を用い
る方法はAl配線層のコロージョンの発生の原因となる
塩素を原料ガス中に含有しないことから有望視されてい
る。
Specifically, SiH 4 / N 2 O has been widely used as a gas for forming an interlayer insulating film, but TEOS which is an organometallic compound is used instead of SiH 4.
There is a technique of controlling the adhesion probability by using (Tetra ethoxy silane) and improving the step coverage. Also,
In recent years, W plug formation has been proposed as a connection technology for multilayer metal wiring, and Ti is used for the purpose of ensuring the adhesion of the W film.
Adhesion layers represented by N layers have been proposed. As a method for forming the adhesion layer, a sputtering method has been conventionally used. However, when it is applied to a contact hole having a high aspect ratio, the step coverage at the bottom of the contact hole is low. The formation of films has been proposed. As a method for forming a TiN film by CVD, a method using TiCl 4 and nitrogen or a hydride of nitrogen represented by ammonia as a source gas, or tetradimethylamino titanium (Tetra dimethyl a titanium) represented by an organometallic compound is used.
A forming method using mino titan) has been proposed. There have been many reports on this kind of technology, for example, Proceedings of the 43rd Joint Lecture on Applied Physics 28a-Q-10.
See p.792. In particular, the method using an organometallic compound is considered to be promising because it does not contain chlorine, which causes corrosion of the Al wiring layer, in the source gas.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような必
要性から開発された薄膜形成用原料ガスは、その分子構
造ゆえに液体材料であることが多い。このため、薄膜形
成反応容器への薄膜形成用原料の輸送については種々の
施策が行われている。液体材料では計量及び輸送の面で
ハンドリングが不便なことから、液材を一度気化させて
反応容器に輸送することとなる。このため輸送中の原料
ガスの温度は常に液化温度以上に保持する必要があり、
原料輸送用配管の周囲にテープヒーター等を配置するこ
とにより、このような要請に対処しているのが現状であ
る。しかし、テープヒーター等では配置の方法等により
温度の均一性を維持するのが困難であり、原料ガスの液
化が発生し、成膜速度の変動やパーティクルの発生原因
となっている。
However, the raw material gas for forming a thin film, which has been developed from such a need, is often a liquid material because of its molecular structure. Therefore, various measures have been taken to transport the thin film forming raw material to the thin film forming reaction vessel. Since handling of liquid materials is inconvenient in terms of measurement and transportation, the liquid materials are once vaporized and then transported to the reaction vessel. Therefore, the temperature of the raw material gas during transportation must always be kept above the liquefaction temperature,
At present, such requirements are dealt with by arranging a tape heater or the like around the raw material transportation pipe. However, it is difficult to maintain temperature uniformity with a tape heater or the like due to the arrangement method or the like, and liquefaction of the source gas occurs, which causes fluctuations in the film formation rate and particles.

【0005】この問題を回避するために、薄膜形成用原
料を反応容器まで液体の状態で輸送し、反応容器導入の
直前で気化させる方法が提案されているが、気化器から
反応容器までの原料ガスの輸送には従来からの加熱機構
を用いているのが現状である。さらに反応容器直前の温
度により薄膜形成用原料の状態、例えば原料ガスの密度
等が決定され、この部分の局部的温度が設定温度と異な
ると、想定した原料ガス流量が得られないという問題が
発生する。したがって、簡便な手法による安定な薄膜原
料の輸送技術が切望されている。
In order to avoid this problem, a method has been proposed in which a thin film forming raw material is transported to a reaction vessel in a liquid state and vaporized immediately before introduction into the reaction vessel, but the raw material from the vaporizer to the reaction vessel is proposed. At present, a conventional heating mechanism is used for gas transportation. Furthermore, the state of the raw material for thin film formation, such as the density of the raw material gas, is determined by the temperature immediately before the reaction vessel.If the local temperature of this part is different from the set temperature, the expected raw material gas flow rate cannot be obtained. To do. Therefore, a stable technique for transporting thin film raw materials by a simple method has been earnestly desired.

