JPH09318526A - Water-in-oil detector and measuring method of water-in-oil quantity - Google Patents

Water-in-oil detector and measuring method of water-in-oil quantity

Info

Publication number
JPH09318526A
JPH09318526A JP8886597A JP8886597A JPH09318526A JP H09318526 A JPH09318526 A JP H09318526A JP 8886597 A JP8886597 A JP 8886597A JP 8886597 A JP8886597 A JP 8886597A JP H09318526 A JPH09318526 A JP H09318526A
Authority
JP
Japan
Prior art keywords
oil
light
water
light source
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8886597A
Other languages
Japanese (ja)
Inventor
Kunimitsu Tamura
邦光 田村
聖記 ▲つる▼戸
Kiyonori Tsurudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP8886597A priority Critical patent/JPH09318526A/en
Publication of JPH09318526A publication Critical patent/JPH09318526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water-in-oil detector and a measuring method of water- in-oil quantity which can accurately measure the quantity of water in oil by simple constitution. SOLUTION: A water-in-oil detector is provided with a transparent hollow tube cell 1, a projecting part 2 arranged on one side of the hollow tube cell 1, and a light receiving part 3 arranged on the other side of the hollow tube cell 1, facing the projecting part 2. Oil to be measured is supplied to the hollow tube cell 1, and the quantity of water content in oil is detected by measuring the quantity of light in the light receiving part 3. The projecting part 2 has a first measuring light source 4a generating a light in the wavelength region of 1.3-1.6μm, and a second measuring light source 4b for comparison which generates a light in the wavelength region of 0.8-1.1μm. The quantity of water content in oil to be measured is determined from the difference between the absorbance of the light from the first measuring light source 4a which is caused by the oil to be measured and the absorbance of the light from the second measuring light source 4b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば油圧作動
油、電気絶縁油、冷凍機用潤滑油、溶剤、燃料及び石油
化学原料のような石油製品など、種々の油の中に含有さ
れる水分量を検知するための油中水分検知器および種々
の油の中に含有される水分量の測定方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to water contained in various oils such as hydraulic oils, electrical insulating oils, lubricating oils for refrigerators, solvents, petroleum products such as fuels and petrochemical raw materials. The present invention relates to a moisture detector in oil for detecting the amount and a method for measuring the amount of moisture contained in various oils.

【0002】[0002]

【従来の技術】例えば、油圧機器に使用する油圧作動油
は、油中に水分が含有されるとその性能が著しく劣化す
るので、常時、或は定期的に水分量の測定を行ない、所
定量以上の水分を含有するに至った場合にはその作動油
の使用を中止することが必要である。又、電気絶縁油に
関しても同様に、油中に水分が含有されるのを嫌うため
に、製油所において出荷の際、脱水剤や真空浄油機など
のような適当な手段で脱水し、その水分監視を行ってい
る。又、変電所、発電所等において使用される油入型変
圧器、油入型変成器などの電気設備においても電気設備
の予防保全上その水分監視が重要な項目となっている。
2. Description of the Related Art For example, the hydraulic fluid used in hydraulic equipment has a significantly deteriorated performance if the oil contains water. Therefore, the amount of water is constantly or periodically measured to obtain a predetermined amount. When it comes to contain the above water, it is necessary to stop using the hydraulic oil. Similarly, electrical insulating oils are also dewatered by a suitable means such as a dehydrating agent or a vacuum oil purifier at the time of shipment at a refinery in order to dislike the inclusion of moisture in the oil. Monitors moisture. Also, in electrical equipment such as oil-filled transformers and oil-filled transformers used in substations, power plants, and the like, moisture monitoring is an important item for preventive maintenance of electrical equipment.

