JPH09318626A - Method and device for measuring lactic acid in urine - Google Patents
Method and device for measuring lactic acid in urineInfo
- Publication number
- JPH09318626A JPH09318626A JP17536896A JP17536896A JPH09318626A JP H09318626 A JPH09318626 A JP H09318626A JP 17536896 A JP17536896 A JP 17536896A JP 17536896 A JP17536896 A JP 17536896A JP H09318626 A JPH09318626 A JP H09318626A
- Authority
- JP
- Japan
- Prior art keywords
- lactic acid
- light
- concentration
- urine
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、乳酸をパラメータと
して肉体疲労度の管理指標及び健康管理の指標を得る手
段として尿測定による非侵襲測定方法及び装置を提供す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a non-invasive measuring method and device by urine measurement as means for obtaining a physical fatigue index and a health index using lactic acid as a parameter.
【0002】[0002]
【従来の技術】乳酸は、嫌気的解糖の終末代謝産物とし
て、主に骨格筋や赤血球、脳、皮膚、腸管で産生され
(1200−1500mmol/日)、大部分が肝臓や
腎臓でTCAサイクルや糖新生系の基質として利用され
る。乳酸の産生と利用の不均衡をきたす病態は、血中乳
酸値の異常として反映される。また、体内中での解糖作
用により乳酸が蓄積されることが知られており、乳酸の
蓄積量と疲労度は相関が高いことから、スポーツ医学や
運動生理学の分野ではトレーニングの管理指標として、
筋肉中から血液中に運ばれた血液中乳酸濃度の測定が行
われている。BACKGROUND ART Lactic acid is mainly produced in skeletal muscle, erythrocyte, brain, skin and intestine as an end metabolite of anaerobic glycolysis (1200-1500 mmol / day), and most of it is TCA cycle in liver and kidney. It is also used as a substrate for gluconeogenesis. Pathological conditions that cause an imbalance between lactate production and utilization are reflected as abnormal blood lactate levels. In addition, it is known that lactic acid accumulates due to glycolysis in the body, and the amount of lactic acid accumulated and the degree of fatigue are highly correlated, so in the fields of sports medicine and exercise physiology, as a management index for training,
The concentration of lactic acid in blood carried from the muscle to the blood is measured.
【0003】糖尿病における乳酸の代謝量は一般的に増
加の傾向を示している。また、脱水症状、アシドーシ
ス、高血糖症が重篤であるほど乳酸値は上昇する。Lactic acid metabolism in diabetes generally shows an increasing tendency. In addition, the more severe the dehydration, acidosis, and hyperglycemia, the higher the lactic acid level.
【0004】乳酸の検査として、血液中の乳酸の測定は
従来より臨床的に行われている。血液中成分を測定する
方法として、乳酸脱水素酵素による酵素法が一般的であ
り、非侵襲的に乳酸濃度を測定する方法として、酵素を
用いて尿中成分を測定する方法が提案されている(特開
平5−3798号公報)。また、非侵襲的血液中乳酸の
測定方法でも、試薬として乳酸オキシダーゼや乳酸デヒ
ドロゲナーゼなどの酵素を使用る。As a test for lactic acid, measurement of lactic acid in blood has been clinically performed conventionally. An enzymatic method using lactate dehydrogenase is generally used as a method for measuring blood components, and a method for measuring urinary components using an enzyme has been proposed as a non-invasive method for measuring lactate concentration. (JP-A-5-3798). Also, in a non-invasive blood lactate measurement method, enzymes such as lactate oxidase and lactate dehydrogenase are used as reagents.
【0005】尿中成分を測定する方法としては、試薬
法、試験紙法、化学発光法、イムノアッセイ法、酵素
法、クロマトグラフィー法などがある。Methods for measuring urinary components include a reagent method, a test strip method, a chemiluminescence method, an immunoassay method, an enzyme method and a chromatography method.
【0006】尿中の成分を光学的に測定する方法とし
て、尿試料に特定波長の光を照射し、吸光度を測定し、
多変量回帰分析法により尿中成分の濃度を定量する方法
が考案されている(特願平7−70849号)。As a method for optically measuring the components in urine, a urine sample is irradiated with light of a specific wavelength and the absorbance is measured.