【0006】本発明は上記問題点に鑑みてなされたもの
で、薄膜形成工程において、簡便な手法で薄膜形成材料
を安定に輸送することを目的としたものである。より具
体的には、温度制御精度がきわめて高く、薄膜作製作業
の均一化と高品質化に貢献できる薄膜形成原料輸送方法
及び薄膜形成原料輸送装置を提供することを目的とす
る。
The present invention has been made in view of the above problems, and an object thereof is to stably transport a thin film forming material by a simple method in a thin film forming step. More specifically, it is an object of the present invention to provide a thin film forming raw material transportation method and a thin film forming raw material transportation device which have extremely high temperature control accuracy and can contribute to uniformization and high quality of thin film forming work.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の薄膜形成原料輸送方法は、薄膜形成原料を
一定温度に保ちながら配管を通して輸送する方法であっ
て; 該配管を熱容量の大きい熱媒体を用いて加熱又は
冷却することを特徴とする。
In order to solve the above problems, the thin film forming raw material transportation method of the present invention is a method of transporting a thin film forming raw material through a pipe while maintaining a constant temperature; the pipe has a large heat capacity. It is characterized by heating or cooling using a heat medium.

【0008】また、本発明の薄膜形成原料輸送装置は、
薄膜形成原料を一定温度に保ちながら配管を通して輸送
する輸送装置であって; 薄膜形成原料配管と、 この
配管に熱媒体を接触させる手段と、 該熱媒体を加熱又
は冷却する手段と、を具備し; 該熱媒体の熱容量が大
きいことを特徴とする。
Further, the thin film forming raw material transportation apparatus of the present invention is
A transport device for transporting a thin film forming raw material through a pipe while maintaining a constant temperature; and a thin film forming raw material pipe, means for bringing a heat medium into contact with the pipe, and means for heating or cooling the heat medium. The heat capacity of the heat medium is large.

【0009】すなわち、薄膜形成原料と比較して熱容量
が大きい熱媒体を用いて薄膜形成原料を間接加熱(又は
冷却、以下同じ)してやれば、熱媒体の熱容量がバッフ
ァーとなって、薄膜形成原料の温度変動を小さくするこ
とができる。
That is, if the thin film forming raw material is indirectly heated (or cooled, the same applies hereinafter) by using a heat medium having a larger heat capacity than the thin film forming raw material, the heat capacity of the heat medium serves as a buffer, The temperature fluctuation can be reduced.

【0010】[0010]

【発明の実施の形態】熱容量は比熱と流量の積に該当す
るため直接の比較ができないが、本件の場合には薄膜形
成原料の熱容量に対して熱媒体の熱容量は5倍程度であ
れば好ましい。この程度とすれば、実際的な効果が現れ
る。例えば、薄膜形成材料としてトリエトキシシラン/
He混合気体の場合、熱媒体としてフロロカーボン系熱
媒体フロリナートやエタノール等が適当である。
BEST MODE FOR CARRYING OUT THE INVENTION The heat capacity cannot be directly compared because it corresponds to the product of the specific heat and the flow rate, but in this case, the heat capacity of the heat medium is preferably about 5 times the heat capacity of the thin film forming raw material. . At this level, a practical effect will appear. For example, as a thin film forming material, triethoxysilane /
In the case of He mixed gas, fluorocarbon heat medium fluorinate, ethanol, etc. are suitable as the heat medium.

【0011】本発明の熱媒体としては、物質の平衡状態
を利用してきわめて熱容量が大きくなった状態の熱媒体
を用いることができる。例えば、薄膜形成原料の輸送温
度を熱媒体の融点、沸点等の相転移温度とするのであ
る。例えば、熱媒体の沸点で、液相及び気相を含んだ熱
媒体を用いれば、熱媒体への入熱や出熱が相当あった場
合であっても、その熱は熱媒体の相転移のエネルギーに
よって吸収されて、熱媒体の温度は変わらない。そのた
め、熱媒体で加熱される薄膜形成原料の温度も一定とな
る。その結果、薄膜形成原料(ガス)の密度を一定に保
持して薄膜形成反応容器に供給することができる。
As the heat medium of the present invention, it is possible to use a heat medium having an extremely large heat capacity by utilizing the equilibrium state of substances. For example, the transport temperature of the thin film forming raw material is set to the phase transition temperature such as the melting point and the boiling point of the heat medium. For example, if a heat medium containing a liquid phase and a gas phase is used at the boiling point of the heat medium, even if there is considerable heat input or heat output to the heat medium, that heat will not cause the phase transition of the heat medium. It is absorbed by energy and the temperature of the heat carrier does not change. Therefore, the temperature of the thin film forming raw material heated by the heat medium also becomes constant. As a result, the density of the thin film forming raw material (gas) can be kept constant and supplied to the thin film forming reaction vessel.