【0003】又、最近冷蔵庫、自動車用エアコン等に使
用される潤滑油は、フロンガス規制を背景にした冷媒変
更が余儀なくされており、そのために、従来の鉱油か
ら、合成系の潤滑油であるエステルやPAG(ポリアル
キレングリコール)に変わりつつある。これら合成系潤
滑油は、鉱油より吸湿性が高く、過度に吸湿すると加水
分解或は酸化劣化を生じて潤滑性が低下し、機械の正常
な動作を妨げることが知られている。また、例えば、ジ
ェット燃料については、航空機が成層圏を飛行する際、
水分が含まれていると凍結し、燃料ラインを目詰まりさ
せることが知られている。このような理由のために、潤
滑油やその他の各種の石油製品等に含有された水分量を
検知する必要性が増加している。
[0003] In recent years, the lubricating oil used for refrigerators, air conditioners for automobiles and the like has been inevitably changed in refrigerant in view of the regulation of chlorofluorocarbons. And PAG (polyalkylene glycol). It is known that these synthetic lubricating oils have higher hygroscopicity than mineral oils, and excessive moisture absorption causes hydrolysis or oxidative deterioration, resulting in reduced lubricating properties and hindering normal operation of machines. Also, for example, for jet fuel, when an aircraft flies through the stratosphere,
It is known that when moisture is contained, it freezes and clogs the fuel line. For these reasons, there is an increasing need to detect the amount of water contained in lubricating oil and other various petroleum products.

【0004】このような油中の水分検知を行なうべく、
例えば特開平5−107182号公報には、本願添付の
図2に概略示すように、透明な中空管セル1と、中空管
セル1の片側に配置された投光部2と、中空管セル1の
他の側に投光部2と対向して配置された受光部3とを備
え、中空管セル1に測定すべき油を流動させ、受光部3
の光量を測定することにより油中の水分量を検知するこ
とのできる油中水分検知器が提案されている。
In order to detect such moisture in oil,
For example, in Japanese Patent Laid-Open No. 5-107182, as schematically shown in FIG. 2 attached to the present application, a transparent hollow tube cell 1, a light projecting section 2 arranged on one side of the hollow tube cell 1, and a hollow On the other side of the tube cell 1, there is provided a light projecting section 2 and a light receiving section 3 arranged so as to face the hollow cell 1, and the oil to be measured is caused to flow through the hollow tube cell 1, and
There has been proposed a water-in-oil detector that can detect the amount of water in oil by measuring the amount of light.

【0005】つまり、投光部2の光強度をPO 、受光部
3で受光した光強度をPとすると、 吸光度=log(PO /P) が成り立つ。PO が一定とすれば、Pは油中の水分量に
よって変わる。
That is, assuming that the light intensity of the light projecting section 2 is P O and the light intensity received by the light receiving section 3 is P, the following formula is established: Absorbance = log (P O / P). If P O is constant, P changes depending on the amount of water in the oil.

【0006】従来より、水分は、1.45μm付近の近
赤外光に特有の光の吸収を持つことが知られている。
又、上述のように、投光部2より1.45μmの近赤外
光を中空管セル1に投射し、受光部3にて中空管セル1
中を流動する油を通過した光の量を測定したとき、受光
部3にて検出された光量と油中水分量との間には相関が
あり、従って、受光部3で測定された光量から油中水分
量が求められる。
It is conventionally known that water has a light absorption characteristic of near infrared light near 1.45 μm.
Further, as described above, the light projecting section 2 projects near-infrared light of 1.45 μm onto the hollow tube cell 1, and the light receiving section 3 projects it.
When the amount of light passing through the oil flowing through the inside is measured, there is a correlation between the amount of light detected by the light receiving unit 3 and the amount of water in oil, and therefore, from the amount of light measured by the light receiving unit 3, The water content in oil is required.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、本発明
者らの研究実験の結果によると、実際に近赤外分光光度
計(NIR:Near Infra-Red Spectroscopy)で、様々な
水分量を有した油のスペクトルを採ってみると図3に示
すようになることが分かった。この時の供試油は、油圧
作動油であった。
However, according to the results of the research and experiment conducted by the present inventors, oils having various water contents in a near infrared spectrophotometer (NIR) were actually used. It was found that the spectrum shown in Fig. 3 was obtained. The sample oil used at this time was hydraulic oil.

