JPH09319183A - Electrifying device - Google Patents
Electrifying deviceInfo
- Publication number
- JPH09319183A JPH09319183A JP13507496A JP13507496A JPH09319183A JP H09319183 A JPH09319183 A JP H09319183A JP 13507496 A JP13507496 A JP 13507496A JP 13507496 A JP13507496 A JP 13507496A JP H09319183 A JPH09319183 A JP H09319183A
- Authority
- JP
- Japan
- Prior art keywords
- image carrier
- charging
- contact
- charging device
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は電子写真プロセス
を応用した複写機やプリンタに適用することのできる帯
電装置、特に接触型ブレード帯電装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device applicable to a copying machine or a printer to which an electrophotographic process is applied, and more particularly to a contact type blade charging device.
【0002】[0002]
【従来の技術】接触帯電装置は、半導電性のロール等を
電荷受容体に接触させ、直流あるいは直流と交流の重畳
電圧を印加することにより接触部近傍の微小空隙で放電
させて帯電を行う装置であって、ロール型、ブレード型
の帯電装置が知られている。ロール型の接触帯電装置
は、電荷受容体との適切な接触圧による均一な密着を得
るゴムの硬度を保ちつつ帯電を行うために、ブレードの
素材は適切なゴム抵抗を必要とした。ロールには適度の
ゴム抵抗を得るために導電剤や架橋剤が添加されている
が、接触により導電剤や架橋剤が電荷受容体に転移し
て、画質に悪影響を及ぼす場合があった。また、均一な
帯電をおこなうためにはロールの外形精度が必要であ
り、高精度のロールの製造は歩留りの低下等を招き、コ
ストアップにつながった。これに対しブレード型帯電装
置は、弾性ブレード等を像担持体に接触させ、ブレード
と像担持体との形成するくさび型の微小空隙部分を利用
して放電をおこなうものであって、この帯電装置は比較
的安定した微小空隙が形成できると共に、安価に提供で
きる特徴を有している。ブレード型帯電装置は、例え
ば、特開平1−93760号公報、特開平4−2600
68号公報に開示されている。2. Description of the Related Art In a contact charging device, a semiconductive roll or the like is brought into contact with a charge acceptor, and a direct current or a superimposed voltage of direct current and alternating current is applied to discharge in a minute gap near the contact portion to perform charging. Roller type and blade type charging devices are known. The roll-type contact charging device requires an appropriate rubber resistance for the blade material in order to carry out charging while maintaining the hardness of the rubber to obtain uniform contact with the charge acceptor by appropriate contact pressure. A conductive agent or a cross-linking agent is added to the roll in order to obtain an appropriate rubber resistance, but the conductive agent or the cross-linking agent may be transferred to the charge acceptor upon contact, which may adversely affect the image quality. Further, the outer shape accuracy of the roll is required for uniform charging, and the manufacturing of the roll with high accuracy leads to a decrease in yield and the like, leading to an increase in cost. On the other hand, the blade-type charging device is a device in which an elastic blade or the like is brought into contact with the image carrier and discharge is performed by using a wedge-shaped minute void portion formed by the blade and the image carrier. Has the characteristics that relatively stable microvoids can be formed and can be provided at low cost. The blade type charging device is disclosed in, for example, Japanese Patent Laid-Open Nos. 1-93760 and 4-2600.
No. 68 is disclosed.
【0003】[0003]
【発明が解決しようとする課題】ブレード型帯電装置
は、ロール型帯電装置と異なり、像担持体との摩擦によ
り接触部が磨耗するという問題点を持っている。接触帯
電装置においては、像担持体との接触部にピンホールリ
ークや導電剤や架橋剤の像担持体への転移の防止のた
め、抵抗層あるいは保護層が設けられる。しかし、ブレ
ード型帯電装置を長期にわたって使用した場合、この保
護層が磨耗しピンホールリークや導電剤や架橋剤の像担
持体への転移により重大な画質欠陥を引き起こす場合が
あった。さらに、電極部が直接像担持体と接触している
と、長期にわたって使用した際に電極部と像担持体の接
触部分近傍にトナーや外添剤が次第に付着し、特に高湿
下におかれた場合には付着物が吸湿し抵抗が下がり、電
極部から付着物を通して電荷が像担持体に注入され、帯
電電位が不均一になる場合があることが確認された。Unlike the roll type charging device, the blade type charging device has a problem that the contact portion is worn due to friction with the image carrier. In the contact charging device, a resistance layer or a protective layer is provided at a contact portion with the image carrier to prevent pinhole leak and transfer of a conductive agent or a cross-linking agent to the image carrier. However, when the blade type charging device is used for a long period of time, the protective layer may be worn and pinhole leak or transfer of a conductive agent or a cross-linking agent to the image carrier may cause a serious image defect. Furthermore, if the electrode portion is in direct contact with the image bearing member, toner and external additives will gradually adhere to the vicinity of the contact portion between the electrode portion and the image bearing member when used for a long period of time, especially under high humidity. It was confirmed that in such a case, the adhering substance absorbs moisture and the resistance is lowered, and the electric charge may be injected from the electrode portion through the adhering substance into the image carrier to make the charging potential non-uniform.