【0012】[0012]

【実施例】実施例1 以下、本発明の実施例を図をも参照しつつ説明する。図
1は、本発明の一実施例に係る薄膜形成原料輸送装置を
示す模式的な図である。この図の薄膜形成原料輸送装置
10は、2重管状の輸送用配管11を備えている。輸送
用配管11は、中心部の内管13(薄膜形成原料配管)
と、その外周に配置された外管12からなる。内管13
内を薄膜形成原料であるTEOS(テトラエトキシシラ
ン)が流れ、外管12内には熱媒体であるエタノールが
入っている。外管12のさらに外周には、ヒーター14
が外管12に巻き付くように設けられている。このヒー
ター14は電熱ヒーターであり、電源15から電力供給
を受ける。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a thin film forming raw material transportation apparatus according to an embodiment of the present invention. The thin film forming raw material transportation apparatus 10 in this figure is provided with a double pipe-shaped transportation pipe 11. The transportation pipe 11 is an inner pipe 13 at the center (a thin film forming raw material pipe).
And an outer tube 12 arranged on the outer periphery thereof. Inner tube 13
TEOS (tetraethoxysilane) which is a thin film forming raw material flows through the inside, and ethanol which is a heat medium is contained in the outer tube 12. A heater 14 is provided on the outer circumference of the outer tube 12.
Are provided so as to wind around the outer tube 12. The heater 14 is an electric heater and receives power supply from a power supply 15.

【0013】本実施例では、テトラエトキシシランを内
管、エタノールを外管に配し、最外周部の加熱装置とし
てヒーターを配置した構造を用いることで、エタノール
の沸点に維持する熱量が加わるように加熱している。そ
れにより、該加熱装置の温度変動を受けずにエタノール
は常に気液平衡が成り立ち沸点温度78.3℃に維持さ
れる。一定温度に加熱された熱媒体により、内管に流通
するテトラエトキシシランは、おおむねガス配管全体に
わたり温度が一定に保持される。このため、気化器によ
りガス化された薄膜形成用原料は温度が一定に保持され
ていることから気体の密度は一定に保たれ安定に反応装
置に導入することが可能である。ここで、上述のように
エタノールの気液平衡を達成することが必要であり、エ
タノールには気液平衡を維持する温度熱量を加える必要
がある。つまり、エタノールが全て気化状態になると温
度はさらに上昇してしまい本発明の効果はなくなる。そ
こで、気液平衡を実現するために気化した熱媒体を閉じ
込めておくか、又は気化した熱媒体を影響のない領域で
再度液化するため、例えば別途設置したチラーにより液
化を行う等の手段が必要である。
In the present embodiment, tetraethoxysilane is placed in the inner tube, ethanol is placed in the outer tube, and a heater is placed as the heating device at the outermost periphery so that the amount of heat for maintaining the boiling point of ethanol is added. Is heating up. As a result, ethanol is always in vapor-liquid equilibrium and maintained at the boiling point temperature of 78.3 ° C. without being affected by the temperature fluctuation of the heating device. The temperature of the tetraethoxysilane flowing through the inner pipe is kept substantially constant over the entire gas pipe by the heating medium heated to a constant temperature. Therefore, since the thin film forming raw material gasified by the vaporizer is kept at a constant temperature, the gas density can be kept constant and can be stably introduced into the reactor. Here, it is necessary to achieve the vapor-liquid equilibrium of ethanol as described above, and it is necessary to add the temperature and heat quantity for maintaining the vapor-liquid equilibrium to ethanol. That is, when all the ethanol is vaporized, the temperature further rises and the effect of the present invention is lost. Therefore, in order to achieve gas-liquid equilibrium, the vaporized heat medium is confined, or in order to liquefy the vaporized heat medium again in an unaffected area, for example, means such as liquefying by a separately installed chiller is required. Is.

【0014】本実施例を適用した結果、成膜速度の均一
性は、従来のテープヒーターを具備した構造の加熱装置
を用いた場合と比較して、ウエハーを50枚連続的に成
膜した時点での成膜速度の変動が従来5%であったとこ
ろ、本実施例では変動が2%に減少した。また、薄膜形
成材料が液化することによるパーティクルの発生も観測
されなかった。
As a result of applying the present embodiment, the uniformity of the film formation rate was found at the time when 50 wafers were continuously formed, as compared with the case of using a conventional heating device having a structure including a tape heater. Whereas the variation of the film formation rate in the prior art was 5%, the variation was reduced to 2% in this example. Further, generation of particles due to liquefaction of the thin film forming material was not observed.

