JPH09318615A - Quantitative determination method of metal ion in aqueous solution - Google Patents

Quantitative determination method of metal ion in aqueous solution

Info

Publication number
JPH09318615A
JPH09318615A JP17404996A JP17404996A JPH09318615A JP H09318615 A JPH09318615 A JP H09318615A JP 17404996 A JP17404996 A JP 17404996A JP 17404996 A JP17404996 A JP 17404996A JP H09318615 A JPH09318615 A JP H09318615A
Authority
JP
Japan
Prior art keywords
solution
dye
measured
absorbance
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17404996A
Other languages
Japanese (ja)
Inventor
Yumiko Nagaai
由美子 永合
Haruo Yoshimura
晴夫 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP17404996A priority Critical patent/JPH09318615A/en
Publication of JPH09318615A publication Critical patent/JPH09318615A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable quantitative determination of a metal ion by measuring absorbance at a wavelength in an absorption spectral band width of a coloring matter or a water soluble dye and substituting a specific equation with the measured absorbance. SOLUTION: The coloring matter or water soluble dye is either one which forms a complex at a ratio with a metal ion in a solution which is a target to be quantitatively measured and the metal ion is a free ion, which is not bonded with a different material co-existent in the solution. An absorbance Ea at wavelength (a) in the absorption spectral band width of the coloring matter or the water soluble dye is measured and an equation is substituted with the measured absorbance Ea to obtain P as a quantitative value of the metal ion, where εa1 is a molar absorption coefficient of a coloring matter, εa2 is a molar absorption coefficient of the coloring matter which has formed a complex with a metal to be measured and εa is a molar absorption coefficient of a sample solution containing the coloring matter at a wavelength (a).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶液中の金属イオ
ン、特に活性剤を含む溶液中のカルシウムイオン等のア
ルカリ土類金属イオンを定量する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for quantifying metal ions in a solution, particularly alkaline earth metal ions such as calcium ion in a solution containing an activator.

【0002】[0002]

【従来の技術】アニオン界面活性剤を主成分とする洗剤
を用いて衣料を洗濯する際には、その洗浄力は、水中の
二価金属イオン、特にカルシウムイオンに影響される。
このため、洗剤中には、洗液中のカルシウムイオンを封
鎖するビルダーを配合するなど、カルシウムイオン濃度
を低下させる工夫がされている。よって、洗液中のカル
シウムイオン濃度を知ることは、洗剤組成設計において
重要とされている。カルシウムイオン濃度を測定する方
法としては、従来、カルシウムイオン選択性電極を用い
る測定法が知られている。しかし、この方法は、界面活
性剤の共存系での測定に適さず、ビルダーの効果、すな
わちカルシウムイオン封鎖量などは、実条件とは異なる
活性剤を含まない系での測定値により推測せざるを得な
かった。また、EDTA等を用いた滴定による方法や、
色素を大過剰に加えて比色法により測定する方法も知ら
れているが、これらは溶液中の総カルシウム量(結合カ
ルシウムと非結合カルシウムの和)の情報しか得られな
い。界面活性剤共存下で非結合カルシウムイオン量を簡
単に精度よく測定する方法は知られていなかった。
2. Description of the Related Art When washing clothes with a detergent containing an anionic surfactant as a main component, the detergency thereof is affected by divalent metal ions in water, particularly calcium ions.
Therefore, the detergent has been devised to reduce the concentration of calcium ions, for example, by incorporating a builder that blocks the calcium ions in the washing liquid. Therefore, it is important to know the calcium ion concentration in the washing liquid in designing the detergent composition. As a method for measuring the calcium ion concentration, a measurement method using a calcium ion selective electrode is conventionally known. However, this method is not suitable for measurement in a system coexisting with a surfactant, and the effect of the builder, that is, the amount of sequestration of calcium ions, etc. must be estimated from the measurement value in a system containing no surfactant different from the actual conditions. Didn't get In addition, a method by titration using EDTA or the like,
Although a method in which a dye is added in a large excess and measured by a colorimetric method is also known, these can only provide information on the total amount of calcium in the solution (the sum of bound and unbound calcium). A method for easily and accurately measuring the amount of unbound calcium ions in the presence of a surfactant has not been known.