【0004】これらの問題点を解決するため本出願人
は、像担持体に弾性接触し、少なくとも像担持体の帯電
をおこなうブレード状帯電装置において、バイアス電圧
を受けて像担持体に対し放電をおこなう半導電性部と、
半導電性部が像担持体表面と非接触となるように、かつ
像担持体表面との距離が徐々に大きくなるギャップを保
つように像担持体に当接して位置ぎめをおこなう絶縁部
を有する帯電装置を開発した。このブレード型帯電装置
の場合、放電領域の幅が広いほうが帯電電位の安定性に
すぐれることは定性的には明白である。しかし、像担持
体表面との距離が徐々に大きくなるギャップを形成する
装置において放電領域幅を広くした広いエアギャップで
放電をおこなうと、火花放電が発生し均一帯電ができな
くなる場合があることが判明した。また、プロセススピ
ードが速くなると遅いプロセススピードで使用していた
時の条件では均一な帯電が得られない場合があった。In order to solve these problems, the applicant of the present invention, in a blade-shaped charging device that elastically contacts the image bearing member to charge the image bearing member, receives a bias voltage and discharges the image bearing member. The semi-conductive part
It has an insulating part that contacts the image carrier so that the semi-conductive part does not come into contact with the surface of the image carrier and that the distance between the semi-conductive part and the surface of the image carrier gradually increases. We developed a charging device. In the case of this blade type charging device, it is qualitatively clear that the wider the discharge region is, the more stable the charging potential is. However, in a device that forms a gap in which the distance from the surface of the image carrier gradually increases, when discharging is performed in a wide air gap with a wide discharge region width, spark discharge may occur and uniform charging may not be possible. found. Further, if the process speed becomes faster, uniform charging may not be obtained under the conditions when used at a slow process speed.
【0005】これらの状況を鑑み本発明では、バイアス
電圧を受けて像担持体に対し放電をおこなう半導電性部
と、半導電性部が像担持体表面と非接触でかつ像担持体
表面との距離が徐々に大きくなるギャップを保つように
像担持体に当接して位置ぎめをおこなう絶縁部を有する
帯電装置において、長期にわたり安定した帯電性能を有
する装置を提供する。In view of these circumstances, in the present invention, a semiconductive portion which receives a bias voltage and discharges the image carrier, and a semiconductive portion which is not in contact with the surface of the image carrier and the surface of the image carrier. (EN) A charging device having an insulating portion that contacts and positions an image carrier so as to maintain a gap in which the distance gradually increases is provided with stable charging performance for a long period of time.
【0006】[0006]
【課題を解決するための手段】本発明の帯電装置は、少
なくともバイアス電圧を受けて像担持体に対し放電をお
こなう半導電性部と、像担持体の表面に接触して半導電
性部の位置決めを行う半導電性部に並設する絶縁部とを
有する帯電部材を、像担持体表面との接触角度Aを下記
の式(1)を満足する角度で支持部材に支持させて配設
し、帯電部材と像担持体表面との距離が徐々に大きくな
る放電ギャップを形成する構成を具備する。 tanA≦0.15/(W1+Dmin) ……式1 A:像担持体接触部近傍の帯電部材と像担持体とのなす
角度で帯電部材と像担持体の接触部から1mmの位置で
算出。 W1:絶縁部のプロセス方向の幅(mm)。 Dmin:プロセススピードPS(mm/sec)によ
り決まる 最低必要放電幅Dmin=PS/600〔mm〕 また、帯電部材の像担持体表面との接触角度Aは2度以
上とし、帯電部材の接触部分における像担持体に対する
圧力を0.7g/mm以上とする構成を具備する。SUMMARY OF THE INVENTION A charging device according to the present invention comprises a semi-conductive portion which receives at least a bias voltage and discharges the image carrier, and a semi-conductive portion which contacts the surface of the image carrier. A charging member having an insulating portion arranged in parallel with a semi-conductive portion for positioning is disposed so that the contact angle A with the surface of the image bearing member is supported by the supporting member at an angle satisfying the following expression (1). The discharge gap is formed such that the distance between the charging member and the surface of the image carrier gradually increases. tanA ≦ 0.15 / (W1 + Dmin) ... Equation 1 A: Calculated at an angle of 1 mm from the contact portion between the charging member and the image carrier at the angle formed by the charging member and the image carrier near the contact portion of the image carrier. W1: Width in the process direction of the insulating portion (mm). Dmin: Minimum required discharge width determined by process speed PS (mm / sec) Dmin = PS / 600 [mm] Further, the contact angle A of the charging member with the surface of the image carrier is 2 degrees or more, and the contact portion of the charging member is It is provided with a structure in which the pressure on the image carrier is 0.7 g / mm or more.