A method for quantifying the concentration of urinary components by a multivariate regression analysis method has been devised (Japanese Patent Application No. 7-70849).
【0007】[0007]
【従来技術の問題点】これら従来法にあっては、サンプ
ル作製のための前処理や測定操作自体が非常に煩雑で測
定時間も長くかかる他、夾雑物質の影響を受けやすく、
また高価な光源、分光装置が必要であって装置全体が大
型化し、価格も高価である問題がある。[Problems of the prior art] In these conventional methods, the pretreatment for sample preparation and the measurement operation itself are very complicated and the measurement time is long, and they are easily affected by contaminants.
Further, there is a problem that an expensive light source and a spectroscopic device are required, the size of the entire device is increased, and the price is expensive.
【0008】試験紙法で用いる試験紙は、セルロースに
反応性試薬を含ませた反応部分をプラスチックの指示片
に接着剤などで固定し乾燥させたものが多い。反応部分
は湿気を含むと試薬間で反応が起こり、また高温や光に
よっても変質して、感度が低下することが多いことか
ら、試験紙を収納する容器は密閉し、高温を避けて保存
し、有効期限内に使用することが必要である。試験紙法
はpH、タンパク質、ブドウ糖、ケトン体、ビルビリ
ン、潜血、ウノビリノーゲン、亜硝酸塩、細菌感染など
の項目について1分以内に測定が可能であるが、試薬部
分の反応は内因性の促進物質や阻害物質の他、反応温度
や試験紙の条件などによっても影響を受け、半定量しか
できない。The test paper used in the test paper method is often one in which the reaction portion of cellulose containing a reactive reagent is fixed to a plastic indicator piece with an adhesive or the like and dried. If the reaction part contains moisture, a reaction will occur between the reagents, and it will also deteriorate due to high temperature and light, and the sensitivity will often decrease.Therefore, the test paper container should be sealed and stored at high temperature. , It is necessary to use within the expiration date. The test strip method can measure items such as pH, protein, glucose, ketone bodies, bilbilin, occult blood, unobilinogen, nitrite, and bacterial infection within 1 minute, but the reaction of the reagent part is In addition to the inhibitory substances, it is affected by the reaction temperature and the conditions of the test strip, etc.
【0009】酵素法は糖の測定に用いられる。例えば、
グルコースオキシダーゼ・パーオキシダーゼ(GOD−
POD)色素系で、酸化還元反応に伴う発色を反射系で
測定する方法や、GOD固定化酵素電極により陽極酸化
電流をアンペロメトリックに測定し、その電流値を濃度
変換する方法(バイオセンサなど)が行われている。ブ
ドウ糖酸化酵素を用いる方法はブドウ糖に特異性が高
く、簡便であるが、GODの反応は酸化還元反応であ
り、内因性、外因性の種々の酸化、還元性物質によって
反応が抑制されたりすることがあり、偽陰性・偽陽性が
見られる危険性もある。The enzymatic method is used for measuring sugar. For example,
Glucose oxidase / peroxidase (GOD-
(POD) dye system, a method of measuring the color development associated with redox reaction by a reflection system, or a method of amperometrically measuring anodizing current with a GOD-immobilized enzyme electrode and converting the current value to a concentration (biosensor, etc.) ) Is done. The method using glucose oxidase is highly specific to glucose and is simple, but the GOD reaction is a redox reaction, and the reaction is suppressed by various endogenous and exogenous oxidation and reduction substances. There is also a risk of false negatives and false positives.
【0010】クロマトグラフィー法では、ガスクロマト
グラムや液体クロマトグラムという高価な装置を使用し
ているためコストパフォーマンスが優れているとは言い
難い。In the chromatography method, it is difficult to say that the cost performance is excellent because an expensive apparatus such as a gas chromatogram or a liquid chromatogram is used.