【0003】[0003]

【発明が解決しようとする課題】本発明は、溶液中の金
属イオン、特に活性剤を含む溶液中のカルシウムイオン
等のアルカリ土類金属イオンを定量するのに好適な方法
を提供する。
The present invention provides a suitable method for quantifying metal ions in solution, especially alkaline earth metal ions such as calcium ions in a solution containing an activator.

【0004】[0004]

【課題を解決するための手段】本発明は、色素または水
溶性染料を添加して溶液中の金属イオンを定量する方法
であって、色素または水溶性染料の吸収スペクトル範囲
内の波長aにおける吸光度を測定し、(1)式で表され
るPを求めることにより金属イオンを定量する。本発明
の金属イオンとは、溶液中の他の共存物質と結合してい
ないフリーのイオンを意味する。
The present invention is a method for quantifying metal ions in a solution by adding a dye or a water-soluble dye, wherein the absorbance at a wavelength a within the absorption spectrum range of the dye or the water-soluble dye. Is measured, and the metal ion is quantified by obtaining P represented by the formula (1). The metal ion of the present invention means a free ion that is not bound to other coexisting substances in the solution.

【数1】 εa1;色素のモル吸光係数 εa2;測定金属との錯体を形成した色素のモル吸光係
数 εa ;波長aにおける色素含有試料溶液のモル吸光係
[Equation 1] εa1; molar extinction coefficient of dye εa2; molar extinction coefficient of dye that forms a complex with the measurement metal εa; molar extinction coefficient of dye-containing sample solution at wavelength a

【0005】本発明で用いる色素または水溶性染料は、
溶液中の測定対象である金属と錯体を形成する色素また
は水溶性染料であり、好ましくは錯体形成安定度定数k
dと溶液中の金属濃度[M](モル/リットル)の積k
d×[M]が0.01から100、より好ましくは0.
1から10である。溶液中の総金属量は、従来の方法例
えばEDTAを用いた滴定(JISK0101工業用水
試験方法 金属のキレート滴定法)により予め測定して
知ることができる。さらに好ましくは、測定対象である
金属イオンと一定の割合で錯体を形成する色素または水
溶性染料である。これらは、金属イオンと錯体を形成し
て、金属イオン濃度が変化しても等吸収点を持つ吸収ス
ペクトルが得られ、等吸収点での吸光度を利用すること
により簡便かつ精度よく金属イオン濃度を測定すること
が可能である。たとえば、pH10.5、総カルシウム
濃度約1〜2mMあるいはそれ以下の低濃度の溶液中の
カルシウムイオンを測定する場合には、ポンタクローム
ヴァイオレット、ムレキシド、ヒドロキシナフチルブル
ー、エリオクロームブラックTなどの色素が好適に利用
できる。特に、Log kd=4.4のヒドロキシナフ
チルブルーも総カルシウム量1ミリモルのとき[Ca]
*Kd=25、0.5ミリモルのとき[Ca]*Kd=
12で、好適に用いられる。また、pH10.5におけ
るカルシウムとのLog kd=3.5であるポンタク
ロームヴァイオレットは総カルシウム濃度2ミリモルの
とき[Ca]*Kd=6.3、1ミリモルのとき[C
a]*Kd=3.2、0.5ミリモルのとき[Ca]*
Kd=1.6であり、より好ましい。用いる色素または
染料の量は、溶液中の金属濃度[M](モル/リット
ル)以下であることが望ましい。量が多いと、色素また
は染料により溶液中の成分の平衡が無視できないほどず
れるおそれがあるため、正確な定量が望めない。
The dye or water-soluble dye used in the present invention is
A dye or a water-soluble dye that forms a complex with a metal to be measured in a solution, preferably a complex formation stability constant k
The product of d and the metal concentration in the solution [M] (mol / liter) k
d × [M] is 0.01 to 100, more preferably 0.
It is from 1 to 10. The total amount of metal in the solution can be determined by a conventional method such as titration using EDTA (JIS K0101 industrial water test method, metal chelate titration method). More preferably, it is a dye or a water-soluble dye that forms a complex with the metal ion to be measured at a constant ratio. These form a complex with a metal ion to obtain an absorption spectrum having an isosbestic point even if the concentration of the metal ion changes, and the absorbance at the isosbestic point is used to easily and accurately determine the metal ion concentration. It is possible to measure. For example, when measuring calcium ions in a low-concentration solution having a pH of 10.5 and a total calcium concentration of about 1 to 2 mM or less, dyes such as Pontachrome Violet, Murexide, Hydroxynaphthyl Blue, and Eriochrome Black T are used. It can be used suitably. In particular, hydroxynaphthyl blue with Log kd = 4.4 also [Ca] when the total calcium amount is 1 mmol.
* Kd = 25, [Ca] when 0.5 mmol * Kd =
12, preferably used. Further, Pontachrome violet having a Log kd = 3.5 with calcium at pH 10.5 has a [Ca] * Kd = 6.3 when the total calcium concentration is 2 mmol and a [C] when the total calcium concentration is 1 mmol.
a] * Kd = 3.2, [Ca] * when 0.5 mmol
Kd = 1.6, which is more preferable. The amount of the pigment or dye used is preferably not more than the metal concentration [M] (mol / liter) in the solution. If the amount is too large, the dye or dye may shift the equilibrium of the components in the solution to a non-negligible level, so that accurate quantification cannot be expected.