【0007】[0007]
実施例1 本発明による帯電装置が適用される電子写真プロセスの
1例を図1に示す。像担持体(感光体)50は像担持体
50を帯電させるための帯電装置10により所定電位に
帯電された後、露光手段51により画像情報が露光(レ
ーザービーム露光など)され、静電潜像が形成される。
この静電潜像に現像器53により現像剤が付着されて可
視像が形成される。用紙カセット30から送られた用紙
Pを電荷受容体(感光体)に重ね、転写用帯電装置55
でイオンを与えることにより像担持体50上の現像剤が
用紙Pに転写される。現像剤は定着装置57で用紙に定
着され、複写画像となる。一方、感光体上に残留したト
ナーはクリーニングブレード59によりクリーニングさ
れる。Example 1 An example of an electrophotographic process to which the charging device according to the present invention is applied is shown in FIG. The image bearing member (photoreceptor) 50 is charged to a predetermined potential by the charging device 10 for charging the image bearing member 50, and then the image information is exposed (laser beam exposure or the like) by the exposure means 51 to form an electrostatic latent image. Is formed.
The developer is attached to the electrostatic latent image by the developing device 53 to form a visible image. The sheet P sent from the sheet cassette 30 is superposed on the charge receptor (photoreceptor), and the transfer charging device 55
The developer on the image carrier 50 is transferred to the paper P by applying the ions. The developer is fixed on the sheet by the fixing device 57 to form a copied image. On the other hand, the toner remaining on the photoconductor is cleaned by the cleaning blade 59.
【0008】図2,図3は帯電装置10の構成を説明す
るものである。ブレード型帯電装置10は像担持体50
との接触部分に絶縁部11がもうけられている。絶縁部
11の素材は、体積抵抗率1010Ω・cm以上の材料が
使用できる。本実施例では耐磨耗性を考慮し、絶縁性の
高い1012Ω・cm以上のウレタンゴムを使用した。絶
縁部11のプロセス方向(像担持体の回転方向)の幅W
1は0.05mmから2mm程度とする。ここでは、並
設する半導電部13と像担持体50との放電に適切なギ
ヤップを保つために望ましい幅寸法である0.1mmか
ら0.5mm程度としている。厚さ寸法はt1とする。
絶縁部11のプロセス方向下流側には半導電部13を並
設する。2 and 3 illustrate the structure of the charging device 10. The blade type charging device 10 includes an image carrier 50.
An insulating portion 11 is provided at the contact portion with. As the material of the insulating portion 11, a material having a volume resistivity of 10 10 Ω · cm or more can be used. In this embodiment, urethane rubber having a high insulating property of 10 12 Ω · cm or more is used in consideration of abrasion resistance. Width W of the insulating portion 11 in the process direction (rotational direction of the image carrier)
1 is about 0.05 mm to 2 mm. Here, the width is set to about 0.1 mm to 0.5 mm, which is a desirable width dimension in order to maintain a proper gap for the electric discharge between the semiconductive portions 13 and the image carrier 50 that are arranged in parallel. The thickness dimension is t1.
A semiconductive portion 13 is arranged in parallel on the downstream side of the insulating portion 11 in the process direction.
【0009】半導電部13には体積抵抗率103Ω・c
mから1010Ω・cm程度の材料が使用できるが、帯電
の均一性を考慮して、104Ω・cmから107Ω・cm
程度の体積抵抗率を有する材料を使用する。半導電層1
3の材料としてはウレタンゴムにカーボン等の電子導電
化剤を分散させ抵抗を調整したものや、EPDM(エチ
レン、プロピレン、ジエンの3元共重合体)ゴムにカー
ボンを分散させたもの、ウレタンにLiClO4等のイ
オン導電化剤を添加したもの、またはウレタンゴム等に
カーボン等の電子導電化剤とLiClO4等のイオン導
電化剤をハイブリッドで分散させた材料が使用される。
絶縁部11と半導電部13は導電性支持部材15にとり
つけられている。The semiconductive portion 13 has a volume resistivity of 10 3 Ω · c.
Materials of m to 10 10 Ω · cm can be used, but in consideration of charging uniformity, 10 4 Ω · cm to 10 7 Ω · cm
A material having a volume resistivity of the order of magnitude is used. Semi-conductive layer 1
As the material of 3, the resistance is adjusted by dispersing an electronic conductive agent such as carbon in urethane rubber, the dispersion of carbon in EPDM (terpolymer of ethylene, propylene and diene) rubber, the urethane A material in which an ion conductive agent such as LiClO4 is added, or a material in which an electronic conductive agent such as carbon and an ion conductive agent such as LiClO4 are hybrid-dispersed in urethane rubber or the like are used.
The insulating portion 11 and the semiconductive portion 13 are attached to the conductive support member 15.
【0010】導電性支持部材15は真直度、平面度に優
れている導電性弾性部材により形成される。導電性支持
部材15にはSUSや燐青銅版等が用いられる。導電性
支持部材15の厚さ寸法t2により所望の弾性を得るこ
とができる。The conductive support member 15 is formed of a conductive elastic member having excellent straightness and flatness. For the conductive support member 15, SUS, phosphor bronze plate or the like is used. A desired elasticity can be obtained by the thickness t2 of the conductive support member 15.