【0008】図3のスペクトルに見られるように、水分
量が大略0%の場合と、水分量が大略5%の場合とを比
較すると、水の吸収と見られた1.45μmの吸収に
は、本来的な水の吸収に加え、エマルションによるベー
スラインの増加と油の吸収ピークとが加算されたもので
あり、従来のように、単に、投光部2より1.45μm
の近赤外光を中空管セル1に投射し、受光部3で測定さ
れた光量から油中水分量を求めたのでは正確な油中水分
量を得ることができないことが分かった。
As can be seen from the spectrum of FIG. 3, comparing the case where the water content is approximately 0% and the case where the water content is approximately 5%, the absorption of 1.45 μm, which is considered to be the absorption of water, is found. In addition to the inherent absorption of water, the increase in the baseline due to the emulsion and the absorption peak of the oil are added, and as in the conventional case, simply 1.45 μm from the light projecting unit 2.
It was found that an accurate amount of water in oil cannot be obtained by projecting the near-infrared light of No. 3 onto the hollow tube cell 1 and determining the amount of water in oil from the amount of light measured by the light receiving unit 3.

【0009】更に、図3に示すスペクトルを詳細に解析
した結果、1.45μm付近のベースラインの増加分は
他の吸収帯とほとんど同じ大きさであり、現実には例え
ば950nm(0.95μm)の吸光度をベースライン
そのものの大きさとすることにより、極めて正確に油中
の水分量を測定し得ることが分かった。
Further, as a result of detailed analysis of the spectrum shown in FIG. 3, the increase of the baseline around 1.45 μm is almost the same as other absorption bands, and in reality, for example, 950 nm (0.95 μm). It was found that the amount of water in the oil can be measured extremely accurately by setting the absorbance of to the size of the baseline itself.

【0010】本発明は、斯かる本発明者らの新規な知見
に基づきなされたものである。
The present invention has been made based on the novel findings of the present inventors.

【0011】従って、本発明の目的は、簡単な構成で、
正確に油中の水分量を測定することのできる油中水分検
知器および正確に油中の水分量を測定することのできる
油中水分量の測定方法を提供することである。
Therefore, an object of the present invention is to provide a simple structure,
An object of the present invention is to provide a moisture detector in oil that can accurately measure the moisture content in oil and a method for measuring the moisture content in oil that can accurately measure the moisture content in oil.

【0012】[0012]

【課題を解決するための手段】上記目的は本発明に係る
油中水分検知器にて達成される。要約すれば、本発明
は、透明なセルと、セルの片側に配置された投光部と、
セルの他の側に前記投光部と対向して配置された受光部
とを備え、セルに測定すべき油を供給し、受光部の光量
を測定することにより油中の水分量を検知することので
きる油中水分検知器において、投光部は、波長域が1.
3〜1.6μmの光を発する第1の測定光源と、波長域
が0.8〜1.1μmの光を発する比較用の第2の測定
光源とを有することを特徴とする油中水分検知器であ
る。好ましくは、投光部は、中心波長が1.4〜1.5
μmの光を発する第1の測定光源と、中心波長が0.9
〜1.0μmの光を発する比較用の第2の測定光源とを
有するか、更に好ましくは、第1の測定光源は中心波長
が1.45μm±0.03μmの光を発する発光ダイオ
ードであり、第2の測定光源は中心波長が0.94μm
の光を発する発光ダイオードとされる。又、前記セルは
中空管セルとされる。
The above object can be achieved by the water-in-oil detector according to the present invention. In summary, the present invention comprises a transparent cell, a floodlight disposed on one side of the cell,
On the other side of the cell, a light receiving section is arranged opposite to the light projecting section, the oil to be measured is supplied to the cell, and the light quantity of the light receiving section is measured to detect the water content in the oil. In the water-in-oil detector that can be used, the light emitting unit has a wavelength range of 1.
Moisture detection in oil, comprising a first measurement light source that emits light of 3 to 1.6 μm and a second measurement light source for comparison that emits light of wavelength range 0.8 to 1.1 μm. It is a vessel. Preferably, the light projecting section has a center wavelength of 1.4 to 1.5.
A first measurement light source that emits light of μm and a center wavelength of 0.9
A second measuring light source for comparison, which emits light of ˜1.0 μm, or more preferably, the first measuring light source is a light emitting diode which emits light having a center wavelength of 1.45 μm ± 0.03 μm, The center wavelength of the second measurement light source is 0.94 μm
It is a light emitting diode that emits light. The cell is a hollow tube cell.