【0011】乳酸濃度の測定は、一般的に血液を対象と
しているが、乳酸を糖尿病マーカーとする場合、被験者
は長時間に渡り繰り返し検体抽出を行うことになり、血
液を検体として抽出するため、被験者は肉体的苦痛を伴
うことになる。The measurement of lactic acid concentration is generally performed on blood. However, when lactic acid is used as a diabetes marker, the subject will repeatedly perform sample extraction over a long period of time, and blood is extracted as a sample. Subject will be physically distressed.
【0012】[0012]
【発明が解決しようとする課題】試薬法、試験紙法及び
酵素法では消耗品である試薬、試験紙又は酵素が必要で
あり、又その使用前の試薬等の保存安定性や使用後の廃
棄の問題もある。血液を対象にする測定方法では採血の
必要があり、採血の際の痛みや感染の危険性を伴う。さ
らに、操作が煩雑で、試薬や試料の添加量など操作時の
ミスによる誤差が起こる可能性があり、測定を目的とし
ないアスコルビン酸などのほかの成分による干渉作用を
受けるという欠点もある。試薬法や酵素法では定量はで
きるが、一度に多成分を測定することはできず、又試験
紙法では多成分を同時に測定できるが半定量しかできな
いという欠点もある。The reagent method, test strip method, and enzyme method require reagents, test strips, or enzymes that are consumables, and the storage stability of the reagent before use and the disposal after use. There is also the problem of. The blood-based measurement method requires blood collection, which is associated with pain and risk of infection during blood collection. Furthermore, the operation is complicated, and errors such as the amounts of reagents and samples added during operation may occur, and there is also the drawback that interference with other components such as ascorbic acid, which is not intended for measurement, causes interference. Although the reagent method and the enzyme method can perform quantification, the multicomponents cannot be measured at one time, and the test strip method allows simultaneous measurement of multiple components, but has a disadvantage that only semiquantification is possible.
【0013】クロマトグラフィー法では高価な装置を必
要とし、カラム性能が劣化したときはカラムを交換しな
ければならず、コストが高くなる問題がある。The chromatography method requires an expensive apparatus, and when the column performance is deteriorated, the column must be replaced, which causes a problem of high cost.
【0014】従来法における如上の問題点解決に鑑み、
本発明は、消耗品である試薬、試験紙片及び酵素などを
不要にし、さらにはそれらの消耗品の使用前の保存安定
性や使用後の廃棄の問題、誤差が起こる煩わしい操作や
ほかの成分による干渉作用などの問題を無くし、多成分
を同時に定量測定する方法を提供することを目的とする
ものである。In view of solving the above problems in the conventional method,
The present invention eliminates the need for consumables such as reagents, test strips, and enzymes, and further, the storage stability of these consumables before use, the problem of disposal after use, the error-prone operation and other components It is an object of the present invention to provide a method for quantitatively measuring multiple components at the same time by eliminating problems such as interference action.
【0015】乳酸濃度の測定に、尿を対象とすることに
よって、被験者が検体抽出時に苦痛を伴うことはないた
め、幼年層、老人など肉体的苦痛に対する耐性が低い患
者の精神的苦痛も緩和される。By subjecting urine to the measurement of lactic acid concentration, the subject does not have any pain at the time of extracting the sample, so that the mental distress of patients with low tolerance to physical pain such as young children and the elderly can be relieved. It
【0016】[0016]
【課題を解決するための手段】本発明は、尿中に含まれ
る乳酸濃度を測定するに当たり、乳酸水溶液の可視又は
近赤外領域での濃度と吸光度との間の相関係数の絶対値
が0.5以上、好ましくは0.9以上である波長領域に
含まれる少なくとも一波長を乳酸成分特有の測定波長と
して選択し、尿試料に対し可視光又は近赤外光を照射
し、前記の条件で選択した測定波長での吸光度を測定
し、尿中の乳酸濃度を定量することを特徴とする乳酸濃
度測定方法を提供する。Means for Solving the Problems In measuring the concentration of lactic acid contained in urine according to the present invention, the absolute value of the correlation coefficient between the concentration of the aqueous lactic acid solution in the visible or near infrared region and the absorbance is determined. At least one wavelength included in the wavelength region of 0.5 or more, preferably 0.9 or more is selected as a measurement wavelength unique to the lactic acid component, and a urine sample is irradiated with visible light or near infrared light, The lactic acid concentration measuring method is characterized by measuring the absorbance at the measurement wavelength selected in 1. and quantifying the lactic acid concentration in urine.