【0011】このように絶縁部11と半導電部13、お
よび導電性支持部材15で構成される帯電装置は、絶縁
部11が像担持体50の表面に接触してい配設される。
絶縁部11の像担持体50との接触は、プロセス方向で
の接触幅をW3とする。帯電装置と像担持体との接触幅
W3は絶縁部11の幅W1よりせまい、W1>W3の関
係となっている。これにより、帯電装置10は半導電部
13が像担持体50と非接触に支持される。導電性支持
部材15は自由端として長さLを有し、ホルダー17に
固定される。バイアス電源20は導電性支持部材15に
接続しても良いし、ホルダー17を介してもよい。バイ
アス電圧には直流あるいは、直流に交流を重畳させたも
のが使用される。As described above, in the charging device including the insulating portion 11, the semiconductive portion 13, and the conductive support member 15, the insulating portion 11 is arranged in contact with the surface of the image carrier 50.
The contact width of the insulating portion 11 with the image carrier 50 is W3 in the process direction. The contact width W3 between the charging device and the image carrier is narrower than the width W1 of the insulating portion 11, and W1> W3. As a result, in the charging device 10, the semiconductive portion 13 is supported without contact with the image carrier 50. The conductive support member 15 has a length L as a free end and is fixed to the holder 17. The bias power source 20 may be connected to the conductive support member 15 or may be via the holder 17. As the bias voltage, a direct current or a direct current superposed with an alternating current is used.
【0012】ここで、ブレード型帯電装置の帯電部(ブ
レード)の配設を説明する。図4はブレードのセッティ
ングアングルSA、くい込み量Nについての説明模式図
である。弾性を有する導電性支持部材15に接着支持さ
れる絶縁部11と半導電部13は絶縁部11の先端部分
を、像担持体50の表面とのなす角度を所定の角度SA
として配設する(図4a参照)。そして、像担持体50
がない場合、絶縁部11が食い込むであろう食い込み量
をNとして、像担持体50に絶縁部11を押圧接触させ
る。このとき、帯電装置10は撓んで絶縁部11の先端
がW3<W1の範囲で像担持体50に接触する。このよ
うに構成する帯電装置10はバイアス電源20からDC
にACを重畳したバイアスが印加される。帯電装置10
の下流側には表面電位計40を配置して像担持体の帯電
電位を測定する。放電は半導電部13と像担持体50と
の間でおこる。放電の幅Dは帯電装置10と像担持体5
0との接触部の近傍のギャップ形状とACバイアスのピ
ーク電圧で決定される。The arrangement of the charging section (blade) of the blade type charging device will be described below. FIG. 4 is a schematic diagram for explaining the setting angle SA and the bite amount N of the blade. The insulating portion 11 and the semi-conductive portion 13, which are adhesively supported by the elastic conductive support member 15, form an angle between the tip of the insulating portion 11 and the surface of the image carrier 50 at a predetermined angle SA.
(See FIG. 4a). The image carrier 50
If there is not, the insulating portion 11 is pressed into contact with the image carrier 50, with the amount of biting that the insulating portion 11 would bite as N. At this time, the charging device 10 bends and the tip of the insulating portion 11 contacts the image carrier 50 in the range of W3 <W1. The charging device 10 configured as described above is connected to the DC power from the bias power source 20.
A bias with AC superimposed on is applied. Charging device 10
A surface electrometer 40 is arranged on the downstream side of to measure the charging potential of the image carrier. Electric discharge occurs between the semiconductive portion 13 and the image carrier 50. The width D of the discharge is determined by the charging device 10 and the image carrier 5.
It is determined by the shape of the gap near the contact portion with 0 and the peak voltage of the AC bias.
【0013】ここで、放電幅による帯電状態をみる。セ
ッティングアングルSA、くい込み量Nを調整してギャ
ップ形状を異ならせ、放電幅Dを0.05mmから1.
0mmまで10段階に変化させて帯電試験をおこなっ
た。帯電状態は像担持体50のプロセススピードPSに
影響される。この実験ではプロセススピードを30mm
/sec、150mm/sec、300mm/secと
した。Here, the charging state depending on the discharge width will be examined. Adjusting the setting angle SA and the biting amount N to make the gap shape different, the discharge width D from 0.05 mm to 1.
The charging test was performed by changing the scale from 0 mm in 10 steps. The charged state is affected by the process speed PS of the image carrier 50. In this experiment, the process speed is 30mm
/ Sec, 150 mm / sec, and 300 mm / sec.