【0006】次に、本発明の溶液中の金属イオンの定量
方法について説明する。本方法を行う前に、従来の方法
例えばEDTAを用いた滴定法により溶液中の総カルシ
ウム量[M](モル/リットル)を測定し、kd×
[M]が0.01から100、より好ましくは0.1か
ら10の範囲に入る色素または水溶性染料を決定してお
くと良い。また、本方法における一連の測定は、全て一
定の温度、pH、色素量、塩濃度で行う。なお、塩濃度
が高くなりすぎると、精度が低下するため、共存する
塩、界面活性剤等の濃度は、合計して0.1%以下が適
当である。
Next, the method for quantifying metal ions in the solution of the present invention will be described. Before performing this method, the total amount of calcium [M] (mol / liter) in the solution is measured by a conventional method, for example, a titration method using EDTA, and kd ×
It is advisable to determine a pigment or water-soluble dye whose [M] falls within the range of 0.01 to 100, more preferably 0.1 to 10. Moreover, a series of measurements in this method are all performed at a constant temperature, pH, dye amount, and salt concentration. Note that if the salt concentration becomes too high, the accuracy decreases, so the total concentration of coexisting salts, surfactants, etc. is suitably 0.1% or less.

【0007】1.定数ε0、εa1、εa2の決定 金属イオン濃度0(試料A)および、金属濃度[M]
(モル/リットル)の5倍程度以上(試料B)の溶液を
調製してそれらの吸収スペクトルを測定し、およびAと
Bで吸光度差が最大となる波長aを定め、それぞれの波
長における色素のモル吸光係数を、吸光度測定値と添加
した色素量より求める。モル吸光係数(単位:リットル
/モル)は、吸光度を色素濃度で割った値である。な
お、等吸収点を持つ場合には、等吸収点におけるモル吸
光係数を同様に求める。ここで、測定の対象となる金属
に対して色素を過剰に加えると、色素により系の平衡が
ずれて正確な測定値が得られないため、色素量は、実際
に測定する金属量より小さいことが望ましい。
[0007] 1. Determination of constants ε0, εa1, εa2 Metal ion concentration 0 (Sample A) and metal concentration [M]
A solution of about 5 times (mol / liter) or more (Sample B) is prepared and their absorption spectra are measured, and the wavelength a at which the difference in absorbance between A and B is maximized is determined, and The molar extinction coefficient is determined from the measured absorbance and the amount of dye added. The molar extinction coefficient (unit: liter / mol) is the value obtained by dividing the absorbance by the dye concentration. When it has an isosbestic point, the molar extinction coefficient at the isosbestic point is similarly obtained. Here, if too much dye is added to the metal to be measured, the equilibrium of the system will shift due to the dye and accurate measurement values will not be obtained, so the dye amount should be smaller than the actually measured metal amount. Is desirable.

