JPH09318959A - Liquid crystal display device and its bright point defect correcting method - Google Patents

Liquid crystal display device and its bright point defect correcting method

Info

Publication number
JPH09318959A
JPH09318959A JP13218496A JP13218496A JPH09318959A JP H09318959 A JPH09318959 A JP H09318959A JP 13218496 A JP13218496 A JP 13218496A JP 13218496 A JP13218496 A JP 13218496A JP H09318959 A JPH09318959 A JP H09318959A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
crystal display
shielding film
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13218496A
Other languages
Japanese (ja)
Inventor
Terushi Sasaki
昭史 佐々木
Masashi Sakino
政志 先野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13218496A priority Critical patent/JPH09318959A/en
Publication of JPH09318959A publication Critical patent/JPH09318959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a correcting method which can comply with high definition of the liquid crystal display device as to a full-time light transmitting pixel defect correcting method which forming a light shield film of resin having a light shield material dispersed for pixels of the liquid crystal display device through which light is always transmitted. SOLUTION: When a full-time light transmitting pixel defect of the high- definition liquid crystal display device is corrected by this method, a liquid resin film 15 having a surface that becomes nearly parallel at the center part of an array substrate 2 is formed on the full-time light transmitting pixel defect, the circumference of the liquid resin film 15 is irradiated with laser light 16 of 100W in output and 1μm in wavelength to burn out the liquid resin film at the periphery, and a gate resin film 17 is formed at the periphery of the remaining liquid resin film and then cured. Consequently, while the light shield film 13 is made to correspond with conventional high-definition pixel electrodes and machined into an arbitrary shape independent of surface tension, the film is made more uniform than before.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は液晶表示装置及び液
晶表示装置の輝点欠陥を修正する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device and a method for correcting bright spot defects in the liquid crystal display device.

【従来の技術】液晶表示装置は次世代ディスプレイの主
力として注目されており、中でもハイビジョン方式のテ
レビジョンやプロジェクタなどの高精細映像分野ではT
FTを用いたアクティブマトリクス方式の液晶表示装置
が本命とされ研究開発が行われてきた。このようなアク
ティブマトリクス方式の液晶表示装置では、電極配線幅
や素子サイズを可能なかぎり微細化し、限られた基板サ
イズの中で単位面積あたりの画素数を増やして高精細化
を果たしている。図14に代表的な多結晶シリコンTF
T方式の液晶表示装置の断面構成を示す。図14に示す
ように、液晶表示装置は、液晶1を挟んで相対するガラ
ス製のアレイ基板2とフィルタ基板3とを備えている。
相対する一対のガラス基板の内、アレイ基板2には、ガ
ラス基板上に多数本の信号ラインと走査ラインとがマト
リクス状に形成され、これらの信号ラインと走査ライン
との交差部に画素電極への電荷を充放電するためのTF
T4(薄膜トランジスタ)が形成されている。また、こ
れらのTFT4に隣接して、TFTに比べて大きな画素
電極5が設けられている。一方、一対のガラス基板の
内、フィルタ基板3には、その上にフィルタ層6、BM
7(ブラックマトリクス)及び透明導電膜8が形成され
ている。さらに、これらの2枚のガラス基板の内側の液
晶側に、アレイ配向膜9とフィルタ配向膜10とが、液
晶1と接するように配置されている。加えて、2枚のガ
ラス基板の外側に、アレイ偏光板11とフィルタ偏光板
12とが方式によって偏光軸が直交または平行になるよ
うに貼付されている。このような構成のアクティブマト
リクス型液晶表示装置では、1枚の基板上に投射型で1
440(横画素数)×1024(縦画素数)=約148
万画素のように百万以上のTFT素子を形成することが
必要である。それ故、製造工程において不良が発生しや
すく、TFTが動作不良を起こす場合や、画素電極また
は配向膜が正常に形成されていない場合には、画素にお
いて透過光を遮断することができなくなり、その部分が
輝点欠陥となって現れる。BMを採用している液晶表示
装置において、表示されている画面に注目すると表示画
面上のBMが目立たないのと同じように、画面上で人間
の目に表示欠陥として認識される程度は常時光不透過欠
陥より常時光透過欠陥(輝点欠陥)の方が遥かに高く、
現実的な対応が望まれていた。そこで、このような液晶
表示装置の輝点欠点を修正する方法として、レーザ光を
用いてTFTのゲート電極とドレイン電極とを回路的に
接続し、常に欠陥画素の画素電極に直流電圧を印加し、
常時光不透過欠陥とする方法が提案されている(特開平
5−210111号公報)。しかし、このリペア方法で
は該当の画素電極に印加される直流電圧によって液晶中
のイオンがリペア部に集中し、液晶表示装置の寿命が短
くなる場合がある。欠陥部の画素電極に直流電圧を印加
せずに輝点欠陥を修正する方法としては、欠陥画素電極
領域を遮光する方法があり、1)レーザCVDによる金
属膜での遮光(特開平5−249487号公報)、2)
遮光材料を分散させた樹脂による遮光(特開平4−32
3617号公報)などが提案されている。また、液晶表
示装置の配向膜にレーザ光を照射し常時光不透過欠陥と
する方法も提案されている(特開昭60−243635
号公報、特開平8−15660号公報)。
2. Description of the Related Art Liquid crystal display devices have been attracting attention as the mainstay of next-generation displays, and especially in the field of high-definition video such as high-definition televisions and projectors.
An active matrix type liquid crystal display device using FT has been researched and developed as a favorite. In such an active matrix type liquid crystal display device, the electrode wiring width and the element size are made as small as possible, and the number of pixels per unit area is increased within a limited substrate size to achieve high definition. A typical polycrystalline silicon TF is shown in FIG.
The cross-sectional structure of a T-type liquid crystal display device is shown. As shown in FIG. 14, the liquid crystal display device includes a glass-made array substrate 2 and a filter substrate 3 which face each other with the liquid crystal 1 interposed therebetween.
Of the pair of glass substrates facing each other, the array substrate 2 has a large number of signal lines and scanning lines formed in a matrix on the glass substrate, and the pixel electrodes are formed at intersections of these signal lines and scanning lines. For charging and discharging the electric charge of
T4 (thin film transistor) is formed. Further, a pixel electrode 5 larger than the TFT is provided adjacent to the TFT 4. On the other hand, of the pair of glass substrates, the filter substrate 3 has the filter layer 6 and the BM formed thereon.
7 (black matrix) and the transparent conductive film 8 are formed. Further, an array alignment film 9 and a filter alignment film 10 are arranged on the liquid crystal side inside these two glass substrates so as to be in contact with the liquid crystal 1. In addition, the array polarization plate 11 and the filter polarization plate 12 are attached to the outside of the two glass substrates so that the polarization axes are orthogonal or parallel depending on the method. In the active matrix type liquid crystal display device having such a structure, the projection type 1 is formed on one substrate.
440 (horizontal pixel number) × 1024 (vertical pixel number) = about 148
It is necessary to form one million or more TFT elements like million pixels. Therefore, a defect is likely to occur in the manufacturing process, and when the TFT malfunctions or when the pixel electrode or the alignment film is not normally formed, it becomes impossible to block the transmitted light in the pixel. The part appears as a bright spot defect. In a liquid crystal display device employing a BM, just as the BM on the display screen is inconspicuous when attention is paid to the displayed screen, the extent to which the BM on the screen is perceived as a display defect by the human eyes is always light. Light transmission defects (bright spot defects) are much higher than non-transmission defects,
A realistic response was desired. Therefore, as a method of correcting the bright spot defect of such a liquid crystal display device, the gate electrode and the drain electrode of the TFT are circuit-connected using a laser beam and a DC voltage is always applied to the pixel electrode of the defective pixel. ,
There has been proposed a method of always making a light non-transmissive defect (Japanese Patent Laid-Open No. 5-210111). However, in this repair method, the DC voltage applied to the corresponding pixel electrode may cause the ions in the liquid crystal to concentrate in the repair portion, which may shorten the life of the liquid crystal display device. As a method of correcting the bright spot defect without applying a DC voltage to the pixel electrode in the defective portion, there is a method of shielding the defective pixel electrode region from light. 1) Light shielding by a metal film by laser CVD (JP-A-5-249487). Gazette), 2)
Light shielding by a resin in which a light shielding material is dispersed (Japanese Patent Laid-Open No. 4-32)
Japanese Patent No. 3617) has been proposed. Further, a method has also been proposed in which an alignment film of a liquid crystal display device is irradiated with a laser beam so that a light non-transmissive defect is constantly generated (Japanese Patent Laid-Open No. 60-243635).
(Japanese Patent Laid-Open No. 8-15660).