【0015】実施例2 図2は、本発明の他の一実施例に係る薄膜形成原料輸送
装置を示す模式的な図である。この図の薄膜形成原料輸
送装置20は、2重管状の輸送用配管21を備えてい
る。輸送用配管21は、中心部の内管23と、その外周
に配置された外管22とからなる。内管23内を、薄膜
形成原料である四塩化チタンが、図の左から右へ流れ
る。外管22内は、熱媒体であるフロロカーボン系熱媒
体が、熱媒体の加熱循環装置24から供給されて、図の
右から左へ流れる。なお、図の右側が反応容器側であ
り、図の左側が気化器側である。
Embodiment 2 FIG. 2 is a schematic view showing a thin film forming raw material transport apparatus according to another embodiment of the present invention. The thin film forming raw material transportation apparatus 20 of this figure is provided with a double pipe-shaped transportation pipe 21. The transportation pipe 21 is composed of an inner pipe 23 at the center and an outer pipe 22 arranged on the outer periphery thereof. Titanium tetrachloride, which is a raw material for forming a thin film, flows in the inner tube 23 from the left to the right in the figure. In the outer tube 22, a fluorocarbon heat medium, which is a heat medium, is supplied from the heat medium heating / circulating device 24 and flows from right to left in the drawing. The right side of the figure is the reaction vessel side, and the left side of the figure is the vaporizer side.

【0016】図2の薄膜形成原料輸送装置においては、
熱媒体を反応容器側から流し、かつ、反応容器側の部分
を温度制御ポイントとしている。つまり、そのようなポ
イントにおける熱媒体中に温度センサー26を挿入して
おり、このポイントにおける熱媒体温度が一定に保たれ
るようコントローラー27が熱媒体加熱循環装置24を
制御し、熱媒体の温度を調節する。そのため、反応容器
手前部という最も温度精度の要求される部位において高
い温度精度を実現できる。
In the thin film forming raw material transport apparatus of FIG.
The heat medium is caused to flow from the reaction container side, and the portion on the reaction container side is used as the temperature control point. That is, the temperature sensor 26 is inserted in the heat medium at such a point, and the controller 27 controls the heat medium heating / circulating device 24 so that the heat medium temperature at this point is kept constant. Adjust. Therefore, it is possible to realize high temperature accuracy in the front portion of the reaction container where the highest temperature accuracy is required.

【0017】本実施例では、四塩化チタンを内管、フロ
ロカーボン系熱媒体を外管に薄膜原料ガスと対向させる
方向で流通させる。外管導入口のフロロカーボン系熱媒
体の温度を80℃に管理することで、対向して流通する
薄膜形成用材料の反応容器導入部での温度を一定に保持
することが可能である。これにより四塩化チタンの密度
を一定に保ち安定に反応装置に導入することができる。
ここで、フロロカーボン系熱媒体の熱容量は加熱される
四塩化チタンに比べて著しく大きく、加熱後の熱媒体の
温度低下は非常に小さく配管での液化は充分抑制でき
る。このため、気化器によりガス化された薄膜形成用原
料は温度を一定に保持されていることから、気体の密度
は一定に保たれ安定的に反応装置に導入することが可能
である。
In this embodiment, titanium tetrachloride is passed through the inner tube and the fluorocarbon heat medium is passed through the outer tube in the direction of facing the thin film raw material gas. By controlling the temperature of the fluorocarbon-based heat medium at the outer tube introduction port to 80 ° C., it is possible to keep the temperature of the thin-film forming material flowing oppositely at the reaction vessel introduction part constant. Thereby, the density of titanium tetrachloride can be kept constant and stably introduced into the reactor.
Here, the heat capacity of the fluorocarbon heat medium is significantly larger than that of titanium tetrachloride to be heated, and the temperature drop of the heat medium after heating is very small, and the liquefaction in the pipe can be sufficiently suppressed. Therefore, since the thin film forming raw material gasified by the vaporizer is kept at a constant temperature, the gas density can be kept constant and can be stably introduced into the reactor.