【0008】2.検量線の作成 金属イオン濃度を変化させた検量線用試料4〜5点を作
成し、これらの吸収スペクトルを測定する。波長aにお
ける吸光度の値Eaから得られたモル吸光係数を(1)
式に代入し、Pを求める。色素または水溶性染料が濃度
変化における等吸収点をもつ場合には、等吸収点と波長
aの2点における吸光度の値を測定し、(2)式に各点
の吸光度を代入してPを求める。
2. Preparation of calibration curve Samples 4 to 5 for calibration curve in which the metal ion concentration is changed are prepared, and their absorption spectra are measured. The molar extinction coefficient obtained from the absorbance value Ea at the wavelength a is (1)
Substitute into the formula to find P. When the dye or water-soluble dye has an isosbestic point in the concentration change, the absorbance values at the isosbestic point and the wavelength a are measured, and the absorbance at each point is substituted into the formula (2) to obtain P. Ask.

【数2】 εa1;色素のモル吸光係数 εa2;測定金属との錯体を形成した色素のモル吸光係
数 ε0 ;等吸収点における色素のモル吸光係数 Ea ;波長Aにおける色素含有試料溶液の吸光度 E0 ;等吸収点における色素含有試料溶液の吸光度 モル吸光係数=吸光度/[M’]:M’は色素または水
溶性染料濃度 各金属イオン濃度[M]と、Pの値をプロットし、検量
線とする。
[Equation 2] εa1; molar extinction coefficient of dye εa2; molar extinction coefficient of dye forming a complex with a measurement metal ε0; molar extinction coefficient of dye at isosbestic point Ea; absorbance of dye-containing sample solution at wavelength A E0; at isosbestic point Absorbance of dye-containing sample solution Molar extinction coefficient = absorbance / [M ′]: M ′ is a dye or water-soluble dye concentration Each metal ion concentration [M] and the value of P are plotted as a calibration curve.

【0009】3.試料の測定 試料溶液についてスペクトルを測定し、2と同様にして
Pを求める。このPの値より、2で得られた検量線を用
いて、金属イオン濃度を求めることができる。
3. Measurement of sample The spectrum of the sample solution is measured, and P is determined in the same manner as 2. From this P value, the metal ion concentration can be determined using the calibration curve obtained in 2.

【発明の効果】以上の方法により、溶液中の金属イオン
量が定量できる。特に、従来の方法では測定が困難であ
った活性剤共存系でのカルシウムイオン濃度が簡便に測
定可能となった。以下、実施例によりさらに説明する。
By the above method, the amount of metal ions in the solution can be quantified. In particular, it has become possible to easily measure the calcium ion concentration in an active agent coexisting system, which was difficult to measure by the conventional method. Hereinafter, further description will be given with reference to examples.

【0010】[0010]