【発明が解決しようとする課題】特開平5−24948
7号公報に記載されている方法では、遮光に必要な膜厚
で画素領域全てをカバーするように金属膜を堆積しなけ
ればならず、真空排気を含めたプロセス時間が長いた
め、スループットに問題がある。また、特開昭60−2
43635号公報または特開平8−15660号公報に
記載されている方法では、たとえば液晶表示装置の相対
するガラス基板間のギャップを得るために用いられるフ
ィラーなどの微粒子が修正画素領域に存在した場合、良
好な修正ができず光漏れなどの症状を起こす問題があ
る。さらに、特開平4−323617号公報に記載され
ている方法は、これらの問題点をクリアしているが、樹
脂に分散させた遮光材料を転写または印刷により付着さ
せているため、200μm以上の大きさの画素サイズで
は対応可能であるが、100μm以下の高精細パターン
では図15の楕円内の領域で示されるように2画素以上
に渡って遮光膜13が付着するため、正常な画素まで遮
光してしまう問題があった。本発明は、上記課題を解決
するもので、高精細パターンにも対応可能な液晶表示装
置を提供するものである。
[Patent Document 1] Japanese Unexamined Patent Publication No. 5-24948
In the method described in Japanese Patent Publication No. 7, a metal film must be deposited so as to cover the entire pixel region with a film thickness required for light shielding, and the process time including evacuation is long, which causes a problem in throughput. There is. In addition, JP-A-60-2
In the method disclosed in Japanese Patent Laid-Open No. 43635 or JP-A-8-15660, for example, when fine particles such as a filler used for obtaining a gap between opposing glass substrates of a liquid crystal display device are present in the corrected pixel region, There is a problem that it can not be corrected well and causes symptoms such as light leakage. Further, the method described in Japanese Patent Laid-Open No. 4-323617 clears these problems, but since the light-shielding material dispersed in the resin is attached by transfer or printing, it has a size of 200 μm or more. However, in a high-definition pattern of 100 μm or less, the light-shielding film 13 adheres to two or more pixels as shown by the area within the ellipse in FIG. There was a problem that caused it. The present invention solves the above-mentioned problems and provides a liquid crystal display device that is compatible with high-definition patterns.