【0013】本発明では、第1の測定光源は水分量に関
する情報を得るのに使用し、第2の測定光源は、前記水
分量に関する情報に含まれるベースラインの変動に関す
る情報を得るのに使用される。
In the present invention, the first measuring light source is used to obtain information on the water content, and the second measuring light source is used to obtain information on the variation of the baseline contained in the water content information. To be done.

【0014】又、上記目的は本発明に係る油中水分量の
測定方法にて達成される。要約すれば、測定すべき油
の、波長域が1.3〜1.6μmの第1の光の吸光度
と、波長域が0.8〜1.1μmの第2の光の吸光度と
の差から、前記測定すべき油中の水分量を決定すること
を特徴とする油中水分量の測定方法である。又、前記第
1の光の吸光度と第2の光の吸光度との差を、予め測定
しておいた前記測定すべき油と水分量との相関と比較す
ることにより、油中の水分量を決定することを特徴とす
る油中水分量の測定方法である。好ましくは、第1の光
の波長域が1.4〜1.5μmとされる。
The above object is also achieved by the method for measuring the water content in oil according to the present invention. In summary, the difference between the absorbance of the first light in the wavelength range of 1.3 to 1.6 μm and the absorbance of the second light in the wavelength range of 0.8 to 1.1 μm of the oil to be measured The method for measuring the water content in oil is characterized in that the water content in the oil to be measured is determined. In addition, by comparing the difference between the absorbance of the first light and the absorbance of the second light with the previously measured correlation between the oil to be measured and the water content, the water content in the oil can be determined. It is a method for measuring the water content in oil, which is characterized in that it is determined. Preferably, the wavelength range of the first light is 1.4 to 1.5 μm.

【0015】[0015]

【発明の実施の形態】以下、本発明に係る油中水分検知
器を図面に則して更に詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The water-in-oil detector according to the present invention will be described below in more detail with reference to the drawings.

【0016】図1に本発明の油中水分検知器の一実施例
を示す。本実施例では、油中水分検知器は、石英ガラス
のような透明材料で作製された中空管セル1を有し、中
空管セル1の軸線に直交する方向に投光部2と受光部3
とが対向して配置されている。中空管セル1内には測定
すべき油が供給される。
FIG. 1 shows an embodiment of the water-in-oil detector of the present invention. In this embodiment, the water-in-oil detector has a hollow tube cell 1 made of a transparent material such as quartz glass, and a light projecting section 2 and a light receiving section are provided in a direction orthogonal to the axis of the hollow tube cell 1. Part 3
And are arranged facing each other. Oil to be measured is supplied into the hollow tube cell 1.