【実施例】【Example】

(実験1)下記の水溶液にカルシウムイオン捕捉剤NT
A、クエン酸を添加した場合の残存硬度を測定した。 炭酸ナトリウム 250ppm 塩化カルシウム 59.4ppm ポンタクロームヴァイオレット 10ppm このときのpH=10.5〜10.6、測定温度は 2
5゜Cで行った。 1.εa1、εa2、ε0の決定 定数決定のための試料A、Bを以下のように調整した。
100ミリリットルのメスフラスコに、25゜Cの純水
70ミリリットルを入れ、0.5%炭酸ナトリウム溶液
5ミリリットル、0.05%色素溶液2ミリリットルを
加えた後、標線まで水を加えた(試料A)。100ミリ
リットルのメスフラスコに、25℃の純水20ミリリッ
トルを入れ、0.5%炭酸ナトリウム溶液5ミリリット
ル、0.099%塩化カルシウム溶液60ミリリット
ル、0.05%色素溶液2ミリリットルを加えた後、標
線まで水を加えた(試料B)。A,Bの吸収スペクトル
を日立分光光度計U−3000にて測定した。スペクト
ルより、等吸収点は520nm、AとBで吸光度差が最
大となる波長は575nmであった。試料Aの575n
mの吸光度の値よりεa1を、試料Bの575nmの吸
光度の値よりεa2を、また等吸収点の吸光度の値より
ε0を求め、表1に示した。
(Experiment 1) Calcium ion scavenger NT in the following aqueous solution
The residual hardness when A and citric acid were added was measured. Sodium carbonate 250ppm Calcium chloride 59.4ppm Pontachrome violet 10ppm pH at this time = 10.5-10.6, measurement temperature is 2
Performed at 5 ° C. 1. Determination of εa1, εa2, ε0 Samples A and B for determining constants were adjusted as follows.
In a 100-mL volumetric flask, 70 mL of pure water at 25 ° C was placed, 5 mL of 0.5% sodium carbonate solution and 2 mL of 0.05% dye solution were added, and then water was added up to the marked line (Sample A). In a 100 ml volumetric flask, 20 ml of pure water at 25 ° C. was placed, and after adding 5 ml of 0.5% sodium carbonate solution, 60 ml of 0.099% calcium chloride solution and 2 ml of 0.05% dye solution, Water was added up to the marked line (Sample B). The absorption spectra of A and B were measured by Hitachi spectrophotometer U-3000. From the spectrum, the isosbestic point was 520 nm, and the wavelength at which the difference in absorbance between A and B was maximum was 575 nm. 575n of sample A
Table 1 shows εa1 determined from the absorbance value of m, εa2 determined from the absorbance value of sample B at 575 nm, and ε0 determined from the absorbance value at the isosbestic point.

【表1】 [Table 1]

【0011】2.検量線の作成 100ミリリットルのメスフラスコに、25゜Cの純水
70ミリリットルを入れ、 0.5%炭酸ナトリウム溶液 5ミリリットル 0.099%塩化カルシウム溶液 6ミリリットル 0.05%色素溶液 2ミリリットル を加えた後、標線まで水を加えた。このときの水のカル
シウムイオン濃度は0.54mMである。同様にして、
0.18mM、 0.36mMN 0.71mMのカル
シウムイオン濃度の水を調製した。これらの系のpH
は、10.6であった。これらの試料について、520
nm(等吸収点)および575nmにおける吸光度を日
立分光光度計U−3000にて測定し、(2)式により
Pをもとめ、表2に示し、カルシウム濃度とPの関係を
図1に示した。(1)式より、カルシウム濃度0では、
P=1であり、この点を通る相関係数0.9992の良
好な直線関係が得られた。
2. Preparation of calibration curve In a 100 ml volumetric flask, add 70 ml of pure water at 25 ° C, add 0.5 ml of 0.5% sodium carbonate solution 5 ml 0.099% calcium chloride solution 6 ml 0.05% dye solution 2 ml. After that, water was added up to the marked line. At this time, the calcium ion concentration of water is 0.54 mM. Similarly,
Water having a calcium ion concentration of 0.18 mM, 0.36 mM N 0.71 mM was prepared. PH of these systems
Was 10.6. 520 for these samples
Absorbance at nm (isosorption point) and 575 nm was measured by Hitachi spectrophotometer U-3000, P was obtained from the equation (2), and shown in Table 2. The relationship between calcium concentration and P is shown in FIG. From equation (1), when the calcium concentration is 0,
P = 1 and a good linear relationship with a correlation coefficient of 0.9992 passing through this point was obtained.

【表2】 [Table 2]

【図1】 FIG.