【0017】更に、本発明は、如上の方法を実現するに
適した乳酸濃度測定装置を提供する。即ち、本発明は、
尿試料に可視又は近赤外領域の範囲にある特定波数の光
を照射する発光手段と、前記試料を透過する光を受光し
前記試料中に含まれる成分の吸光度に対応する受光信号
を出力する受光手段と、前記受光手段からの受光信号か
ら吸光度を算出し乳酸濃度を定量する演算処理手段とを
備えたことを特徴とする乳酸濃度測定装置を提供する。
当該測定装置にあっては、多変量回帰分析法を含む演算
処理手段を備えたことを特徴とする。Further, the present invention provides a lactate concentration measuring device suitable for realizing the above method. That is, the present invention
A light emitting means for irradiating a urine sample with light having a specific wave number in the visible or near-infrared region, and a light receiving signal for receiving the light transmitted through the sample and outputting a light receiving signal corresponding to the absorbance of a component contained in the sample A lactate concentration measuring apparatus comprising: a light receiving unit; and an arithmetic processing unit for calculating an absorbance from a light receiving signal from the light receiving unit to quantify the lactate concentration.
The measuring apparatus is characterized by including arithmetic processing means including a multivariate regression analysis method.
【0018】ある成分についての波長λjでの吸光度A
と濃度のとの相関関係Rjは次の式により与えられる。Absorbance A at wavelength λj for a component
The correlation Rj between and of the concentration is given by the following equation.
【数1】 上記の式中で、Aijはi番目のサンプルでのその成分
の波長λjでの吸光度、Ciはi番めのサンプルでのそ
の成分の濃度である。[Equation 1] In the above equation, A ij is the absorbance of the component at the wavelength λ j in the i-th sample, and C i is the concentration of the component in the i-th sample.
【0019】測定対象波長として、水に対して強い吸収
を持つ波長領域を避け、水に対して透過率の高い250
00〜5280cm−1又は、4980〜4000cm
−1の波長領域から選択する。就中、乳酸に対する好ま
しい測定波長としては、波数で表わして、6300〜5
400cm−1及び4800〜4200cm−1から選
択する。As a wavelength to be measured, a wavelength range having a strong absorption for water is avoided, and a high transmittance for water is 250.
00-5280 cm -1, or 4980-4000 cm
-1 wavelength range. Especially, the preferable measurement wavelength for lactic acid is 6300 to 5 in terms of wave number.
Selected from 400 cm -1 and 4800~4200cm -1.
【0020】[0020]
【作用】試料に光を照射し、その吸光度を測定すると
き、波長jでの透過光強度ItjはLAMBERT−B
EERの法則により、次の式で表現される。 Itj= Ioj exp(−ΣαkjCkL)… = Ioj Tj (1) ただし、Itjは波長jでの透過光強度 Iojは波長jでの入射光の強度 αkjは、k成分の波長jでの吸光係数 Ckは溶液中のk成分の濃度 k=1,2,……Kで、Kは溶液中の成分数 Tjは波長jでの透過度 Lはセル長 である。波長jでの吸光度Ajは、セルと溶液との界面
における反射を無視すると、 Aj=−logTj =−log(Itj/Ioj) =LΣ(αkjCk) (2) で表わされる。Light is irradiated to the action sample when measuring its absorbance, transmitted light intensity at wavelength j I tj has LAMBERT-B
It is expressed by the following equation according to EER's law. I tj = I oj exp (-Σα kj C k L) ... = I oj T j (1) where I tj is the transmitted light intensity at the wavelength j and I oj is the incident light intensity α kj at the wavelength j. The extinction coefficient C k of the k component at the wavelength j is the concentration of the k component in the solution k = 1, 2, ... K, where K is the number of the components in the solution T j is the transmittance at the wavelength j L is the cell length Is. The absorbance A j at the wavelength j is represented by A j = −log T j = −log (I tj / I oj ) = LΣ (α kj C k ) (2), ignoring the reflection at the interface between the cell and the solution. .