【0017】特に、本発明に従えば、投光部2には、第
1の測定光源4aと第2の測定光源4bが設置される。
第1の測定光源4aは、水分量に関する情報を得るため
に使用する測定光源であり、一般には、波長域が1.3
〜1.6μm、好ましくは中心波長が1.4〜1.5μ
mの光源とされる。本発明によれば、油中に含まれる、
一般に、水分量が0.1%〜10%(重量)とされる水
分を検知し、測定することを目的とするものであり、
又、水分は1.45μm付近に特有の光の吸収を有する
ものであるので、第1測定光源4aの波長域が1.3〜
1.6μmの範囲外にまで拡張された場合には、他の油
中含有成分の情報までも検知する可能性が生じ、水分量
の検知精度に悪影響を及ぼすこととなり好ましくない。
水分による光の吸収が明確に現われる1.4〜1.5μ
mの波長域において測定することで精度良く検知するこ
とができる。
In particular, according to the present invention, the light projecting section 2 is provided with a first measuring light source 4a and a second measuring light source 4b.
The first measurement light source 4a is a measurement light source used to obtain information on the water content, and generally has a wavelength range of 1.3.
~ 1.6 μm, preferably with a center wavelength of 1.4-1.5 μm
m light source. According to the present invention, contained in oil,
In general, the purpose is to detect and measure water having a water content of 0.1% to 10% (by weight),
Further, since water has a characteristic light absorption around 1.45 μm, the wavelength range of the first measurement light source 4a is 1.3 to
When it is extended to outside the range of 1.6 μm, information on other components contained in oil may be detected, which adversely affects the detection accuracy of water content, which is not preferable.
1.4-1.5μ where the absorption of light due to moisture appears clearly
It is possible to detect with high accuracy by measuring in the wavelength range of m.

【0018】又、第2の測定光源4bは、詳しくは後で
説明するように、比較用の測定光源であり、前記水分量
に関する情報に含まれるベースラインの変動に関する情
報を得るのに使用するものであって、波長域が0.8〜
1.1μm、好ましくは中心波長が0.9〜1.0μm
の光源とされる。第2の測定光源4bは、第1の測定光
源4aにて得られた水分量に関する情報に含まれるベー
スライン情報を補正するものであるので、第2の測定光
源4bの波長が0.8〜1.1μmの範囲外とされた場
合には、ベースライン情報以外の情報が含まれる可能性
が生じ、これも又、水分量の検知精度に悪影響を与える
こととなり好ましくない。
The second measuring light source 4b is a measuring light source for comparison, which will be described later in detail, and is used to obtain information about the fluctuation of the baseline included in the information about the water content. Wavelength range of 0.8 ~
1.1 μm, preferably with a center wavelength of 0.9 to 1.0 μm
It is used as a light source. Since the second measurement light source 4b corrects the baseline information included in the information regarding the water content obtained by the first measurement light source 4a, the wavelength of the second measurement light source 4b is 0.8 to If the thickness is out of the range of 1.1 μm, information other than the baseline information may be included, which also adversely affects the detection accuracy of the water content, which is not preferable.

【0019】つまり、図4は潤滑油の劣化と吸光度と波
長との関係を示すが、図示するように、波長が0.7μ
mより小さい領域では油の劣化と共に吸光度が大きく変
動することが分かる。従って、0.7μmより小さい波
長領域の波長を第2の測定光源用波長として使用するの
は不適であり、0.8μm以上の波長を使用するのが好
ましい。しかしながら、1.1μmより大きい波長領域
では、図示するように、或る油中成分に対して特異な吸
光度を示す波長が存在しており、比較用の第2の測定光
源用波長としては、1.1μm以下の波長を使用するの
が好ましい。
That is, FIG. 4 shows the relationship between the deterioration of the lubricating oil, the absorbance and the wavelength. As shown, the wavelength is 0.7 μm.
It can be seen that in a region smaller than m, the absorbance changes greatly as the oil deteriorates. Therefore, it is not suitable to use a wavelength in the wavelength region smaller than 0.7 μm as the wavelength for the second measurement light source, and it is preferable to use a wavelength of 0.8 μm or more. However, in the wavelength region larger than 1.1 μm, as shown in the figure, there is a wavelength exhibiting a specific absorbance for a certain oil component, and the wavelength for the second measurement light source for comparison is 1 It is preferred to use wavelengths below 0.1 μm.