【0012】3.試料溶液の測定 100ミリリットルのメスフラスコに、25℃の純水7
0ミリリットルを入れ、0.5%炭酸ナトリウム溶液5
ミリリットル、0.099%塩化カルシウム溶液6ミリ
リットル、pH10に調整したNTA2%溶液を所定濃
度となるように加え、標線まで水を加えた。これに0.
05%ポンタクロームヴァイオレット溶液2ミリリット
ルを添加した。同様にして、NTAの代わりにクエン酸
水溶液を加えた試料溶液を調整し、両試料溶液の吸収ス
ペクトルを測定した。520nm(等吸収点)と575
nmの吸光度よりPの値を計算し、2.の検量線よりカ
ルシウムイオン濃度を求めた。NTA,クエン酸の理論
カルシウム捕捉量より計算した残存カルシウムイオン濃
度を計算し、結果を表3と図2に示した。カルシウムイ
オン理論捕捉量計算におけるpkcaは、NTA:6.
6、クエン酸:4.1の数値を用い、図2中に点線で理
論値を示した。
3. Measurement of sample solution In a 100-mL volumetric flask, add pure water 7 at 25 ° C.
Add 0 ml and add 0.5% sodium carbonate solution 5
Milliliter, 6 milliliter of 0.099% calcium chloride solution, and 2% of NTA solution adjusted to pH 10 were added to a predetermined concentration, and water was added up to the marked line. 0.
2 ml of 05% Pontachrome Violet solution was added. Similarly, a sample solution in which an aqueous citric acid solution was added instead of NTA was prepared, and the absorption spectra of both sample solutions were measured. 520nm (isosorption point) and 575
The value of P is calculated from the absorbance at nm and 2. The calcium ion concentration was determined from the calibration curve of. The residual calcium ion concentration calculated from the theoretical amount of trapped calcium of NTA and citric acid was calculated, and the results are shown in Table 3 and FIG. Pkca in the calculation of the theoretical amount of trapped calcium ions is NTA: 6.
6, citric acid: The numerical value of 4.1 was used, and the theoretical value is shown by the dotted line in FIG.

【0013】[0013]

【表3】 [Table 3]

【図2】 表3および図2より、本発明により精度よくカルシウム
イオン量が測定できたことがわかる。
[Fig. 2] From Table 3 and FIG. 2, it can be seen that the calcium ion amount could be accurately measured by the present invention.

【0014】(実験2)下記の活性剤含有水溶液にカル
シウムイオン捕捉剤NTA、クエン酸を添加した場合の
残存硬度を測定した。 ドデシルベンゼンスルホン酸ナトリウム(LAS−N
a) 200ppm 炭酸ナトリウム 250ppm 塩化カルシウム 59.4ppm ポンタクロームヴァイオレット 10ppm このときのpH=10.5、測定温度は 25℃で行っ
た。 1.εa1、εa2、ε0の決定 (実験1)の値を用いた。 2.検量線の作成 (実験1)の値を用いた。 3.試料溶液の測定 100mlのメスフラスコに、25゜Cの純水70ml
を入れ、0.5%LAS−Na 4ml、0.5%炭酸
ナトリウム溶液5ml、0.099%塩化カルシウム溶
液 6ml、pH10に調整した0.5%のNTA水溶
液2mlを加え、標線まで水を加えた。これに0.05
%ポンタクロームヴァイオレット溶液2mlを添加し
た。同様にして、NTAの代わりに同量のクエン酸水溶
液を加えた試料溶液を調整し、両試料溶液の吸収スペク
トルを測定した。520nm(等吸収点)と575nm
の吸光度よりPの値を計算し、2.の検量線よりカルシ
ウムイオン濃度を求め、結果を表4に示した。
(Experiment 2) The residual hardness when the calcium ion scavenger NTA and citric acid were added to the following aqueous solution containing an activator was measured. Sodium dodecylbenzene sulfonate (LAS-N
a) 200 ppm Sodium carbonate 250 ppm Calcium chloride 59.4 ppm Pontachrome violet 10 ppm At this time, the pH was 10.5 and the measurement temperature was 25 ° C. 1. Determination of εa1, εa2, ε0 The values of (Experiment 1) were used. 2. Preparation of calibration curve The value of (Experiment 1) was used. 3. Measurement of sample solution 70 ml of pure water at 25 ° C in a 100 ml volumetric flask
, 0.5% LAS-Na 4 ml, 0.5% sodium carbonate solution 5 ml, 0.099% calcium chloride solution 6 ml, 0.5% NTA aqueous solution 2 ml adjusted to pH 10 were added, and water was added up to the marked line. added. 0.05 for this
2 ml of a% Pontachrome Violet solution was added. Similarly, a sample solution in which the same amount of citric acid aqueous solution was added instead of NTA was prepared, and the absorption spectra of both sample solutions were measured. 520nm (isosorption point) and 575nm
Calculate the value of P from the absorbance of 2. The calcium ion concentration was determined from the calibration curve of, and the results are shown in Table 4.