【0021】(2)式から、未知数はCk(k=1,
2,……,K)であるので、K個の独立な変数で吸光度
を測定し、連立方程式を解けば各成分の濃度を算出する
ことができる。主成分回帰分析法(PCR法)や部分最
小二乗法(PLS法)などの多変量回帰分析法を用いて
データ解析を行えば、濃度をより高精度に求めることが
できる。From equation (2), the unknowns are C k (k = 1,
2, ..., K), it is possible to calculate the concentration of each component by measuring the absorbance with K independent variables and solving the simultaneous equations. If the data analysis is performed using a multivariate regression analysis method such as a principal component regression analysis method (PCR method) or a partial least squares method (PLS method), the concentration can be obtained with higher accuracy.
【0022】多変量回帰分析法では、一度に多くの吸光
度情報を用いて回帰分析することができるので、単回帰
分析に比べて高い精度の定量分析が可能である。重回帰
分析は最も多用されているが、多数の試料が必要であ
り、各波長の吸光度どうしの相関が高い場合にはその定
量分析精度は非常に低くなる。一方、多変量回帰分析法
である主成分回帰分析法は多波長の吸光度情報を互いに
無相関な主成分に集約させることができ、さらに不必要
なノイズデータを削除することができるので、高い定量
分析精度が得られる。また部分最小二乗法は主成分の抽
出の際に試料濃度のデータも利用することができるの
で、主成分回帰分析法と同様に高い定量分析精度を得る
ことができる。In the multivariate regression analysis method, since regression analysis can be performed using a large amount of absorbance information at one time, quantitative analysis can be performed with higher accuracy than single regression analysis. The multiple regression analysis is most frequently used, but a large number of samples are required, and when the correlation between the absorbances at each wavelength is high, the accuracy of the quantitative analysis becomes very low. On the other hand, the principal component regression analysis method, which is a multivariate regression analysis method, can aggregate the multi-wavelength absorbance information into principal components that are uncorrelated with each other, and can also eliminate unnecessary noise data, thus achieving high quantification. Analytical accuracy can be obtained. Further, since the partial least squares method can also use the data of the sample concentration when extracting the main component, it is possible to obtain a high quantitative analysis accuracy as in the principal component regression analysis method.
【0023】[0023]
【実施例】図1に、この発明に用いる測定装置の概略を
示す。光源装置11により、可視及び近赤外波長領域の
光を発生し、コンピュータ16で制御された分光装置1
2によって、特定波長の光を分光する。分光した光は、
尿試料を封入したセルが設置されている尿サンプル設置
部13に導かれる。尿サンプルを透過又は拡散反射した
光を検出装置14中の検出素子で検出することによっ
て、前記特定波長に対する尿サンプル中成分の吸光度を
測定できる。検出素子の出力は、信号処理インターフェ
ース15で、デジタル値に変換し、コンピュータ16の
記憶媒体中に保存され、数値演算処理によって吸光度と
乳酸濃度との検量線が得られる。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the outline of a measuring device used in the present invention. The light source device 11 generates light in the visible and near-infrared wavelength regions, and the spectroscopic device 1 controlled by the computer 16
2, light having a specific wavelength is separated. The dispersed light is
The urine sample is guided to the urine sample installation unit 13 in which the cell enclosing the urine sample is installed. By detecting the light transmitted or diffusely reflected from the urine sample by the detection element in the detection device 14, the absorbance of the component in the urine sample with respect to the specific wavelength can be measured. The output of the detection element is converted into a digital value by the signal processing interface 15 and stored in the storage medium of the computer 16, and a calibration curve of the absorbance and the lactate concentration is obtained by the numerical calculation processing.