【課題を解決するための手段】本発明の液晶表示装置の
輝点欠陥修正方法は、液晶表示パネルの常時光透過画素
欠陥を常時光不透過画素欠陥とする液晶表示装置の輝点
欠陥修正方法において、液晶表示パネルの常時光透過画
素欠陥上に遮光膜を設け、この遮光膜を、前記常時光透
過画素欠陥の画素のみを遮光する形状に加工したことを
特徴とする。また、本発明の液晶表示装置の輝点欠陥修
正方法は、遮光膜を液体状態から固体状態に変質させる
ことを特徴とする。さらに、本発明の液晶表示装置の輝
点欠陥修正方法は、遮光膜をゲル状態から固体状態に変
質させることを特徴とする。それから、本発明の液晶表
示装置の輝点欠陥修正方法は、遮光膜が遮光材料を分散
している樹脂から成ることを特徴とする。加えて、本発
明の液晶表示装置の輝点欠陥修正方法は、遮光膜が液晶
表示パネルの常時光透過画素欠陥の光透過側にあること
を特徴とする。そして、本発明の液晶表示装置の輝点欠
陥修正方法は、遮光膜の周囲を焼失させることにより加
工することを特徴とする。それから、本発明の液晶表示
装置の輝点欠陥修正方法は、遮光膜の中央を硬化させる
ことにより加工することを特徴とする。あるいは、本発
明の液晶表示装置の輝点欠陥修正方法は、遮光膜の加工
をレーザを用いて行なうことを特徴とする。加うるに、
本発明の液晶表示装置は、液晶表示パネルの常時光透過
画素欠陥を常時光不透過画素欠陥としている液晶表示装
置において、液晶表示パネルの常時光透過画素欠陥の光
透過側に遮光材料が分散している樹脂からなる遮光膜を
位置させ、かつ遮光膜の形状をTFTと画素とが含まれ
る形状とすることを特徴とする。前記本発明の構成によ
れば、高精細の欠陥画素パターンにおいても遮光膜が正
常な画素を覆うことが無くなるため、表示品質を落とさ
ずに修正することが可能となり、高精細液晶表示パネル
の歩留まりを向上させることができる。また、常温常圧
で液晶パネルの外側で遮光膜を加工するのでスループッ
トも高く、ガラス基板間にフィラーなどの微粒子が存在
しても良好な修正が可能となる。さらには、透過型液晶
プロジェクタのようにパネルに対する光の入射角度がパ
ネル内で一定でない場合、遮光位置がパネル表面で一致
しないが、本発明の方式では光透過側に遮光膜を設けて
加工するから、任意の位置を選択して遮光することが可
能である。ところで、遮光材料が分散している樹脂は硬
化前では液体状態に近く、ガラス基板上でほぼ一定の体
積をもつが定まった形をもたず、重力場のもとでは大部
分の樹脂の面でそれに垂直な界面を作る。そして、一つ
の遮光膜で観察した場合、中央の遮光膜の表面の方が周
囲の遮光膜の表面の方に比べて基板に対してより平行に
なる。また、二つの面積の異なる遮光膜で観察した場
合、面積のより大きな遮光膜の方が面積のより小さな遮
光膜に比べて基板に対して平坦になる。このような現象
が発生するのは、表面張力γが基板と遮光膜との間に働
くからである。転写版の転写パターンを一辺aの正方形
で近似すれば、ガラス基板に残る樹脂の体積V、樹脂の
密度ρ、重力の加速度g、周囲を4aとして、γ=F/
L=Vρg/4aとなる。上の式から明白なように、一
定の表面張力のもとで液晶表示装置の高精細化に従って
遮光膜の体積を減らすためには、転写版の一辺の長さa
を小さくする必要がある。ところが、ある程度基板に移
す遮光膜の周囲の長さが小さくなると、一辺の長さaを
数十μmと小さくしても図16に示すように、重力に平
行な方向の懸滴14が長くなると同時に転写版の面積よ
り重力に垂直な方向の懸滴14の断面積が大きくなり、
転写によりガラス基板に移される液体状の樹脂の直径は
200μm程度になる。そこで本発明は、一旦、遮光膜
の表面張力と遮光膜の重量によって加減されるある程度
大きな直径の遮光膜を液晶表示装置上に形成した後、レ
ーザ光により不要部分を焼き切るか、または必要部分だ
けを熱硬化させることにした。このように大きな遮光膜
を整形して小さな遮光膜にすると、整形後の遮光膜の断
面形状が、最初から小さな面積であった場合の平衡状態
である半円状にならず、整形前の大面積でかつ中央の平
坦性を利用して台地状になる。よって、残った遮光膜の
厚さが均一となって、遮光の一様性が増大する。また、
整形後の遮光膜の平面形状が、常時光透過画素欠陥の画
素形状に合わせて任意の形状に加工される。従って、残
された遮光膜の面積と位置が輝点欠陥修正に最もふさわ
しいものとなる。
SUMMARY OF THE INVENTION A bright spot defect repairing method for a liquid crystal display device according to the present invention is a bright spot defect repairing method for a liquid crystal display device, wherein a constant light transmitting pixel defect of a liquid crystal display panel is a constant light nontransmitting pixel defect. In the liquid crystal display panel, a light-shielding film is provided on the constantly light-transmitting pixel defect of the liquid crystal display panel, and the light-shielding film is processed so as to shield only the pixel of the always-light-transmitting pixel defect. Further, the bright spot defect correcting method for a liquid crystal display device of the present invention is characterized in that the light shielding film is changed from a liquid state to a solid state. Furthermore, the bright spot defect correction method for a liquid crystal display device of the present invention is characterized in that the light-shielding film is changed from a gel state to a solid state. Then, the bright spot defect correcting method for a liquid crystal display device of the present invention is characterized in that the light shielding film is made of a resin in which a light shielding material is dispersed. In addition, the bright spot defect correcting method of the liquid crystal display device of the present invention is characterized in that the light shielding film is on the light transmitting side of the constant light transmitting pixel defect of the liquid crystal display panel. The bright spot defect correcting method for a liquid crystal display device of the present invention is characterized by processing by burning away the periphery of the light shielding film. Then, the bright spot defect repairing method of the liquid crystal display device of the present invention is characterized by processing by curing the center of the light shielding film. Alternatively, the bright spot defect correcting method for a liquid crystal display device of the present invention is characterized in that the light shielding film is processed by using a laser. In addition,
The liquid crystal display device of the present invention is a liquid crystal display device in which a constant light transmission pixel defect of a liquid crystal display panel is a constant light non-transmission pixel defect, and a light shielding material is dispersed on the light transmission side of the constant light transmission pixel defect of the liquid crystal display panel. A light-shielding film made of resin is located, and the light-shielding film has a shape including the TFT and the pixel. According to the configuration of the present invention, even in a high-definition defective pixel pattern, the light-shielding film does not cover the normal pixels, so that the correction can be performed without lowering the display quality, and the yield of the high-definition liquid crystal display panel can be improved. Can be improved. Further, since the light-shielding film is processed on the outside of the liquid crystal panel at room temperature and atmospheric pressure, the throughput is high, and even if fine particles such as fillers are present between the glass substrates, it is possible to make a good correction. Further, when the incident angle of light with respect to the panel is not constant within the panel as in a transmissive liquid crystal projector, the light blocking positions do not match on the panel surface, but in the method of the present invention, a light blocking film is provided on the light transmitting side for processing. Therefore, it is possible to select an arbitrary position to block light. By the way, the resin in which the light-shielding material is dispersed is close to a liquid state before curing and has a substantially constant volume on the glass substrate but does not have a fixed shape. Make an interface perpendicular to it. When observed with one light-shielding film, the surface of the central light-shielding film is more parallel to the substrate than the surface of the surrounding light-shielding film. Further, when the two light-shielding films having different areas are observed, the light-shielding film having a larger area is flatter than the light-shielding film having a smaller area with respect to the substrate. Such a phenomenon occurs because the surface tension γ acts between the substrate and the light shielding film. If the transfer pattern of the transfer plate is approximated by a square with one side a, γ = F /, where V is the volume of resin remaining on the glass substrate, ρ is the density of resin, g is the acceleration of gravity, and 4a is the circumference.
L = Vρg / 4a. As is clear from the above equation, in order to reduce the volume of the light shielding film according to the high definition of the liquid crystal display device under a constant surface tension, the length a of one side of the transfer plate is
Needs to be smaller. However, when the circumference of the light-shielding film transferred to the substrate becomes small to some extent, even if the length a of one side is reduced to several tens of μm, as shown in FIG. 16, the hanging drop 14 in the direction parallel to gravity becomes long. At the same time, the cross-sectional area of the hanging drop 14 in the direction perpendicular to gravity becomes larger than the area of the transfer plate,
The diameter of the liquid resin transferred to the glass substrate by transfer is about 200 μm. Therefore, according to the present invention, once a light-shielding film having a relatively large diameter which is adjusted depending on the surface tension of the light-shielding film and the weight of the light-shielding film is formed on a liquid crystal display device, then unnecessary portions are burnt out by laser light or only necessary portions are burnt out. Decided to heat cure. When a large light-shielding film is shaped into a small light-shielding film as described above, the cross-sectional shape of the light-shielding film after shaping does not become a semicircular shape, which is an equilibrium state when the area is small from the beginning, and a large size before shaping is used. It takes the form of a plateau using the flatness of the area and center. Therefore, the thickness of the remaining light shielding film becomes uniform, and the uniformity of light shielding increases. Also,
The planar shape of the light-shielding film after shaping is always processed into an arbitrary shape according to the pixel shape of the light-transmitting pixel defect. Therefore, the area and position of the remaining light-shielding film are most suitable for bright spot defect correction.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施形態)本発明の第1の実施形態を図1及び図
2に基づいて説明する。図1は液晶表示装置の輝点欠陥
修正方法の断面工程図である。最初に図1aに示すよう
に、液晶表示パネルの輝点欠陥上方の光透過位置のアレ
イ基板2上に、常温常圧の空気中で20μmの膜厚の、
エポキシ樹脂に10wt%で分散させた光を遮断するカ
ーボンブラックをスクリーン印刷により付着させて、基
板に中心部においてほぼ平行となる表面を持つ不透明な
液体樹脂膜15とする。二番目に図1bに示すように、
液体樹脂膜15のまま、常時光透過画素欠陥に隣接する
画素の部分に相当する、液体樹脂膜の周囲に波長1μ
m、出力100WのYAGレーザ装置からレーザ光16
を照射する。すると、図1cに示すように、不要な液体
樹脂膜が焼失すると同時に焼失した液体樹脂膜に隣接す
る部分が仮硬化して変形しないゲル樹脂膜17となる。
三番目に図1dに示すように、120℃、30分間の雰
囲気での伝熱加熱か、または、レーザ光による輻射加熱
かによって、常時光透過画素欠陥上方のアレイ基板2上
に遮光膜13を形成する。図2は第1実施形態の液晶表
示装置の輝点欠陥修正方法の平面工程図である。まず、
図2aに示すように、アレイ基板2の常時光透過画素欠
陥の位置に、温度20℃、圧力1気圧、相対湿度60%
の条件で遮光材料を分散させた不透明な樹脂を印刷後、
表面張力により周囲が円状となった平均半径200μm
の液体樹脂膜15を形成する。次に、図2bに示すよう
に、レーザ光を常時光透過画素欠陥に隣接する画素の部
分の液体樹脂膜に照射すると、その部分の液体樹脂膜は
加熱されて焼失部18となり、光が透過するようにな
る。同時に、焼失部18に隣接する液体樹脂膜は仮硬化
して中空矩形のゲル樹脂膜17となる。図2bから遮光
膜の平面形状が表面張力に支配された円形ではなくて、
表面張力から独立した矩形に加工されていることが分か
る。また、周囲がゲル化しているから、後でゲル樹脂膜
17の内部に残った液体樹脂膜15を硬化させるために
加熱しても遮光膜の平面境界があまり変化しない。 (第2実施形態)本発明の第2の実施形態を図3及び図
4に基づいて説明する。図3は第2実施形態の液晶表示
装置の輝点欠陥修正方法の断面工程図である。最初に図
3aに示すように、液晶表示パネルの輝点欠陥上方の光
透過位置のアレイ基板2上に、常温常圧で15μmの膜
厚の、エポキシ樹脂に15wt%で分散させた光を遮断
する染料(染料名C.I.Black 22)を転写に
より付着させて、不透明な液体樹脂膜15とする。二番
目に図3bに示すように、液体樹脂膜を一旦加熱により
ゲル樹脂膜17に変換した後、常時光透過画素欠陥に隣
接する画素の部分に相当する、ゲル樹脂膜17の周囲に
波長1μm、出力200WのYAGレーザ装置からレー
ザ光16を照射する。すると、図3cに示すように、不
要なゲル樹脂膜が焼失すると同時に焼失したゲル樹脂膜
に隣接する部分が本硬化して変形しない遮光膜13とな
る。三番目に図3dに示すように、120℃、30分間
の雰囲気での伝熱加熱か、または、レーザ光による輻射
加熱かによって、常時光透過画素欠陥上方を全て遮光膜
13に変換する。尚、液体樹脂膜をゲル樹脂膜に変換す
ることは液体樹脂膜を調製した後の経過時間、加熱時間
または加熱温度の調整により為される。図4は第2実施
形態の液晶表示装置の輝点欠陥修正方法の平面工程図で
ある。まず、図4aに示すように、アレイ基板2の常時
光透過画素欠陥の位置に、常温常圧で遮光材料を分散さ
せた不透明な樹脂を転写後、表面張力により周囲が円状
となった液体樹脂膜15を形成する。次に、図4bに示
すように、あらかじめ加熱により液体樹脂膜をゲル樹脂
膜に変換した後、レーザ光を常時光透過画素欠陥に隣接
する画素の部分のゲル樹脂膜に照射すると、その部分の
ゲル樹脂膜は加熱されて焼失部18となり、光が透過す
るようになる。同時に、焼失部18に隣接するゲル樹脂
膜は本硬化して中空矩形の遮光膜13となる。本実施形
態によれば、周囲が本硬化しているから、後で遮光膜1
3の内部に残ったゲル樹脂膜17を硬化させるために加
熱しても遮光膜の平面境界が変化しない。また、本実施
形態によれば、ゲル化しているので必ずしも基板上の遮
光膜を平坦な場所で整形する必要は無く、基板を整形し
やすい角度に設定できる。 (第3実施形態)本発明の第3の実施形態を図5及び図
6に基づいて説明する。図5は第3実施形態の液晶表示
装置の輝点欠陥修正方法の断面工程図である。最初に図
5aに示すように、液晶表示パネルの輝点欠陥上方の光
透過位置のアレイ基板2上に、常温常圧で15μmの膜
厚の、エポキシ樹脂に20wt%で分散させた光を遮断
する染料(染料名C.I.Black 29)を印刷に
より付着させて、不透明な液体樹脂膜15とする。二番
目に図5bに示すように、液体樹脂膜を先に加熱により
遮光膜13に変換した後、常時光透過画素欠陥に隣接す
る画素の部分に相当する、遮光膜13の周囲に波長1μ
m、出力400WのYAGレーザ装置からレーザ光16
を照射する。すると、図5cに示すように、不要な遮光
膜を焼失することにより目的の遮光膜13が得られる。
本実施形態によれば、最も少ない工程数で表面張力に左
右されない断面形状の遮光膜が得られる。図6は第3実
施形態の液晶表示装置の輝点欠陥修正方法の平面工程図
である。まず、図6aに示すように、アレイ基板2の常
時光透過画素欠陥の位置に、常温常圧で遮光材料を分散
させた不透明な樹脂を印刷後、表面張力により周囲が円
状となった液体樹脂膜15を形成する。次に、図6bに
示すように、あらかじめ加熱により液体樹脂膜を楕円状
の遮光膜に変換した後、レーザ光を常時光透過画素欠陥
に隣接する画素の部分の遮光膜に照射すると、その部分
の遮光膜は加熱されて焼失部18となり、光が透過する
ようになる。これまでに述べたきた常時光透過画素欠陥
に隣接する画素の部分の遮光膜を焼失させる整形装置に
ついて、以下に記述する。図7は第1、第2及び第3実
施形態に用いられる整形装置の斜視図である。図7に示
すように、YAGレーザ装置から発射される少なくとも
数100Wの発射光19は、レンズ20によって、アレ
イ基板上に移された遮光膜の外形に近付くように変形さ
れ、その後、目的とする常時光透過画素欠陥の外形に相
似する、遮光部21を有するマスク22の開口部23を
通過すると、常時光透過画素欠陥に隣接する画素の部分
の遮光膜を焼失できる照射光24となる。マスクは通常
のCr製の金属マスクの他に、常時光透過画素欠陥から
の光によって光重合が進行するネガ型レジストの現像パ
ターンを利用しても良い。ここまでの実施形態は、不要
な遮光膜をレーザにより整形加工する実施形態であった
が、続いて必要な遮光膜をレーザにより硬化させる実施