【0018】本実施例を適用した結果、成膜速度の均一
性は、従来のテープヒーターを具備した構造の加熱装置
を用いた場合と比較して、ウエハーを50枚連続的に成
膜した時点での成膜速度の変動が従来5%であったとこ
ろ、本実施例では変動が2.5%に減少した。また、薄
膜形成材料が液化することによるパーティクルの発生も
観測されなかった。
As a result of applying this embodiment, the uniformity of the film formation rate was found when 50 wafers were continuously formed, as compared with the case where a heating device having a structure equipped with a conventional tape heater was used. Whereas the variation of the film forming rate in the prior art was 5%, the variation was reduced to 2.5% in this example. Further, generation of particles due to liquefaction of the thin film forming material was not observed.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
を適用した場合、薄膜形成用原料の輸送工程において原
料の温度を精度良く一定に保持することができるため、
簡便な方法で薄膜形成用原料を安定に輸送することが可
能である。その結果、均一かつ高品質の半導体素子等を
製造できる。
As is apparent from the above description, when the present invention is applied, the temperature of the raw material for the thin film forming raw material can be accurately kept constant in the transporting step,
It is possible to stably transport the thin film forming raw material by a simple method. As a result, uniform and high-quality semiconductor devices and the like can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る薄膜形成原料輸送装置
を示す模式的な図である。
FIG. 1 is a schematic view showing a thin film forming raw material transportation apparatus according to an embodiment of the present invention.

【図2】本発明の他の一実施例に係る薄膜形成原料輸送
装置を示す模式的な図である。
FIG. 2 is a schematic view showing a thin film forming raw material transportation apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…薄膜形成原料輸送装置、11…輸送用配管、12
…外管、13…内管、14…ヒーター、15…電源、2
0…薄膜形成原料輸送装置、21…輸送用配管、22…
外管、23…内管、24…熱媒体加熱循環装置、26…
温度センサー、27…コントローラー
10 ... Thin film forming raw material transportation device, 11 ... Transportation piping, 12
… Outer tube, 13… Inner tube, 14… Heater, 15… Power supply, 2
0 ... Thin film forming raw material transportation device, 21 ... Transportation piping, 22 ...
Outer pipe, 23 ... Inner pipe, 24 ... Heat medium heating circulation device, 26 ...
Temperature sensor, 27 ... Controller

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 薄膜形成原料を一定温度に保ちながら配
管を通して輸送する方法であって;該配管を熱容量の大
きい熱媒体を用いて加熱又は冷却することを特徴とする
薄膜形成原料輸送方法。
1. A method for transporting a thin film-forming raw material through a pipe while maintaining a constant temperature; a method for transporting a thin film-forming raw material, wherein the pipe is heated or cooled using a heating medium having a large heat capacity.
【請求項2】 上記一定温度が上記熱媒体の相転移温度
(融点、沸点等)である請求項1記載の薄膜形成原料輸
送方法。
2. The method for transporting a thin film forming raw material according to claim 1, wherein the constant temperature is a phase transition temperature (melting point, boiling point, etc.) of the heat medium.
【請求項3】 薄膜形成原料を一定温度に保ちながら配
管を通して輸送する輸送装置であって;薄膜形成原料配
管と、 この配管に熱媒体を接触させる手段と、 該熱媒体を加熱又は冷却する手段と、を具備し;該熱媒
体の熱容量が大きいことを特徴とする薄膜形成原料輸送
装置。
3. A transportation device for transporting a thin film forming raw material through a pipe while maintaining a constant temperature; a thin film forming raw material pipe, means for contacting a heat medium with this pipe, and means for heating or cooling the heat medium. A thin film forming material transporting device, characterized in that the heat capacity of the heat medium is large.
【請求項4】 上記一定温度が上記熱媒体の相転移温度
(融点、沸点等)である請求項3記載の薄膜形成原料輸
送装置。
4. The thin film forming raw material transporting apparatus according to claim 3, wherein the constant temperature is a phase transition temperature (melting point, boiling point, etc.) of the heat medium.
【請求項5】 上記熱媒体を接触させる手段が、上記薄
膜形成原料配管(内管)の外周に配置された2重管状の
外管である請求項3又は4記載の薄膜形成原料輸送装
置。
5. The thin-film-forming raw material transport apparatus according to claim 3, wherein the means for contacting the heat medium is a double-tube outer pipe arranged on the outer periphery of the thin-film-forming raw material pipe (inner pipe).
【請求項6】 上記熱媒体を加熱又は冷却する手段が、
上記外管の外周部に配置されたヒーター又はクーラーで
ある請求項5記載の薄膜形成原料輸送装置。
6. A means for heating or cooling the heat medium,
The thin film forming raw material transportation apparatus according to claim 5, which is a heater or a cooler arranged on the outer peripheral portion of the outer tube.
【請求項7】 上記熱媒体を加熱又は冷却する手段が、
上記外管中に上記熱媒体を循環させる機構を有する請求
項5記載の薄膜形成原料輸送装置。
7. The means for heating or cooling the heat medium comprises:
The thin film forming raw material transport apparatus according to claim 5, further comprising a mechanism for circulating the heat medium in the outer tube.
【請求項8】 上記熱媒体が上記薄膜形成原料と対向し
て流れる請求項7記載の薄膜形成原料輸送装置。
8. The apparatus for transporting a thin film forming material according to claim 7, wherein the heating medium flows in opposition to the thin film forming raw material.
JP13389096A 1996-05-28 1996-05-28 Method and apparatus for transporting thin film forming materials Pending JPH09321035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13389096A JPH09321035A (en) 1996-05-28 1996-05-28 Method and apparatus for transporting thin film forming materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13389096A JPH09321035A (en) 1996-05-28 1996-05-28 Method and apparatus for transporting thin film forming materials