【0024】図1の装置で乳酸濃度の測定を行うために
は、まず尿サンプル設置部13中のセルを空のまま分光
装置12の分光波長をj=1からnまで変化させ、その
時の透過光量Ioj(j=1,2…,n)を測定する。
次に、セルに尿試料を入れ、同様に分光装置12の分光
波長をj=1からnまで変化させ、セルを通過した各波
長での透過光量強度Itj(j=1,2,…,n)を測
定する。これらIoj、Itjを基にデータ解析を行
い、各成分濃度Ck(k=1,2,…K)を求める。In order to measure the lactic acid concentration with the device shown in FIG. 1, first, the spectral wavelength of the spectroscopic device 12 is changed from j = 1 to n while leaving the cell in the urine sample setting part 13 empty, and the transmission at that time is changed. The light quantity I oj (j = 1, 2, ..., N) is measured.
Next, a urine sample is put in the cell, the spectral wavelength of the spectroscopic device 12 is similarly changed from j = 1 to n, and the transmitted light intensity I tj (j = 1, 2, ..., At each wavelength that has passed through the cell). n) is measured. Data analysis is performed based on these I oj and It j to obtain each component concentration C k (k = 1, 2, ... K).
【0025】図2は、乳酸水溶液をセルに入れて得られ
た近赤外領域の吸収スペクトルを示す。試料は濃度が1
00,200,300及び400mMの4種類の水溶液
試料である。濃度に比例して吸光度が変化しているバン
ドが随所に見られ、乳酸の吸収のスペクトルを特徴づけ
ている。それらのバンドを波数で表わすと、6300〜
5400cm−1、4800〜4200cm−1であ
る。FIG. 2 shows an absorption spectrum in the near infrared region obtained by putting an aqueous lactic acid solution into a cell. Sample has a concentration of 1
Four kinds of aqueous solution samples of 00, 200, 300 and 400 mM. Bands where the absorbance changes in proportion to the concentration are found everywhere, which characterizes the absorption spectrum of lactic acid. If these bands are represented by wave numbers, 6300-
It is 5400 cm -1 , 4800-4200 cm -1 .
【0026】特徴的な吸収波長4361.5cm−1に
おける吸光度を乳酸濃度に対してプロットして得られた
検量線が図3に示されるものである。図2の検量線の直
線性は相関係数Rで表わすと0.999967であり、
検量線として優れたものであることを示している。The calibration curve obtained by plotting the absorbance at a characteristic absorption wavelength of 4361.5 cm -1 against the lactic acid concentration is shown in FIG. The linearity of the calibration curve in FIG. 2 is 0.999967 when expressed by the correlation coefficient R,
It shows that it is excellent as a calibration curve.
【0027】図4は、図2の吸収スペクトルから吸光度
と濃度の相関係数R2を各波数について計算し図示した
ものである。多くの波数帯域で高い相関係数が得られて
おり、その相関係数の高い波数領域においてPCR法や
PLS法などの多変量解析演算を行えば、乳酸の高精度
の検量式が得られる。FIG. 4 shows the correlation coefficient R 2 between the absorbance and the concentration calculated for each wave number from the absorption spectrum of FIG. Many have high correlation coefficients in a wave number band obtained by performing the multivariate analysis operation such as PCR or PLS method at high wavenumber region the correlation coefficient, high precision calibration formula of lactic acid is obtained .
【0028】[0028]
【発明の効果】本発明では測定対象に対し可視光又は近
赤外光を照射し、測定しようとする乳酸について濃度と
吸光度との間の相関係数が高い波長を測定波長として選
択して吸光度を測定し、多変量回帰分析法により定量分
析するようにしたので、測定試料中の乳酸を定量測定で
きるとともに、試薬や試験紙などの消耗品が不要であ
り、又そのような消耗品の使用後の廃棄の問題も発生し
ない。INDUSTRIAL APPLICABILITY In the present invention, the wavelength of light having a high correlation coefficient between the concentration and the absorbance of lactic acid to be measured is selected as the measurement wavelength by irradiating the object to be measured with visible light or near-infrared light, and the absorbance is measured. Is measured and quantitatively analyzed by the multivariate regression analysis method, so that lactic acid in the measurement sample can be quantitatively measured, and consumables such as reagents and test papers are not required, and use of such consumables There is no problem of later disposal.