形態について、以下に記述する。 (第4実施形態)本発明の第4の実施形態を図8及び図
9に基づいて説明する。図8は第4実施形態の液晶表示
装置の輝点欠陥修正方法の断面工程図である。最初に図
8aに示すように、液晶表示パネルの輝点欠陥上方の光
透過位置のアレイ基板2上に、常温常圧の空気中で30
μmの膜厚の、エポキシ樹脂に20wt%で分散させた
光を遮断する絶縁性の無機顔料のY(イエロー)、C
(シアン)及びM(マゼンタ)色の混合物を印刷により
付着させて、不透明な液体樹脂膜15とする。二番目に
図8bに示すように、輝点欠陥上方の液体樹脂膜15に
波長1μm、出力10WのYAGレーザ装置からレーザ
光16を照射する。そうすると、図8cに示されるよう
に、輝点欠陥上方のアレイ基板2上にレーザ光によって
ゲル化したゲル樹脂膜17が形成される。また、ゲル樹
脂膜に隣接する部分は依然として液体状態のままとな
る。三番目に図8dに示されるように、必ず脱脂のため
予め50〜60℃で15分以上有機溶剤に浸漬した後、
2回水洗し、温度60℃、60容量%の硫酸中で5〜3
0分間かけて液体樹脂膜をエッチングしてから本硬化す
ると、厚さの均一性に優れた遮光膜13がアレイ基板2
上に形成される。本実施形態によれば低エネルギーで輝
点を被覆できる。図9は第4実施形態の液晶表示装置の
輝点欠陥修正方法の平面工程図である。まず、図9aに
示すように、アレイ基板2の常時光透過画素欠陥の位置
に、常温常圧で遮光材料を分散させた不透明な樹脂を印
刷後、表面張力により周囲が円状となった液体樹脂膜1
5を形成する。次に、図9bに示すように、レーザ光を
常時光透過画素欠陥の部分の遮光膜に照射すると、その
部分の遮光膜は硬化して遮光膜13となる。矩形の遮光
膜の周囲の不要となる液体樹脂膜またはゲル樹脂膜は、
エッチングの条件により除去されて溶解部25となり、
従来、表面張力によって拡がって、画素が正常に表示さ
れるにも拘らず光を透過しなかった部分が、光を透過す
るようになる。 (第5実施形態)本発明の第5の実施形態を図10に基
づいて説明する。図10は第5実施形態の液晶表示装置
の輝点欠陥修正方法の断面工程図である。最初に図10
aに示すように、液晶表示パネルの輝点欠陥上方の光透
過位置のアレイ基板2上に、常温常圧で30μmの膜厚
の、エポキシ樹脂に20wt%で分散させた光を遮断す
る絶縁性の有機顔料(顔料名C.I.50440)を転
写により付着させて、不透明な液体樹脂膜15とする。
二番目に図10bに示すように、前もって均一加熱され
た輝点欠陥上方のゲル樹脂膜17に波長1μm、出力2
0WのYAGレーザ装置からレーザ光16を照射する。
そうすると、図10cに示されるように、輝点欠陥上方
のアレイ基板2上にレーザ光によって固体化した遮光膜
13が形成される。また、遮光膜に隣接する部分は以前
としてゲル状態のままとなる。三番目に図10dに示さ
れるように、必ず脱脂のため予め50〜60℃で15分
以上有機溶剤に浸漬した後、2回水洗し、温度60℃、
60容量%の硫酸中で5〜30分間かけてゲル樹脂膜を
エッチングすると、台地状の遮光膜13がアレイ基板2
上に形成される。本実施形態によれば周囲がゲル状態に
なっているので、加熱硬化した遮光膜の形状が矩形に成
り易い。これまでに述べたきた常時光透過画素欠陥の部
分の遮光膜を硬化させる整形装置について、以下に記す
る。図11は第4及び第5実施形態に用いられる整形装
置の斜視図である。図11に示すように、YAGレーザ
装置から発射される少なくとも数10Wの発射光19
は、レンズ20によって、アレイ基板上に転写された遮
光膜の外形に近付くように変形され、その後、目的とす
る常時光透過画素欠陥の外形に相似する、マスク22の
開口部23を通過すると、常時光透過画素欠陥の部分の
遮光膜を硬化できる照射光24となる。図11で使用さ
れるレンズは、円柱レンズなどの光の幅を絞るレンズが
用いられる。マスクは通常のCr製の金属マスクの他
に、常時光透過画素欠陥からの光によって光分解が進行
するポジ型レジストの現像パターンを利用しても良い。
また、マスクの形状は画素に相似な形状だけではなく、
TFTの領域を包含する矩形であっても良い。このよう
に液晶表示パネルの常時光透過画素欠陥の光透過側に遮
光材料が分散している樹脂からなる遮光膜を位置させ、
かつ遮光膜の形状をTFTと画素とが含まれる四角形と
すれば、普通、矩形で表示される表示画面を平面充填す
ることが最も容易となるだけでなく、液晶表示パネルの
外側からの光に対して、TFTの遮光がなされ、液晶表
示パネルの鮮明度も向上する。次に、このように作製さ
れた遮光膜の液晶表示パネル上での位置を断面図によっ
て示すことにする。図12は、本発明の液晶表示装置の
輝点欠陥修正方法によって形成された液晶表示パネルの
断面図である。図12に示されるように、遮光膜13は
ガラス製のアレイ基板2上に形成されており、その上を
表面が三酢酸セルロース製のアレイ偏光膜11が覆って
いる。また、アレイ基板の内面側に、500℃で成膜さ
れた多結晶シリコン膜が堆積されている。さらに、多結
晶シリコン膜表面は、ほとんど酸化膜で覆われ、一部の
開口部から画素まで延びる透明なITO製の画素電極5
と信号ラインに接続されたソースとに電気接続されてい
る。一方、フィルタ基板3上の光を透過させるフィルタ
層6の境界に比べて、アレイ基板2上の遮光膜13の境
界は、フィルタ基板3上のBM7側に重なる様に形成さ
れている。このようにする理由は、2枚の基板間にある
液晶1が固体より動きやすく、散乱の程度が固体より大
きくなるためと、入射する光が非平行光であることが通
例だからである。また、液晶表示パネルに透過する光
は、フィルタ基板を先に通過した後、特定の位置に遮光
膜が配置されているアレイ基板を通過する。このように
構成すると、液晶表示パネルの内側からの光に対して、
TFTに入射する光の量が制限されてTFTのオンオフ
比が向上するだけでなく、アレイ基板を透過してくる光
の位置に合わせて確実に遮光することが可能になる。そ
こで、次の図13に本発明で作製される遮光膜の画素に
対する平面位置を示すことにする。図13は本発明の輝
点欠陥修正方法により作製された液晶表示装置の平面図
である。図13に示すように、金属Crなどで光を遮断
したBM7の間に点在するように白抜きで表された画素
が配置されている。図13を見ると、左斜線で表される
画素とほぼ相似な形状で遮光材料が分散している樹脂か
らなる遮光膜13が正方形状に形成されている。遮光膜
13を包含する点線で示される楕円は、従来の輝点欠陥
修正方法で修正される場合の遮光膜の領域である。図1
3から分かるように、本発明の輝点欠陥修正方法によれ
ば、欠陥画素だけが確実に遮光される。前述した実施形
態は遮光材料として特定波長を吸収する染料または顔料
について述べてきたが、可視光を反射するTi等の金属
材料を用いても良い。そして、厚さ数十μmの遮光膜
は、黒色顔料と粒径10μm前後のTiと粒径0.1μ
mの黒鉛を重量比3:3:1でエポキシ樹脂に分散させ
たものがより好ましい。図示していないが、画面上の各
TFTと異常な画素を覆う構成も可能である。また、遮
光膜は基板上に設ける必要はなく、場合によっては、偏
光板上に設けても良い。さらに、ゲル化または本硬化は
熱だけでなく、時間によって調整しても良い。このよう
に、本発明の液晶表示装置の輝点欠陥修正方法は、液晶
パネルの外側に常温常圧下で遮光膜を設けるので液晶パ
ネル作製後での修正が容易で、しかも液晶パネルを透過
してくる光の散乱の程度に合わせることも簡単になる。
そして、ドーム状の遮光膜の周囲を除く形状となってい
るので、遮光膜の厚さの均一性が高まるだけでなく、遮
光膜の加工精度も加工に用いられる波長の10倍程度の
寸法まで高精細化される。
(First Embodiment) A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional process diagram of a bright spot defect correction method for a liquid crystal display device. First, as shown in FIG. 1a, on the array substrate 2 at the light transmitting position above the bright spot defect of the liquid crystal display panel, a film having a film thickness of 20 μm in normal temperature and normal pressure air,
Carbon black, which is dispersed at 10 wt% in the epoxy resin and blocks light, is attached by screen printing to form an opaque liquid resin film 15 having a surface substantially parallel to the center of the substrate. Second, as shown in Figure 1b,
With the liquid resin film 15 as it is, a wavelength of 1 μm is always provided around the liquid resin film, which corresponds to the portion of the pixel adjacent to the light transmitting pixel defect.
Laser light from a YAG laser device of m, output of 100 W
Is irradiated. Then, as shown in FIG. 1c, the unnecessary liquid resin film is burned out, and at the same time, a portion adjacent to the burned-off liquid resin film is temporarily cured to become a gel resin film 17 which is not deformed.
Thirdly, as shown in FIG. 1d, the light-shielding film 13 is constantly formed on the array substrate 2 above the light-transmitting pixel defect by heat transfer heating in an atmosphere of 120 ° C. for 30 minutes or radiant heating by laser light. Form. FIG. 2 is a plan process diagram of the bright spot defect correcting method of the liquid crystal display device of the first embodiment. First,
As shown in FIG. 2a, the temperature of 20 ° C., the pressure of 1 atm, and the relative humidity of 60% are set at the positions of the constantly transparent pixel defects of the array substrate 2.
After printing the opaque resin with the light shielding material dispersed under the conditions of
The average radius is 200 μm when the circumference is circular due to surface tension.
The liquid resin film 15 is formed. Next, as shown in FIG. 2B, when the liquid resin film in the pixel portion adjacent to the light transmitting pixel defect is always irradiated with the laser light, the liquid resin film in that portion is heated to become the burned-out portion 18 and the light is transmitted. Come to do. At the same time, the liquid resin film adjacent to the burned-off portion 18 is temporarily hardened to become a hollow rectangular gel resin film 17. From FIG. 2b, the planar shape of the light-shielding film is not a circle dominated by surface tension,
It can be seen that it is processed into a rectangle independent of the surface tension. Further, since the periphery is gelled, even if the liquid resin film 15 remaining in the gel resin film 17 is heated to cure the liquid resin film 15 later, the plane boundary of the light shielding film does not change much. (Second Embodiment) A second embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a cross-sectional process diagram of the bright spot defect repairing method for the liquid crystal display device of the second embodiment. First, as shown in FIG. 3a, on the array substrate 2 at the light transmitting position above the bright point defect of the liquid crystal display panel, the light dispersed at 15 wt% in the epoxy resin having a film thickness of 15 μm at room temperature and normal pressure is blocked. Dye (dye name CI Black 22) is attached by transfer to form an opaque liquid resin film 15. Second, as shown in FIG. 3b, after the liquid resin film is once converted into the gel resin film 17 by heating, a wavelength of 1 μm is constantly provided around the gel resin film 17, which corresponds to a pixel portion adjacent to the light transmitting pixel defect. The laser light 16 is emitted from a YAG laser device having an output of 200 W. Then, as shown in FIG. 3c, the unnecessary gel resin film is burned out, and at the same time, the portion adjacent to the burned gel resin film is fully cured to become the light shielding film 13 which is not deformed. Thirdly, as shown in FIG. 3d, by heat transfer heating in an atmosphere of 120 ° C. for 30 minutes or radiant heating by a laser beam, the entire upper portion of the light transmitting pixel defect is converted into the light shielding film 13. The conversion of the liquid resin film into the gel resin film is performed by adjusting the elapsed time after preparation of the liquid resin film, the heating time or the heating temperature. FIG. 4 is a plan process diagram of a bright spot defect correcting method for a liquid crystal display device according to the second embodiment. First, as shown in FIG. 4A, an opaque resin in which a light-shielding material is dispersed at room temperature and normal pressure is transferred to a position of a constantly light-transmitting pixel defect on the array substrate 2, and then a liquid whose circumference is circular due to surface tension is transferred. The resin film 15 is formed. Next, as shown in FIG. 4B, after the liquid resin film is converted into a gel resin film by heating in advance, the laser light is constantly applied to the gel resin film of the pixel portion adjacent to the light transmitting pixel defect. The gel resin film is heated to become the burned-out portion 18 and light is transmitted therethrough. At the same time, the gel resin film adjacent to the burned-off portion 18 is fully cured to become the hollow rectangular light-shielding film 13. According to the present embodiment, since the periphery is fully cured, the light shielding film 1 will be
Even if the gel resin film 17 remaining inside 3 is heated to cure, the plane boundary of the light shielding film does not change. Further, according to the present embodiment, since the light-shielding film on the substrate is not necessarily shaped in a flat place because it is gelled, it is possible to set the angle at which the substrate can be shaped easily. (Third Embodiment) A third embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a sectional process view of a bright spot defect repairing method for a liquid crystal display device according to the third embodiment. First, as shown in FIG. 5a, on the array substrate 2 at the light transmitting position above the bright point defect of the liquid crystal display panel, the light dispersed at 20 wt% in the epoxy resin having a film thickness of 15 μm at room temperature and normal pressure is blocked. A dye (dye name CI Black 29) is attached by printing to form an opaque liquid resin film 15. Second, as shown in FIG. 5b, after the liquid resin film is first converted into the light-shielding film 13 by heating, the light-shielding film 13 is always surrounded by a wavelength of 1 μm, which corresponds to the pixel portion adjacent to the light-transmitting pixel defect.
Laser light from a YAG laser device of m, output of 400 W 16
Is irradiated. Then, as shown in FIG. 5c, the desired light-shielding film 13 is obtained by burning away the unnecessary light-shielding film.