【0020】上述のように事実上、波長域が0.8〜
1.1μmの吸光度をベースラインそのものの大きさと
することにより、極めて正確な油中の水分量を測定し得
るものであり、そのために第2の測定光源4bは、その
中心波長が0.9〜1.0μmとされる。
As described above, the wavelength range is practically 0.8 to
By setting the absorbance of 1.1 μm to the size of the baseline itself, the water content in the oil can be measured extremely accurately. Therefore, the center wavelength of the second measurement light source 4b is 0.9 to It is set to 1.0 μm.

【0021】本実施例では、第1の測定光源4aは中心
波長が1.45μm±0.03μm、最大光量値の50
%での波長域が1.4〜1.5μmとされる発光ダイオ
ード(LED)(株式会社島津製作所製:商品名HK−
9321)を使用し、第2の比較用測定光源4bは、中
心波長が0.94μm、最大光量値の50%での波長域
が0.92〜0.96μmとされる発光ダイオード(L
ED)(株式会社東芝製:商品名TLN110)を使用
することにより好結果を得ることができた。
In this embodiment, the first measuring light source 4a has a center wavelength of 1.45 μm ± 0.03 μm and a maximum light amount value of 50.
% Light emitting diode (LED) (made by Shimadzu Corporation: trade name HK-)
9321), the second comparative measurement light source 4b is a light emitting diode (L) having a center wavelength of 0.94 μm and a wavelength range of 0.92 to 0.96 μm at 50% of the maximum light amount value.
ED) (manufactured by Toshiba Corporation: trade name TLN110) was used to obtain good results.

【0022】又、本実施例では、これら第1及び第2の
測定光源4a、4bはそれぞれ定電流電源5a、5bに
接続され、一定の強度の光を発光するようにした。
Further, in the present embodiment, the first and second measuring light sources 4a and 4b are connected to the constant current power sources 5a and 5b, respectively, so as to emit light of a constant intensity.

【0023】図3は、上述したように、近赤外分光光度
計で採った種々の水分量の水を含んだ油圧作動油のスペ
クトルである。
FIG. 3 is a spectrum of the hydraulic oil containing water of various water contents, which is taken by the near infrared spectrophotometer as described above.

【0024】図3のスペクトルから理解されるように、
油中水分量が63.6ppm、即ち、実質的に水分量が
0%のスペクトルと、水分量が5.04%、即ち、大略
5%とを比較すると、水の吸収と見られた1.45μm
の吸収(AT )には本来的な水の吸収に加え、ベースラ
インBLの増加と油の吸収ピークAH とが加算されたも
のである。又、1.45μm付近のベースラインの増加
分は他の吸収帯とほとんど同じ大きさであり、現実には
例えば950nm(0.95μm)の含水油の吸光度を
ベースラインそのものの大きさとすることができる。
As can be seen from the spectrum of FIG.
When the spectrum of the water content in oil of 63.6 ppm, that is, the water content of substantially 0% was compared with the water content of 5.04%, that is, about 5%, it was found that the water absorption was 1. 45 μm
The absorption (A T ) of A is obtained by adding the increase of the baseline BL and the absorption peak A H of oil in addition to the original absorption of water. Also, the increase in the baseline around 1.45 μm is almost the same size as other absorption bands, and in reality, for example, the absorbance of hydrous oil at 950 nm (0.95 μm) can be set to the size of the baseline itself. it can.