【図1】乳酸濃度測定装置を概略的に表わすブロック図
である。FIG. 1 is a block diagram schematically showing a lactate concentration measuring device.
【図2】乳酸水溶液の近赤外領域での吸収スペクトルを
示す図である。FIG. 2 is a diagram showing an absorption spectrum of an aqueous lactic acid solution in a near infrared region.
【図3】乳酸水溶液の吸収波数4361.5cm−1に
おける吸光度を濃度に対してプロットして得られた検量
線を示す図である。FIG. 3 is a diagram showing a calibration curve obtained by plotting the absorbance of an aqueous lactic acid solution at an absorption wave number of 4361.5 cm −1 against the concentration.
【図4】図2の吸収スペクトルから吸光度と濃度の相関
係数Rを各波数について計算し図示したものである。FIG. 4 shows the correlation coefficient R between the absorbance and the concentration calculated for each wave number from the absorption spectrum of FIG.
11 光源装置 12 分光装置 13 尿サンプル設置部 14 検出装置 15 信号処理インターフェース 16 コンピュータ 11 light source device 12 spectroscopic device 13 urine sample installation unit 14 detection device 15 signal processing interface 16 computer
Claims (4)
たり、乳酸水溶液の可視又は近赤外領域での濃度と吸光
度との間の相関係数の絶対値が0.5以上、好ましくは
0.9以上である波長領域に含まれる少なくとも一波長
を乳酸成分特有の測定波長として選択し、尿試料に対し
可視光又は近赤外光を照射し、前記選択した測定波長で
の吸光度を測定し、尿中の乳酸濃度を定量することを特
徴とする乳酸濃度測定方法。1. When measuring the concentration of lactic acid contained in urine, the absolute value of the correlation coefficient between the concentration of the aqueous lactic acid solution in the visible or near infrared region and the absorbance is 0.5 or more, preferably 0. Select at least one wavelength included in the wavelength region of .9 or more as a measurement wavelength unique to the lactic acid component, irradiate a urine sample with visible light or near infrared light, and measure the absorbance at the selected measurement wavelength. A method for measuring lactic acid concentration, which comprises quantifying the lactic acid concentration in urine.
波数で表して6300から5400cm−1、4800
から4200cm−1であることを特徴とする請求項1
に記載の乳酸濃度測定方法。2. The wavelength range for selecting the lactic acid concentration measurement wavelength is 6300 to 5400 cm −1 , 4800 in terms of wave number.
To 4200 cm −1.
The method for measuring the concentration of lactic acid according to 1.
る特定波数の光を照射する発光手段と、前記試料を透過
する光を受光し前記試料中に含まれる成分の吸光度に対
応する受光信号を出力する受光手段と、前記受光手段か
らの受光信号から吸光度を算出し乳酸濃度を定量する演
算処理手段とを備えたことを特徴とする乳酸濃度測定装
置。3. A light emitting means for irradiating a urine sample with light having a specific wave number in the visible or near-infrared region, and light absorption corresponding to the absorbance of a component contained in the sample by receiving the light transmitted through the sample. A lactate concentration measuring apparatus comprising: a light receiving unit that outputs a light receiving signal; and an arithmetic processing unit that calculates the absorbance from the light receiving signal from the light receiving unit and quantifies the lactic acid concentration.