According to this embodiment, a light-shielding film having a cross-sectional shape that is not affected by surface tension can be obtained with the least number of steps. FIG. 6 is a plan process diagram of a bright spot defect correcting method for a liquid crystal display device according to the third embodiment. First, as shown in FIG. 6a, an opaque resin in which a light-shielding material is dispersed at room temperature and normal pressure is printed at the position of the constantly light-transmitting pixel defect of the array substrate 2, and then a liquid whose circumference is circular due to surface tension is printed. The resin film 15 is formed. Next, as shown in FIG. 6b, after the liquid resin film is converted into an elliptical light-shielding film by heating in advance, the light-shielding film in the pixel portion adjacent to the light-transmitting pixel defect is always irradiated with laser light, and the portion is irradiated. The light-shielding film is heated to become the burned-off portion 18, and light is transmitted therethrough. The shaping device for burning out the light-shielding film in the pixel portion adjacent to the always-light-transmitting pixel defect described above will be described below. FIG. 7 is a perspective view of a shaping device used in the first, second and third embodiments. As shown in FIG. 7, the emitted light 19 of at least several 100 W emitted from the YAG laser device is deformed by the lens 20 so as to come close to the outer shape of the light-shielding film transferred onto the array substrate, and thereafter, the target light is obtained. When passing through the opening 23 of the mask 22 having the light-shielding portion 21, which is similar to the outer shape of the constantly light-transmitting pixel defect, the irradiation light 24 becomes the irradiation light 24 capable of burning out the light-shielding film of the pixel portion adjacent to the constantly light-transmitting pixel defect. As the mask, a development pattern of a negative type resist in which photopolymerization always proceeds by light from a light-transmitting pixel defect may be used in addition to an ordinary metal mask made of Cr. The embodiment so far is an embodiment in which an unnecessary light shielding film is shaped by a laser, but an embodiment in which a necessary light shielding film is subsequently cured by a laser will be described below. (Fourth Embodiment) A fourth embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a sectional process view of a bright spot defect repairing method for a liquid crystal display device according to the fourth embodiment. First, as shown in FIG. 8A, the liquid crystal display panel is placed on the array substrate 2 at the light transmitting position above the bright spot defect in the air at room temperature and normal pressure.
Insulating inorganic pigments Y (yellow) and C, which have a thickness of μm and are dispersed in an epoxy resin at 20 wt% to block light.
A mixture of (cyan) and M (magenta) colors is applied by printing to form an opaque liquid resin film 15. Second, as shown in FIG. 8b, the liquid resin film 15 above the bright spot defect is irradiated with laser light 16 from a YAG laser device having a wavelength of 1 μm and an output of 10 W. Then, as shown in FIG. 8C, the gel resin film 17 gelled by the laser light is formed on the array substrate 2 above the bright point defect. Further, the portion adjacent to the gel resin film remains in the liquid state. Thirdly, as shown in FIG. 8d, after preliminarily immersing in an organic solvent at 50 to 60 ° C. for 15 minutes or more for degreasing,
Rinse twice with water, 5 to 3 in 60% sulfuric acid at 60 ° C.
When the liquid resin film is etched for 0 minutes and then fully cured, the light-shielding film 13 having excellent thickness uniformity is formed on the array substrate 2.
Formed on top. According to this embodiment, bright spots can be covered with low energy. FIG. 9 is a plan process diagram of a bright spot defect correcting method for a liquid crystal display device according to the fourth embodiment. First, as shown in FIG. 9A, an opaque resin in which a light-shielding material is dispersed at room temperature and normal pressure is printed at a position of a constantly light-transmitting pixel defect of the array substrate 2, and then a liquid having a circular circumference due to surface tension is printed. Resin film 1
5 is formed. Next, as shown in FIG. 9B, when the light-shielding film in the portion of the light-transmitting pixel defect is constantly irradiated with laser light, the light-shielding film in that portion is cured to become the light-shielding film 13. The unnecessary liquid resin film or gel resin film around the rectangular light-shielding film is
It is removed by the etching conditions to become the melting portion 25,
Conventionally, a portion which has spread due to surface tension and which does not transmit light although the pixel is normally displayed, transmits light. (Fifth Embodiment) A fifth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a sectional process view of a bright spot defect repairing method for a liquid crystal display device according to the fifth embodiment. First in Figure 10
As shown in a, on the array substrate 2 at the light transmitting position above the luminescent spot defect of the liquid crystal display panel, the insulating property of blocking the light dispersed at 20 wt% in the epoxy resin having a film thickness of 30 μm at room temperature and normal pressure. The organic pigment (pigment name CI 50440) is attached by transfer to form an opaque liquid resin film 15.
Second, as shown in FIG. 10b, a wavelength of 1 μm and an output of 2 μm are applied to the gel resin film 17 above the bright spot defect that has been uniformly heated in advance.
Laser light 16 is emitted from a 0 W YAG laser device.
Then, as shown in FIG. 10c, the light shielding film 13 solidified by the laser beam is formed on the array substrate 2 above the bright point defect. Further, the portion adjacent to the light shielding film remains in the gel state as before. Thirdly, as shown in FIG. 10d, for degreasing, it is preliminarily immersed in an organic solvent at 50 to 60 ° C. for 15 minutes or more in advance, then washed twice with water, and the temperature is 60 ° C.
When the gel resin film is etched in 60% by volume of sulfuric acid for 5 to 30 minutes, the plate-shaped light-shielding film 13 becomes the array substrate 2.
Formed on top. According to this embodiment, since the periphery is in a gel state, the shape of the heat-cured light shielding film is likely to be rectangular. The shaping device that cures the light-shielding film at the portion of the always-light-transmitting pixel defect described above will be described below. FIG. 11 is a perspective view of a shaping device used in the fourth and fifth embodiments. As shown in FIG. 11, at least several tens of watts of emitted light 19 emitted from the YAG laser device is emitted.
Is deformed by the lens 20 so as to come close to the outer shape of the light-shielding film transferred onto the array substrate, and then passes through the opening 23 of the mask 22, which is similar to the outer shape of the target light-transmissive pixel defect, Irradiation light 24 is always available to cure the light-shielding film in the portion of the light-transmitting pixel defect. As the lens used in FIG. 11, a lens that narrows the width of light such as a cylindrical lens is used. As the mask, in addition to a normal metal mask made of Cr, a development pattern of a positive type resist in which photolysis is always promoted by light from a light transmitting pixel defect may be used.
Moreover, the shape of the mask is not limited to the shape similar to the pixel,
It may be a rectangle including the area of the TFT. In this way, the light-shielding film made of resin in which the light-shielding material is dispersed is positioned on the light-transmitting side of the constant light-transmitting pixel defect of the liquid crystal display panel,
Moreover, if the shape of the light-shielding film is a quadrangle including the TFT and the pixel, it is usually the easiest to fill the plane of the display screen, which is usually a rectangle, with the light from the outside of the liquid crystal display panel. On the other hand, the TFT is shielded from light, and the sharpness of the liquid crystal display panel is improved. Next, the position of the light-shielding film thus manufactured on the liquid crystal display panel will be shown by a sectional view. FIG. 12 is a cross-sectional view of a liquid crystal display panel formed by the bright spot defect correcting method for a liquid crystal display device of the present invention. As shown in FIG. 12, the light shielding film 13 is formed on the array substrate 2 made of glass, and the surface is covered with the array polarizing film 11 made of cellulose triacetate. Further, a polycrystalline silicon film formed at 500 ° C. is deposited on the inner surface side of the array substrate. Further, the surface of the polycrystalline silicon film is almost covered with an oxide film, and a transparent ITO pixel electrode 5 extending from a part of the opening to the pixel is formed.
And electrically connected to the source connected to the signal line. On the other hand, the boundary of the light shielding film 13 on the array substrate 2 is formed so as to overlap with the BM 7 side on the filter substrate 3, as compared with the boundary of the filter layer 6 that transmits light on the filter substrate 3. The reason for doing this is that the liquid crystal 1 between the two substrates is easier to move than the solid and the degree of scattering is larger than that of the solid, and the incident light is usually non-parallel light. Further, the light transmitted through the liquid crystal display panel first passes through the filter substrate and then through the array substrate having the light shielding film arranged at a specific position. With this configuration, with respect to light from the inside of the liquid crystal display panel,
Not only is the on-off ratio of the TFT improved by limiting the amount of light incident on the TFT, but it is also possible to reliably block light according to the position of the light transmitted through the array substrate. Therefore, FIG. 13 shows the position of the light-shielding film manufactured by the present invention in plan view with respect to the pixels. FIG. 13 is a plan view of a liquid crystal display device manufactured by the bright spot defect correcting method of the present invention. As shown in FIG. 13, white pixels are arranged so as to be scattered between the BMs 7 that shield light with metal Cr or the like. As shown in FIG. 13, the light-shielding film 13 made of resin in which the light-shielding material is dispersed is formed in a square shape in a shape substantially similar to the pixel represented by the left diagonal line. The ellipse shown by the dotted line including the light-shielding film 13 is the region of the light-shielding film when it is repaired by the conventional bright spot defect repairing method. FIG.
As can be seen from FIG. 3, according to the bright spot defect correction method of the present invention, only defective pixels are reliably shielded from light. Although the above embodiments have described the dye or pigment that absorbs a specific wavelength as the light shielding material, a metal material such as Ti that reflects visible light may be used. The light-shielding film having a thickness of several tens of μm has a black pigment, Ti having a particle size of about 10 μm, and a particle size of 0.1 μm.
More preferably, graphite of m is dispersed in an epoxy resin in a weight ratio of 3: 3: 1. Although not shown, it is possible to adopt a configuration in which each TFT on the screen and an abnormal pixel are covered. The light-shielding film need not be provided on the substrate, and may be provided on the polarizing plate in some cases. Furthermore, gelling or main curing may be adjusted not only by heat but also by time. As described above, in the bright spot defect repairing method for a liquid crystal display device of the present invention, since the light-shielding film is provided outside the liquid crystal panel under normal temperature and normal pressure, it is easy to repair the liquid crystal panel after fabrication, and moreover, the liquid crystal panel is transparent. It is also easy to adjust the degree of scattering of incoming light.
Since the shape of the dome-shaped light-shielding film is excluded, not only the thickness uniformity of the light-shielding film is improved, but also the processing accuracy of the light-shielding film is up to about 10 times the wavelength used for processing. High definition.