【0014】その結果を図6に示す。ここで、帯電装置
の各部材の実施の形態を示す。 絶縁部 材質:ウレタンゴム 硬度:70° 幅W1:0.3mm 厚さt1:2mm 半導電部 材質:LiClO4を添加したウレタン 体積抵抗:105Ω・cm 幅W2:8mm 厚さt1:2mm 支持部材 材質:燐青銅版 厚さt2:0.1mm 印加するバイアス条件は以下で一定としている。 DC成分Vdc:−650V AC電圧ピーク値:2KV AC波数:2KHzThe results are shown in FIG. Here, an embodiment of each member of the charging device will be shown. Insulation material: Urethane rubber Hardness: 70 ° Width W1: 0.3mm Thickness t1: 2mm Semi-conductive material: LiClO4 added urethane Volume resistance: 10 5 Ω · cm Width W2: 8mm Thickness t1: 2mm Support member Material: Phosphor bronze plate Thickness t2: 0.1 mm The bias conditions to be applied are as follows. DC component Vdc: -650V AC voltage peak value: 2KV AC wave number: 2KHz
【0015】像担持体50のプロセススピードが30m
m/secと遅い場合においてはすべての放電幅におい
て均一な帯電(〇印)がえられた。しかし、プロセスス
ピード150mm/secにおいては放電幅Dが0.3
mm以上の領域で均一な帯電が得られた。また、プロセ
ススピード300mm/secにおいては放電幅Dが
0.5mm以上の領域で均一な帯電がえられた。このよ
うに均一な帯電を実行するに必要な放電幅Dはプロセス
スピードにより異なる。この点を考慮して帯電装置にお
いては、ブレードのセッティングアングルSA、くい込
み量Nを決定する必要がある。The process speed of the image carrier 50 is 30 m.
When it was as slow as m / sec, uniform charging (marked with ◯) was obtained in all discharge widths. However, when the process speed is 150 mm / sec, the discharge width D is 0.3.
Uniform charging was obtained in a region of mm or more. Further, at the process speed of 300 mm / sec, uniform charging was obtained in the region where the discharge width D was 0.5 mm or more. In this way, the discharge width D required to carry out uniform charging differs depending on the process speed. In consideration of this point, in the charging device, it is necessary to determine the blade setting angle SA and the bite amount N.
【0016】次に、セッティングアングルSA=17
°、くい込み量N=1.3mmとした帯電装置におい
て、印加電圧のピーク電圧を変化させて帯電性を評価し
た。評価結果を図7に示す。ピーク電圧が高くなるに従
って放電幅は広がる。しかし、ピーク電圧が、2.5V
を超えると均一な帯電がえられなかった。ここで、帯電
部材の設定を一定として、放電幅Dと放電ギャップHと
の関係をみる(図8参照)。ブレード10Bにかけるピ
ーク電圧を高くすると像担持体の放電幅Dが大きくな
る。放電幅Dが大きくD1<D2<D3に従って、放電
ギャップHは大きく、H1<H2<H3となる。この場
合、放電幅D1、放電ギャップH1の場合より放電幅D
2、放電ギャップH2が共に大きい場合の方が、帯電が
良好であった。しかし、さらにピーク電圧を高くして、
放電幅D=D3、放電ギャップH=H3とした場合にお
いては、帯電は不良であった。これは、高いピーク電圧
により放電幅Dが広がり、放電ギャップHが所定の高さ
を越える範囲で火花放電が発生したためである。そこ
で、ピーク電圧を高くしての放電による火花放電の発生
をみると、放電ギャップHが0.15mmを超えると放
電による火花放電が発生した。Next, setting angle SA = 17
In a charging device in which the degree of biting was N = 1.3 mm, the charging voltage was evaluated by changing the peak voltage of the applied voltage. The evaluation result is shown in FIG. The discharge width widens as the peak voltage increases. However, the peak voltage is 2.5V
If it exceeds, uniform charging could not be obtained. Here, the relationship between the discharge width D and the discharge gap H will be examined with the charging member set constant (see FIG. 8). The higher the peak voltage applied to the blade 10B, the larger the discharge width D of the image carrier. As the discharge width D increases and D1 <D2 <D3, the discharge gap H increases and H1 <H2 <H3. In this case, the discharge width D1 is larger than the discharge gap H1.
2. When both discharge gaps H2 were large, charging was better. However, by further increasing the peak voltage,
When the discharge width D = D3 and the discharge gap H = H3, the charging was defective. This is because the discharge width D widens due to the high peak voltage, and spark discharge occurs in a range where the discharge gap H exceeds a predetermined height. Then, looking at the occurrence of spark discharge due to discharge with a high peak voltage, when the discharge gap H exceeds 0.15 mm, spark discharge due to discharge occurred.