量回帰分析法を含むことを特徴とする請求項3に記載の
乳酸濃度測定装置。4. The lactate concentration measuring apparatus according to claim 3, wherein the arithmetic processing means for quantifying the lactate concentration includes a multivariate regression analysis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17536896A JPH09318626A (en) | 1996-05-31 | 1996-05-31 | Method and device for measuring lactic acid in urine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17536896A JPH09318626A (en) | 1996-05-31 | 1996-05-31 | Method and device for measuring lactic acid in urine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09318626A true JPH09318626A (en) | 1997-12-12 |
Family
ID=15994878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17536896A Pending JPH09318626A (en) | 1996-05-31 | 1996-05-31 | Method and device for measuring lactic acid in urine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09318626A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004006336A (en) * | 2002-04-30 | 2004-01-08 | Xtreme Technologies Gmbh | Method for stabilizing radiation output in radioactive source of pulse-driven gas discharge linking type |
JP2010112887A (en) * | 2008-11-07 | 2010-05-20 | Astellas Pharma Inc | Principal component analysis method, principal component analyzer, different kind article detection device, principal component analysis program, and recording medium for recording the principal component analysis program |
JP2014119457A (en) * | 2012-12-13 | 2014-06-30 | Gwangju Inst Of Science & Technology | Quantitative analysis method for measurement target element in specimen using laser-induced plasma spectrum |
JP2018031663A (en) * | 2016-08-24 | 2018-03-01 | 学校法人東京理科大学 | Metabolite analyzing method and metabolite analyzing device |
-
1996
- 1996-05-31 JP JP17536896A patent/JPH09318626A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004006336A (en) * | 2002-04-30 | 2004-01-08 | Xtreme Technologies Gmbh | Method for stabilizing radiation output in radioactive source of pulse-driven gas discharge linking type |
JP2010112887A (en) * | 2008-11-07 | 2010-05-20 | Astellas Pharma Inc | Principal component analysis method, principal component analyzer, different kind article detection device, principal component analysis program, and recording medium for recording the principal component analysis program |
JP2014119457A (en) * | 2012-12-13 | 2014-06-30 | Gwangju Inst Of Science & Technology | Quantitative analysis method for measurement target element in specimen using laser-induced plasma spectrum |
JP2018031663A (en) * | 2016-08-24 | 2018-03-01 | 学校法人東京理科大学 | Metabolite analyzing method and metabolite analyzing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Malin et al. | Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy | |
Hall et al. | Near-infrared spectrophotometry: a new dimension in clinical chemistry | |
Budinova et al. | Application of molecular spectroscopy in the mid-infrared region to the determination of glucose and cholesterol in whole blood and in blood serum | |
EP1214579B1 (en) | Method of calibrating a spectroscopic device | |
Hoşafçı et al. | Clinical chemistry without reagents? An infrared spectroscopic technique for determination of clinically relevant constituents of body fluids | |
US6061582A (en) | Method and apparatus for non-invasive determination of physiological chemicals, particularly glucose | |
Arnold | Non-invasive glucose monitoring | |
US5772606A (en) | Method of and apparatus for measuring uric components | |
US6124134A (en) | Glucose related measurement method and apparatus | |
US8406839B2 (en) | Method and apparatus for determining blood analytes | |
US5757002A (en) | Method of and apparatus for measuring lactic acid in organism | |
US20060167348A1 (en) | Method for generating a net analyte signal calibration model and uses thereof | |
WO2000013002A3 (en) | Reagentless analysis of biological samples | |
Ren et al. | Comparison of multivariate calibration models for glucose, urea, and lactate from near-infrared and Raman spectra | |
de Almeida et al. | Estimating the concentration of urea and creatinine in the human serum of normal and dialysis patients through Raman spectroscopy | |
Ghazaryan et al. | Extended near-infrared optoacoustic spectrometry for sensing physiological concentrations of glucose | |
US6615151B1 (en) | Method for creating spectral instrument variation tolerance in calibration algorithms | |
Uwadaira et al. | Logistic regression analysis for identifying the factors affecting development of non-invasive blood glucose calibration model by near-infrared spectroscopy | |
Kuenstner et al. | Measurement of hemoglobin in unlysed blood by near-infrared spectroscopy | |
de Oliveira Neves et al. | Near infrared spectroscopy and multivariate calibration for simultaneous determination of glucose, triglycerides and high-density lipoprotein in animal plasma | |
CN104390918A (en) | Noninvasive detection system and method of diabetes and complications of diabetes | |
US20210254125A1 (en) | Method and device for estimating number of cells | |
Santos et al. | Evaluation of Three Human‐Use Glucometers for Blood Glucose Measurement in Dogs | |
JPH09318626A (en) | Method and device for measuring lactic acid in urine | |
Vályi-Nagy et al. | Application of near infrared spectroscopy to the determination of haemoglobin |