【発明の効果】以上に説明したように、本発明の液晶表
示装置の輝点欠陥修正方法によれば、高いスループット
で、例えば、100μm以下の微細な画素電極構成にお
いても表示品質を落とすことなく、常温常圧下で液晶表
示装置の輝点欠陥を修正でき、また、ガラス基板間にフ
ィラーのような微粒子が存在する場合においても光漏れ
のない良好な修正が可能な輝点欠陥修正方法を提供でき
る。また、表面が平坦な液体状態の遮光膜を加工するの
で相対的に低エネルギーで遮光膜の厚さが均一にでき
る。また、表面の流動がないゲル状態の遮光膜を加工す
るから熱変形が生じにくく、遮光膜と画素との相似性が
高まって確実に遮光できる。また、遮光膜が樹脂を含む
ことよって液体状態になりやすく、遮光膜の下地の基板
と平行な界面を作りやすい。また、光透過側に遮光膜が
配置されているので輝点から漏れる光の面積や位置に合
わせやすい。また、薄い周囲を焼失させるので、遮光膜
がより早く高精細に加工できる。また、平坦性に優れた
中央部を硬化させるので、遮光膜がより平らに高精細に
加工できる。また、遮光膜をレーザにより加工するか
ら、常温常圧の空気中で加工でき、スループットが高く
できる。加うるに、本発明の液晶表示装置は、液晶表示
パネルの常時光透過画素欠陥の光透過側に遮光材料が分
散している樹脂からなる遮光膜を位置させ、かつ遮光膜
の形状をTFTと画素とが含まれる形状とするので、高
精細な矩形の表示画面の平面充填性に優れ、TFTの遮
光により光電流を減らして液晶表示装置の鮮明度を向上
できる。従って、投射型、直視型によらず、ハイビジョ
ンプロジェクタやパーソナルコンピュータ用ディスプレ
イ等の高精細映像分野の液晶表示装置に対し、本発明の
果たす役割は極めて大きい。
As described above, according to the bright spot defect repairing method for a liquid crystal display device of the present invention, it is possible to achieve high throughput without deteriorating the display quality even in a fine pixel electrode structure of 100 μm or less. Provided is a bright spot defect repairing method capable of repairing a bright spot defect of a liquid crystal display device at room temperature and normal pressure and capable of excellent repair without light leakage even when fine particles such as filler are present between glass substrates. it can. Moreover, since the liquid-state light-shielding film having a flat surface is processed, the thickness of the light-shielding film can be made uniform with relatively low energy. In addition, since the gel-shaped light-shielding film having no surface flow is processed, thermal deformation is less likely to occur, and the similarity between the light-shielding film and the pixel is enhanced, so that light can be reliably shielded. In addition, since the light-shielding film contains the resin, the light-shielding film is likely to be in a liquid state, and an interface parallel to the underlying substrate of the light-shielding film is easily formed. Further, since the light shielding film is arranged on the light transmitting side, it is easy to match the area and position of the light leaking from the bright spot. Further, since the thin surroundings are burnt out, the light-shielding film can be processed more quickly and with high precision. Further, since the central portion having excellent flatness is hardened, the light-shielding film can be processed to be flat and highly precise. Further, since the light-shielding film is processed by the laser, it can be processed in air at room temperature and normal pressure, and the throughput can be increased. In addition, in the liquid crystal display device of the present invention, a light-shielding film made of a resin in which a light-shielding material is dispersed is located on the light-transmitting side of a constant light-transmitting pixel defect of a liquid crystal display panel, and the shape of the light-shielding film is TFT. Since it has a shape including pixels, it has excellent planar filling properties of a high-definition rectangular display screen, and can reduce the photocurrent by shielding the TFT to improve the sharpness of the liquid crystal display device. Therefore, the present invention plays an extremely important role in liquid crystal display devices in the field of high-definition video such as high-vision projectors and displays for personal computers, regardless of whether they are projection type or direct-view type.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液体樹脂膜を焼失させる輝点欠陥修正
方法の断面工程図である。
FIG. 1 is a cross-sectional process diagram of a bright spot defect repairing method for burning away a liquid resin film of the present invention.