【0015】[0015]

【表4】 表4より、本発明によって活性剤共存系においてもカル
シウムイオン量が測定できた。
[Table 4] From Table 4, according to the present invention, the amount of calcium ions could be measured even in the system coexisting with the active agent.

【0016】(実験3)kdの異なる色素について、カ
ルシウムイオン濃度0.36、0.54、0.71、
0.89mMで、Pとカルシウム濃度との関係を調べ
た。実験方法は、添加する色素のみ異なるが、他の方法
は、実験1と同様である。ここで、[M]kdの値は、
M=0.5mMでの計算値とし、結果を表5および図3
に示した。Pとカルシウムイオン濃度との間に良好な直
線関係があり、精度よくカルシウムイオンが測定でき
る。
(Experiment 3) Calcium ion concentrations of 0.36, 0.54, 0.71,
The relationship between P and calcium concentration was investigated at 0.89 mM. The experiment method is the same as that of Experiment 1 except that only the dye to be added is different. Here, the value of [M] kd is
The calculated value at M = 0.5 mM is shown in Table 5 and FIG.
It was shown to. There is a good linear relationship between P and the calcium ion concentration, and the calcium ion can be accurately measured.

【0017】[0017]

【表5】 [Table 5]

【図3】 [Figure 3]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】色素または水溶性染料を添加して溶液中の
金属イオンを定量する方法であって、色素または水溶性
染料の吸収スペクトル範囲内の波長aにおける吸光度E
aを測定し、(1)式で表されるPを求めることにより
金属イオンを定量することを特徴とする、水溶液中の金
属イオンの定量方法 【数1】 εa1;色素のモル吸光係数 εa2;測定金属との錯体を形成した色素のモル吸光係
数 εa ;波長aにおける色素含有試料溶液のモル吸光係
1. A method for quantifying metal ions in a solution by adding a dye or a water-soluble dye, which comprises an absorbance E at a wavelength a within the absorption spectrum of the dye or the water-soluble dye.
A method for quantifying metal ions in an aqueous solution, which comprises quantifying metal ions by measuring a and determining P represented by the formula (1). εa1; molar extinction coefficient of dye εa2; molar extinction coefficient of dye that forms a complex with the measurement metal εa; molar extinction coefficient of dye-containing sample solution at wavelength a
JP17404996A 1996-05-31 1996-05-31 Quantitative determination method of metal ion in aqueous solution Pending JPH09318615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17404996A JPH09318615A (en) 1996-05-31 1996-05-31 Quantitative determination method of metal ion in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17404996A JPH09318615A (en) 1996-05-31 1996-05-31 Quantitative determination method of metal ion in aqueous solution

Publications (1)

Publication Number Publication Date
JPH09318615A true JPH09318615A (en) 1997-12-12

Family

ID=15971735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17404996A Pending JPH09318615A (en) 1996-05-31 1996-05-31 Quantitative determination method of metal ion in aqueous solution

Country Status (1)