【0017】以上のように、帯電装置を実際の電子写真
プロセスに適用したとき、均一な帯電を実行させるため
には、帯電装置はプロセススピードによる最低必要な放
電幅Dを確保すると共に、放電ギャップHは0.15m
m以下のエアギャップエリアで放電をおこなうことが要
件となる。そこで、この発明の帯電装置は像担持体に対
して帯電装置の取り付け角度Aを以下の関係を満たすよ
うに構成している。 tanA≦0.15/(W1+Dmin) (1) A(度):像担持体接触部近傍のブレードと像担持体と
のなす角度でブレードと感光体の接触部から1mmの位
置で算出。 W1(mm):絶縁部のプロセス方向の幅。 Dmin(mm):プロセススピードPS(mm/se
c)による 最低必要放電幅Dmin=PS/600〔mm〕As described above, when the charging device is applied to the actual electrophotographic process, in order to carry out uniform charging, the charging device secures the minimum required discharge width D depending on the process speed and the discharge gap. H is 0.15 m
It is necessary to discharge in an air gap area of m or less. Therefore, the charging device of the present invention is configured so that the mounting angle A of the charging device with respect to the image bearing member satisfies the following relationship. tanA ≦ 0.15 / (W1 + Dmin) (1) A (degree): An angle formed by the blade and the image carrier near the contact portion of the image bearing member, and calculated at a position of 1 mm from the contact portion of the blade and the photosensitive member. W1 (mm): width of the insulating portion in the process direction. Dmin (mm): Process speed PS (mm / se
Minimum required discharge width according to c) Dmin = PS / 600 [mm]
【0018】ここで、Dminの関係式は、ピーク電圧
とプロセススピードの関係(図7参照)から求めた実験
式である。また、帯電ブレードの接触角度Aはセッティ
ングアングルSA°、くい込み量Nとブレードの自由長
Lによりほぼ決定される。ここで、図9によりセッティ
ングアングルSA°、くい込み量Nでの接触角度Aの決
定方法を説明する。絶縁部11、半導電部13を含むブ
レード10Bは弾性体であり湾曲して像担持体50に接
触している。このためこの帯電装置10はブレード10
Bと像担持体50の接触部11Sから1mmの位置で角
度Aを設定している。角度Aはカメラ等を使用して側面
からブレードを撮影する、あるいはブレードと像担持体
との接触部にシリコンゴム等を流し込み型どりする等の
方法で測定できる。この実施例においては、シリコンゴ
ムによる型どり法と有限要素法を用いて、構造解析して
求めている。Here, the relational expression of Dmin is an empirical equation obtained from the relation between the peak voltage and the process speed (see FIG. 7). The contact angle A of the charging blade is substantially determined by the setting angle SA °, the biting amount N and the free length L of the blade. Here, a method of determining the contact angle A at the setting angle SA ° and the biting amount N will be described with reference to FIG. The blade 10B including the insulating portion 11 and the semiconductive portion 13 is an elastic body and is curved and contacts the image carrier 50. Therefore, this charging device 10 is
The angle A is set at a position 1 mm from the contact portion 11S between B and the image carrier 50. The angle A can be measured by using a camera or the like to photograph the blade from the side, or by pouring silicone rubber or the like into the contact portion between the blade and the image carrier. In this embodiment, the structural analysis is performed using the die-casting method using silicon rubber and the finite element method.
【0019】このようにこの実施例に示す帯電装置は、
プロセススピードによる最低必要放電幅が確保でき、さ
らに火花放電による帯電均一性不良の問題を生ずるがな
く、長期にわたり安定した帯電を維持することが可能と
なった。As described above, the charging device shown in this embodiment is
The minimum required discharge width can be secured depending on the process speed, and the problem of poor charging uniformity due to spark discharge does not occur, and stable charging can be maintained for a long time.
【0020】実施例2 この実施例は電子写真プロセスにおいて、帯電装置をク
リーニングブレードと兼用させている(図10参照)。
帯電装置100は像担持体50の帯電をおこなうととも
に転写材Pに転写されなかった像担持体50上のトナー
Tのクリーニングをおこなう。帯電装置100のブレー
ド100Bの取付角Aは実施例1において説明した関係
式(1)を満たすように、像担持体50との良好な放電
ギャップを形成している。さらに、ブレード100Bが
像担持体50との放電ギャップを形成しつつ、かつトナ
ーTのクリーニングを同時におこなうためには、ブレー
ド100Bはクリーニングブレードの配設角を有する必
要がある。公知のように、クリーニングブレードの配設
角AはA≧2°を満足することを要する。さらに、ブレ
ード100Bが像担持体50に所定の圧力をもって接触
しなければ、トナーがブレードエッジからすり抜けてク
リーニング作用が実行できない。この種のクリーニング
ブレードは通常0.7g/mm以上の押圧力で像担持体
50表面に接触していることを要する。そこで、このク
リーニングブレードを兼用させた帯電ブレード100B
においては、像担持体50への接触圧(線圧)を0.7
g/mm以上になるよう設定している。Example 2 In this example, the charging device also serves as a cleaning blade in the electrophotographic process (see FIG. 10).
The charging device 100 charges the image carrier 50 and cleans the toner T on the image carrier 50 that has not been transferred to the transfer material P. The mounting angle A of the blade 100B of the charging device 100 forms a good discharge gap with the image carrier 50 so as to satisfy the relational expression (1) described in the first embodiment. Further, in order for the blade 100B to form the discharge gap with the image carrier 50 and to simultaneously clean the toner T, the blade 100B needs to have a cleaning blade arrangement angle. As is well known, the disposition angle A of the cleaning blade needs to satisfy A ≧ 2 °. Further, unless the blade 100B comes into contact with the image carrier 50 with a predetermined pressure, the toner slips from the blade edge and the cleaning action cannot be executed. This type of cleaning blade usually needs to contact the surface of the image carrier 50 with a pressing force of 0.7 g / mm or more. Therefore, the charging blade 100B that also serves as this cleaning blade
, The contact pressure (line pressure) to the image carrier 50 is 0.7.