【図2】本発明の液体樹脂膜を焼失させる輝点欠陥修正
方法の平面工程図である。
FIG. 2 is a plan process diagram of a bright spot defect correcting method for burning away a liquid resin film of the present invention.

【図3】本発明のゲル樹脂膜を焼失させる輝点欠陥修正
方法の断面工程図である。
FIG. 3 is a cross-sectional process diagram of a bright spot defect repairing method for burning away a gel resin film of the present invention.

【図4】本発明のゲル樹脂膜を焼失させる輝点欠陥修正
方法の平面工程図である。
FIG. 4 is a plan process diagram of a bright spot defect correcting method for burning away a gel resin film of the present invention.

【図5】本発明の固体樹脂膜を焼失させる輝点欠陥修正
方法の断面工程図である。
FIG. 5 is a cross-sectional process diagram of a bright spot defect correcting method for burning away a solid resin film of the present invention.

【図6】本発明の固体樹脂膜を焼失させる輝点欠陥修正
方法の平面工程図である。
FIG. 6 is a plan process diagram of a bright spot defect correcting method for burning away a solid resin film of the present invention.

【図7】本発明の樹脂膜を焼失させるレーザ整形装置の
斜視図である。
FIG. 7 is a perspective view of a laser shaping device for burning away a resin film of the present invention.

【図8】本発明の液体樹脂膜を硬化させる輝点欠陥修正
方法の断面工程図である。
FIG. 8 is a sectional process drawing of a bright spot defect correcting method for curing a liquid resin film of the present invention.

【図9】本発明の液体樹脂膜を硬化させる輝点欠陥修正
方法の平面工程図である。
FIG. 9 is a plan process diagram of a bright spot defect correcting method for curing a liquid resin film of the present invention.

【図10】本発明のゲル樹脂膜を硬化させる輝点欠陥修
正方法の断面工程図である。
FIG. 10 is a sectional process drawing of a bright spot defect repairing method for curing a gel resin film of the present invention.

【図11】本発明の樹脂膜を硬化させるレーザ整形装置
の斜視図である。
FIG. 11 is a perspective view of a laser shaping device for curing the resin film of the present invention.

【図12】本発明のレーザ加工された遮光膜が有る液晶
表示装置の断面図である。
FIG. 12 is a sectional view of a liquid crystal display device having a laser-processed light-shielding film of the present invention.

【図13】本発明のレーザ加工された遮光膜が有る液晶
表示装置の平面図である。
FIG. 13 is a plan view of a liquid crystal display device having a laser-processed light-shielding film of the present invention.

【図14】従来の加工しない遮光膜が有る液晶表示装置
の断面図である。
FIG. 14 is a cross-sectional view of a liquid crystal display device having a conventional unprocessed light-shielding film.

【図15】従来の加工しない遮光膜が有る液晶表示装置
の平面図である。
FIG. 15 is a plan view of a liquid crystal display device having a conventional unprocessed light-shielding film.

【図16】従来の転写版から懸滴している液体樹脂膜の
断面図である。
FIG. 16 is a cross-sectional view of a liquid resin film hanging from a conventional transfer plate.