Country Link
JP (1) JPH09318615A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003073859A1 (en) * 2002-03-01 2005-06-23 ライオン株式会社 Disinfecting treatment method, disinfecting detergent composition and washing method
CN101813620A (en) * 2010-04-30 2010-08-25 新星化工冶金材料(深圳)有限公司 Method for measuring content of boron element contained in aluminium-titanium-boron alloy
WO2021251941A1 (en) * 2020-06-08 2021-12-16 Kimberly-Clark Worldwide, Inc. Method for determining residual carbamate compounds on an elastomeric article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003073859A1 (en) * 2002-03-01 2005-06-23 ライオン株式会社 Disinfecting treatment method, disinfecting detergent composition and washing method
JP4645795B2 (en) * 2002-03-01 2011-03-09 ライオン株式会社 Disinfectant cleaning composition and method of suppressing malodor generation
CN101813620A (en) * 2010-04-30 2010-08-25 新星化工冶金材料(深圳)有限公司 Method for measuring content of boron element contained in aluminium-titanium-boron alloy
WO2021251941A1 (en) * 2020-06-08 2021-12-16 Kimberly-Clark Worldwide, Inc. Method for determining residual carbamate compounds on an elastomeric article

Similar Documents

Publication Publication Date Title
KR101489017B1 (en) Method for determination of polymer concentration in water systems
Conant et al. A study of superacid solutions. II. A chemical investigation of the hydrogen-ion activity of acetic acid solutions
Shamsipur et al. Novel fluorimetric bulk optode membrane based on a dansylamidopropyl pendant arm derivative of 1-aza-4, 10-dithia-7-oxacyclododecane ([12] aneNS2O) for selective subnanomolar detection of Hg (II) ions
CA2806491C (en) Simultaneous determination of multiple analytes in industrial water system
KR100670743B1 (en) Hardness Indicator Composition and Method of Water Hardness Analysis
CN103926239B (en) The detection method of oxidizable pollutants in aqueous sample
Mills et al. Tuning colourimteric and fluorimetric gas sensors for carbon dioxide
Cao et al. A sensitive and rapid method for the determination of protein by the resonance Rayleigh light-scattering technique with Pyrogallol Red
Karaböcek et al. A new spectrophotometric reagent for copper: 3, 3′-(1, 3-propanediyldiimine) bis-[3-methyl-2-butanone] dioxime
CA2071206A1 (en) Reagent and methods for calcium determination
JPH09318615A (en) Quantitative determination method of metal ion in aqueous solution
IT8323028A1 (en) METHOD REACTIVE COMPOSITIONS SUITABLE FOR THE COLORIMETRIC DETERMINATION OF METALS
KR102613289B1 (en) Acetate complex and acetate quantification method
Winkler et al. The use of phenylfluorone in the presence of cetylpyridinium chloride and Triton X-100 for the spectrophotometric determination of copper (II) in blood serum
KR101346660B1 (en) Potassium ion concentration measuring method and the measuring kit using thereof
US7648839B2 (en) Metal indicator
Al-Abachi et al. Application of promethazine hydrochloride as a chromogenic reagent for the spectrophotometric determination of aniline and its substituents
JP2019535006A5 (en)
Shimoishi et al. Spectrophotometric determination of anionic surfactants in tap and river waters with 1-(10-bromodecyl)-4-(4-aminonaphthylazo)-pyrimidinium bromide
Shimoishi et al. Some N-alkyl-naphthylazo pyridinium salts as new reagents for the spectrophotometric determination of anionic surfactants
Chen et al. Spectrophotometric determination of trace anionic surfactants such as SDS and SDBS in water after preconcentration on an organic solvent-soluble membrane filter
Güray et al. Validated UV-Vis Spectrophotometric Method for the Determination of Copper using 2, 3, 4, 6/-Tetrahydroxy-3/-Sulfoazobenzene in Real Samples.
Dong et al. Simultaneous spectrophotometric determination of aluminum (III), Iron (III) and beryllium (III) in rainwater by a matrix method
Suzuki The upper limit pH in the dye-binding method for the determination of serum protein via measurements of the absorbance increase produced by protein error
Mathew et al. Third Order Derivative Spectrophotometry Determination of Mercury (II) as the Ternary Complex with Iodide and Pyronine G