It is set to be g / mm or more.
【0021】このように構成した帯電装置を電子写真プ
ロセスに用いて、プリントテストをおこなった。この場
合の試験条件を以下に示す。 像担持体 有機感光体 移動速度(プロセススピード):300mm/sec 帯電装置 セッティングアングルSA:17° くい込み量N:1.5mm 角度A:4.5° バイアス:dc成分ー650V,ACピーク間電圧2kV,周 波数2.5KHz トナー 平均粒径:7μm 帯電極性:負 その結果、像担持体の100,000枚プリントにおい
て、良好な画質が得られることが確認され、良好な帯電
とクリーニングが実行されたことが確認された。このよ
うに、本実施例に示す帯電装置は、プロセススピードに
よる最低必要放電幅を確保できると共に、火花放電によ
る帯電均一性不良の発生がなく、長期にわたり安定した
帯電を維持することが可能となった。また、この帯電装
置は帯電・クリーニングを同時におこなうことができる
ため低コスト、省スペースの帯電・クリーニングプロセ
スが提供できる。A printing test was conducted by using the charging device thus constructed in an electrophotographic process. The test conditions in this case are shown below. Image carrier Organic photoconductor Moving speed (process speed): 300 mm / sec Charging device Setting angle SA: 17 ° Biting amount N: 1.5 mm Angle A: 4.5 ° Bias: dc component −650 V, AC peak-to-peak voltage 2 kV , Frequency 2.5 KHz toner average particle size: 7 μm charging polarity: negative As a result, it was confirmed that good image quality could be obtained in printing 100,000 sheets of the image bearing member, and good charging and cleaning were performed. It was confirmed. As described above, the charging device according to the present embodiment can secure the minimum required discharge width depending on the process speed, and can maintain stable charging for a long time without occurrence of poor charging uniformity due to spark discharge. It was Further, since this charging device can perform charging and cleaning at the same time, it is possible to provide a low cost and space saving charging and cleaning process.
【0022】[0022]
【発明の効果】本発明による帯電装置においては、火花
放電による帯電均一性不良の問題を解決すると共に、プ
ロセススピードによる最低必要放電幅が確保できるた
め、長期にわたり安定した帯電を維持することが可能で
ある。さらに、この帯電装置は、帯電・クリーニングを
同時におこなうことができるため低コスト、省スペース
の帯電・クリーニングプロセスが提供できる。In the charging device according to the present invention, the problem of poor charging uniformity due to spark discharge can be solved and the minimum required discharge width can be secured depending on the process speed, so that stable charging can be maintained for a long time. Is. Furthermore, since this charging device can perform charging and cleaning at the same time, a low cost and space saving charging and cleaning process can be provided.
【図面の簡単な説明】[Brief description of drawings]
【図1】 本発明の適用される電子写真プロセスの構成
説明図。FIG. 1 is a structural explanatory view of an electrophotographic process to which the present invention is applied.
【図2】 帯電装置の説明図。FIG. 2 is an explanatory diagram of a charging device.
【図3】 帯電装置の配設説明図。FIG. 3 is an explanatory view of an arrangement of a charging device.
【図4】 ブレードのセッティング方法の説明図。FIG. 4 is an explanatory diagram of a blade setting method.
【図5】 帯電特性の測定装置を配設した構成図。FIG. 5 is a configuration diagram in which a measuring device for charging characteristics is provided.
【図6】 放電幅とプロセススピードによる帯電評価の
図表。FIG. 6 is a chart of charge evaluation according to discharge width and process speed.
【図7】 ピーク電圧とプロセススピードによる帯電性
の評価の図表。FIG. 7 is a diagram of evaluation of chargeability according to peak voltage and process speed.
【図8】 放電幅と放電ギャップの関係の説明図。FIG. 8 is an explanatory diagram of a relationship between a discharge width and a discharge gap.
【図9】 ブレードの設定方法の説明図。FIG. 9 is an explanatory diagram of a blade setting method.
【図10】 第2の実施例による電子写真プロセスの構
成説明図。FIG. 10 is a structural explanatory view of an electrophotographic process according to a second embodiment.
10 帯電装置、 11 絶縁部、 13 半導電部、
15 導電性支持部材、 17 ホルダー、 20
電源、 40 表面電位計、 50 像担持体。10 charging device, 11 insulating part, 13 semi-conductive part,
15 conductive support member, 17 holder, 20
Power source, 40 surface electrometer, 50 image carrier.