【符号の説明】[Explanation of symbols]

1 液晶 2 アレイ基板 3 フィルタ基板 4 TFT 5 画素電極 6 フィルタ層 7 BM 8 透明導電膜 9 アレイ配向膜 10 フィルタ配向膜 11 アレイ偏光板 12 フィルタ偏光板 13 遮光膜 14 懸滴 15 液体樹脂膜 16 レーザ光 17 ゲル樹脂膜 18 焼失部 19 発射光 20 レンズ 21 遮光部 22 マスク 23 開口部 24 照射光 25 溶解部 1 Liquid Crystal 2 Array Substrate 3 Filter Substrate 4 TFT 5 Pixel Electrode 6 Filter Layer 7 BM 8 Transparent Conductive Film 9 Array Alignment Film 10 Filter Alignment Film 11 Array Polarizer 12 Filter Polarizer 13 Light-Shielding Film 14 Suspended Drop 15 Liquid Resin Film 16 Laser Light 17 Gel resin film 18 Burned-out part 19 Emitted light 20 Lens 21 Light-shielding part 22 Mask 23 Opening 24 Irradiation light 25 Melting part

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 液晶表示パネルの常時光透過画素欠陥を
常時光不透過画素欠陥とする液晶表示装置の輝点欠陥修
正方法において、液晶表示パネルの常時光透過画素欠陥
上に遮光膜を設け、この遮光膜を、前記常時光透過画素
欠陥の画素のみを遮光する形状に加工したことを特徴と
する液晶表示装置の輝点欠陥修正方法。
1. A bright spot defect correction method for a liquid crystal display device, wherein a constant light transmitting pixel defect of a liquid crystal display panel is a constant light non-transmitting pixel defect, wherein a light shielding film is provided on the constant light transmitting pixel defect of the liquid crystal display panel. A method for correcting a bright spot defect of a liquid crystal display device, characterized in that the light shielding film is processed into a shape that shields only the pixels having the always light transmitting pixel defect.
【請求項2】 遮光膜を液体状態から固体状態に変質さ
せることを特徴とする請求項1記載の液晶表示装置の輝
点欠陥修正方法。
2. The method of repairing a bright spot defect in a liquid crystal display device according to claim 1, wherein the light-shielding film is changed from a liquid state to a solid state.
【請求項3】 遮光膜をゲル状態から固体状態に変質さ
せることを特徴とする請求項1記載の液晶表示装置の輝
点欠陥修正方法。
3. The bright spot defect correction method for a liquid crystal display device according to claim 1, wherein the light-shielding film is changed from a gel state to a solid state.
【請求項4】 遮光膜は遮光材料が分散している樹脂か
ら成ることを特徴とする請求項1記載の液晶表示装置の
輝点欠陥修正方法。
4. The method of repairing a bright spot defect in a liquid crystal display device according to claim 1, wherein the light shielding film is made of a resin in which a light shielding material is dispersed.
【請求項5】 遮光膜は液晶表示パネルの常時光透過画
素欠陥の光透過側にあることを特徴とする請求項1記載
の液晶表示装置の輝点欠陥修正方法。
5. The method of repairing a bright spot defect in a liquid crystal display device according to claim 1, wherein the light shielding film is on the light transmitting side of the constant light transmitting pixel defect of the liquid crystal display panel.
【請求項6】 遮光膜の周囲を焼失させることにより加
工することを特徴とする請求項1記載の液晶表示装置の
輝点欠陥修正方法。
6. The method of repairing a bright spot defect in a liquid crystal display device according to claim 1, wherein the light shielding film is processed by burning out the periphery thereof.
【請求項7】 遮光膜の中央を硬化させることにより加
工することを特徴とする請求項1記載の液晶表示装置の
輝点欠陥修正方法。
7. The method of repairing a bright spot defect of a liquid crystal display device according to claim 1, wherein the light shielding film is processed by hardening the center thereof.
【請求項8】 遮光膜の加工をレーザを用いて行なうこ
とを特徴とする請求項1記載の液晶表示装置の輝点欠陥
修正方法。
8. The method of repairing a bright spot defect in a liquid crystal display device according to claim 1, wherein the light shielding film is processed by using a laser.
【請求項9】 液晶表示パネルの常時光透過画素欠陥を
常時光不透過画素欠陥としている液晶表示装置におい
て、液晶表示パネルの常時光透過画素欠陥の光透過側に
遮光材料が分散している樹脂からなる遮光膜を位置さ
せ、かつ遮光膜の形状をTFTと画素とが含まれる形状
とすることを特徴とする液晶表示装置。
9. A liquid crystal display device in which a constant light transmission pixel defect of a liquid crystal display panel is a constant light non-transmission pixel defect, and a resin in which a light shielding material is dispersed on the light transmission side of the constant light transmission pixel defect of the liquid crystal display panel. A liquid crystal display device characterized in that a light-shielding film made of is positioned and the light-shielding film has a shape including TFTs and pixels.
JP13218496A 1996-05-27 1996-05-27 Liquid crystal display device and its bright point defect correcting method Pending JPH09318959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13218496A JPH09318959A (en) 1996-05-27 1996-05-27 Liquid crystal display device and its bright point defect correcting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13218496A JPH09318959A (en) 1996-05-27 1996-05-27 Liquid crystal display device and its bright point defect correcting method

Publications (1)

Publication Number Publication Date
JPH09318959A true JPH09318959A (en) 1997-12-12

Family

ID=15075360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13218496A Pending JPH09318959A (en) 1996-05-27 1996-05-27 Liquid crystal display device and its bright point defect correcting method

Country Status (1)

Country Link
JP (1) JPH09318959A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456085C (en) * 2004-12-14 2009-01-28 乐金显示有限公司 Apparatus and method for repairing liquid crystal display device
US7955151B2 (en) * 2007-09-05 2011-06-07 Sony Corporation Method of repairing bright spot defect of organic light-emitting display
JP2015121602A (en) * 2013-12-20 2015-07-02 シャープ株式会社 Display device and method of correcting defect of display device
CN107742499A (en) * 2017-11-30 2018-02-27 武汉天马微电子有限公司 Special-shaped display panel and display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456085C (en) * 2004-12-14 2009-01-28 乐金显示有限公司 Apparatus and method for repairing liquid crystal display device
US7955151B2 (en) * 2007-09-05 2011-06-07 Sony Corporation Method of repairing bright spot defect of organic light-emitting display
JP2015121602A (en) * 2013-12-20 2015-07-02 シャープ株式会社 Display device and method of correcting defect of display device
CN107742499A (en) * 2017-11-30 2018-02-27 武汉天马微电子有限公司 Special-shaped display panel and display device
CN107742499B (en) * 2017-11-30 2021-02-19 武汉天马微电子有限公司 Special-shaped display panel and display device

Similar Documents

Publication Publication Date Title
JP4207599B2 (en) Manufacturing method of liquid crystal panel
US6788372B1 (en) Liquid, crystal panel, liquid crystal panel manufacturing method, liquid crystal display, and liquid crystal projector
JP6175761B2 (en) Electro-optical device and electronic apparatus
WO2005057274A1 (en) Method of producing micro-lens-carrying display panel and display unit and exposure system
JP2002062818A (en) Microlens and method of manufacturing image display device
WO2014026433A1 (en) Liquid crystal panel glue curing method and device thereof
US20060087613A1 (en) Liquid crystal display, and method for repairing defective pixels of liquid crystal display
US20170285395A1 (en) Color filter substrate, manufacturing method thereof, display panel, manufacturing method thereof and bright spot defect correction method thereof, and display apparatus
US6597425B2 (en) Liquid crystal display device
US20070229735A1 (en) Method for manufacturing liquid crystal display and liquid crystal display manufactured thereby
JPH09318959A (en) Liquid crystal display device and its bright point defect correcting method
JP2009048143A (en) Liquid crystal device, method of manufacturing same, and electronic equipment
JP2005121915A (en) Method for manufacturing base plate with recessed part for microlens, base plate with recessed part for microlens, microlens base plate, counter base plate for liquid crystal panel, liquid crystal panel and projection type display device
JPH11109372A (en) Production of substrate for liquid crystal display element, production of liquid crystal display element, substrate for liquid crystal display element and liquid crystal display element
US6327012B1 (en) Method for manufacturing liquid crystal display
JP2000314876A (en) Liquid crystal display element and liquid crystal display device
JPH09159806A (en) Microlnes substrate and its production and liquid crystal display
JP2004117526A (en) Liquid crystal display panel and method for manufacturing the same
JPH1164859A (en) Liquid crystal display device and its manufacture
JP2007279222A (en) Manufacturing method for display panel substrate
JP2004354606A (en) Liquid crystal display and method for manufacturing the same
JP2004280006A (en) Liquid crystal display device and method for manufacturing the same
JP2002014477A (en) Method for flattening surface of substrate
JPH08194212A (en) Liquid crystal display element
JP2004309819A (en) Liquid crystal display and its manufacturing method