Publications (1)

Publication Number Publication Date
JPH09321035A true JPH09321035A (en) 1997-12-12

Family

ID=15115500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13389096A Pending JPH09321035A (en) 1996-05-28 1996-05-28 Method and apparatus for transporting thin film forming materials

Country Status (1)

Country Link
JP (1) JPH09321035A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125496A1 (en) * 2008-04-11 2009-10-15 東芝三菱電機産業システム株式会社 Heat equalizer
KR20190000529A (en) * 2017-06-23 2019-01-03 주식회사 케이씨텍 Apparatus and Method for processing substrate
WO2024069722A1 (en) * 2022-09-26 2024-04-04 株式会社Kokusai Electric Pipe heating system, substrate processing device, and method for manufacturing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125496A1 (en) * 2008-04-11 2009-10-15 東芝三菱電機産業システム株式会社 Heat equalizer
JP5226773B2 (en) * 2008-04-11 2013-07-03 東芝三菱電機産業システム株式会社 Soaking equipment
US8724973B2 (en) 2008-04-11 2014-05-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Heat equalizer
US9428832B2 (en) 2008-04-11 2016-08-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Heat equalizer
US9428831B2 (en) 2008-04-11 2016-08-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Heat equalizer
KR20190000529A (en) * 2017-06-23 2019-01-03 주식회사 케이씨텍 Apparatus and Method for processing substrate
WO2024069722A1 (en) * 2022-09-26 2024-04-04 株式会社Kokusai Electric Pipe heating system, substrate processing device, and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US9190299B2 (en) Apparatus for manufacturing semiconductor device, method of manufacturing semiconductor device, and recording medium
US6312526B1 (en) Chemical vapor deposition apparatus and a method of manufacturing a semiconductor device
CN104882363B (en) Processing gas generation device, processing gas production method, substrate processing method using same
US4842891A (en) Method of forming a copper film by chemical vapor deposition
CN101772590A (en) Raw gas supply system, and filming apparatus
JPH07267621A (en) Formation of silicon membrane
US5820942A (en) Process for depositing a material on a substrate using light energy
WO2014157211A1 (en) Substrate-processing apparatus, method for manufacturing semiconductor device, and recording medium
JP4933894B2 (en) Vaporizer module
Kim et al. Gas‐Phase Alkali Metal‐Assisted MOCVD Growth of 2D Transition Metal Dichalcogenides for Large‐Scale Precise Nucleation Control
JPH09321035A (en) Method and apparatus for transporting thin film forming materials
TW505542B (en) Rapid thermal processing system and its apparatus and method
CN101652501B (en) Method for film formation, and apparatus for film formation
US20120071001A1 (en) Vaporizing and feed apparatus and vaporizing and feed method
JP2020152976A (en) Film deposition method and film deposition apparatus
JPH11236675A (en) Thin film forming device and method therefor
JPS62228471A (en) Formation of deposited film
JPH01301506A (en) Production of hydrogenated amorphous carbon thin film
Peev et al. Modeling and optimization of the growth of polycrystalline silicon films by thermal decomposition of silane
JPH06316765A (en) Vaporizer for liquid material
JP3244809B2 (en) Thin film forming method and thin film forming apparatus
JP2795868B2 (en) CVD equipment
JPS61275135A (en) Formation of borophosphosilicate glass
JPH06145992A (en) Apparatus for production of dielectric substance for semiconductor device
Sugiyama et al. Optimization of Al-CVD process based on elementary reaction simulation and experimental verification: From the growth rate to the surface morphology