Claims (3)
体に対し放電をおこなう半導電性部と、像担持体の表面
に接触して半導電性部の位置決めを行う半導電性部に並
設する絶縁部とを有する帯電部材と、帯電部材を支持す
る支持部材とを備え、絶縁部を像担持体表面に接触させ
て帯電部材と像担持体表面との距離が徐々に大きくなる
放電ギャップを形成するよう構成する帯電装置におい
て、 帯電部材は像担持体表面との接触角度Aを下記の式
(1)を満足するよう支持部材に配設されてなる帯電装
置。 tanA≦0.15/(W1+Dmin) ……式1 A:像担持体接触部近傍の帯電部材と像担持体とのなす
角度で帯電部材と像担持体の接触部から1mmの位置で
算出。 W1:絶縁部のプロセス方向の幅(mm)。 Dmin:プロセススピードPS(mm/sec)によ
り決まる 最低必要放電幅Dmin=PS/600〔mm〕1. A semi-conductive portion that receives at least a bias voltage to discharge the image carrier and a semi-conductive portion that contacts the surface of the image carrier and positions the semi-conductive portion are arranged in parallel. A charging member having an insulating portion and a supporting member for supporting the charging member are provided, and the insulating portion is brought into contact with the surface of the image carrier to form a discharge gap in which the distance between the charging member and the surface of the image carrier gradually increases. In the charging device configured as described above, the charging member is arranged on the support member so that the contact angle A with the surface of the image bearing member satisfies the following expression (1). tanA ≦ 0.15 / (W1 + Dmin) ... Equation 1 A: Calculated at an angle of 1 mm from the contact portion between the charging member and the image carrier at the angle formed by the charging member and the image carrier near the contact portion of the image carrier. W1: Width in the process direction of the insulating portion (mm). Dmin: Minimum required discharge width Dmin = PS / 600 [mm] determined by process speed PS (mm / sec)
は2度以上としてなる請求項1記載の帯電装置。2. A contact angle A between the charging member and the surface of the image carrier.
The charging device according to claim 1, wherein is 2 degrees or more.
対する圧力が0.7g/mm以上とする請求項1記載の
帯電装置。3. The charging device according to claim 1, wherein the pressure on the image carrier at the contact portion of the charging member is 0.7 g / mm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13507496A JPH09319183A (en) | 1996-05-29 | 1996-05-29 | Electrifying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13507496A JPH09319183A (en) | 1996-05-29 | 1996-05-29 | Electrifying device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09319183A true JPH09319183A (en) | 1997-12-12 |
Family
ID=15143244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13507496A Pending JPH09319183A (en) | 1996-05-29 | 1996-05-29 | Electrifying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09319183A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120148309A1 (en) * | 2010-12-14 | 2012-06-14 | Canon Kabushiki Kaisha | Charging member and image forming apparatus |
JP2012128080A (en) * | 2010-12-14 | 2012-07-05 | Canon Inc | Charging member and image forming apparatus |
US9086642B2 (en) | 2010-12-14 | 2015-07-21 | Canon Kabushiki Kaisha | Charging member and image forming apparatus |
-
1996
- 1996-05-29 JP JP13507496A patent/JPH09319183A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120148309A1 (en) * | 2010-12-14 | 2012-06-14 | Canon Kabushiki Kaisha | Charging member and image forming apparatus |
JP2012128080A (en) * | 2010-12-14 | 2012-07-05 | Canon Inc | Charging member and image forming apparatus |
US8953985B2 (en) | 2010-12-14 | 2015-02-10 | Canon Kabushiki Kaisha | Charging member and image forming apparatus |
US9057973B2 (en) | 2010-12-14 | 2015-06-16 | Canon Kabushiki Kaisha | Charging member and image forming apparatus |
US9086642B2 (en) | 2010-12-14 | 2015-07-21 | Canon Kabushiki Kaisha | Charging member and image forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050286934A1 (en) | Biased charge roller with embedded electrodes with post-nip breakdown to enable improved charge uniformity | |
US20070127939A1 (en) | Charging apparatus and image forming apparatus | |
JP3453910B2 (en) | Charging device and image forming device | |
JPH09319183A (en) | Electrifying device | |
US7493063B2 (en) | Image-forming device comprising a contact charging unit | |
EP0661606B1 (en) | Charging device, image forming apparatus having the charging device and manufacturing method for the device | |
US6014529A (en) | Charging apparatus | |
JPH0862938A (en) | Electrifying and cleaning device | |
JP3363807B2 (en) | Transfer device | |
JPH0690568B2 (en) | Electrophotographic charging device | |
JP2789480B2 (en) | Image forming device | |
JP2767951B2 (en) | Contact charging member | |
JPH0862937A (en) | Electrifying and cleaning device | |
JPH09319182A (en) | Electrifying device and manufacture of the same | |
JPH09244345A (en) | Charging device | |
JP2555866B2 (en) | Electrophotographic charging device | |
JPH07128950A (en) | Image forming device | |
JP2622966B2 (en) | Image forming device | |
JPH07295329A (en) | Contact type electrostatic charging device | |
JPH086352A (en) | Charging device | |
JP2002108067A (en) | Electrifying device, and image carrier unit and image forming device equipped with the electrifying device | |
JPH07175340A (en) | Method for transferring developed image in wet image forming device | |
JPH08240964A (en) | Electrifyier | |
JP3296093B2 (en) | Charging device | |
JP2003316129A (en) | Image forming device |