【0025】そこで、図3に示すように、それぞれの吸
収位置の吸光度をAW 、AT 、AH、ABL、AB とする
と、つまり、 AW :1.45μmにおける真の水の吸光度、 AT :含水油の1.45μmにおける吸光度、 AH :水分量0%の油の1.45μmにおける吸光度、 ABL:950nmにおける含水油の吸光度、 AB :950nmにおける水分量0%の油の吸光度、 とすると、吸光度の定義から理論的に次の式が成り立
つ。 AW =AT −(AH −ABL+AB ) (1) AW =βw (2) ここで、wは油中水分濃度(即ち、油中水分量)であ
り、βは系に固有な定数である。
Therefore, as shown in FIG. 3, assuming that the absorbance at each absorption position is A W , A T , A H , A BL , and A B , that is, the absorbance of true water at A W : 1.45 μm. , a T: absorbance at 1.45μm of hydrous oil, a H: absorbance at 1.45μm moisture content 0% oil, a BL: absorbance of water oil in 950nm, a B: water at 950nm content 0% oil Absorbance of, and the following equation theoretically holds from the definition of absorbance. A W = A T − (A H −A BL + A B ) (1) A W = βw (2) Here, w is the water concentration in oil (that is, the amount of water in oil), and β is unique to the system. Is a constant.

【0026】ベースラインBLの吸光度に相当するABL
が何故に生じたかについては明らかではないが、本発明
者らは次のように考える。
A BL corresponding to the absorbance of the baseline BL
Although it is not clear why this occurred, the present inventors consider as follows.

【0027】つまり、この系のように水分が油への溶解
度以上に混合している場合、水は微小粒子となってW/
O(water−in−oil型)エマルション、即
ち、油中に水が分散したエマルションの形態で分散して
いることが観察の結果確認されている。レーザ回折式粒
度分布測定装置による実測の結果水の粒子は5〜50μ
mに分布していた。これらの粒子に光が当たると、中心
部は直線的に透過するが周辺部は界面での反射や屈折を
起こし、見掛け上の散乱を起こすと考えられ、この現象
により光損失が生じ、ベースラインの上昇が起こるもの
と考えられる。ベースラインの上昇に波長依存性が殆ど
ないのは恐らく波長に対して水粒子の粒子径が大きく波
長の影響が小さいためと考えられる。
That is, when the water content is higher than the solubility in oil as in this system, the water becomes fine particles and W /
It has been confirmed as a result of observation that the dispersion is carried out in the form of an O (water-in-oil type) emulsion, that is, an emulsion in which water is dispersed in oil. As a result of actual measurement by a laser diffraction type particle size distribution measuring device, water particles are 5 to 50 μm.
It was distributed in m. When these particles are exposed to light, the central part is linearly transmitted, but the peripheral part is considered to cause reflection and refraction at the interface, causing apparent scattering.This phenomenon causes optical loss and causes baseline loss. Is expected to occur. The reason why there is almost no wavelength dependency in the rise of the baseline is probably because the particle size of the water particles is large and the influence of the wavelength is small with respect to the wavelength.

【0028】次に、本発明者らは、図1に示すような構
成の水分検知器を使用し、透明中空管セル1中に、試料
として油圧作動油、潤滑油などの3種類の油(A、B、
C)を流動させ、そして、投光部2の第1の測定光源4
aの発光ダイオードから中心波長1.45μm±0.0
3μm、最大光量値の50%での波長域が1.4〜1.
5μmの光を、又、第2の比較用測定光源4bの発光ダ
イオードから中心波長0.94μm、最大光量値の50
%での波長域が0.92〜0.96μmの光を中空管セ
ル1に投射し、受光部2の光検出器としてのフォトダイ
オード(PD)6a、6bにて、それぞれ中空管セル1
中を流動する試料を通過した光の量を測定した。そし
て、油中水分量(wt%)と吸光度差(AW )とを求め
た。その結果をグラフにしたのが図5である。図5か
ら、油中水分量(wt%)と吸光度差(AW )とは直線
的な相関があることが分かる。つまり、試料油を測定
し、吸光度差(AW )を求めれば、予め知られている図
5に示すような相関図、又は上記式(1)或は(2)に
示す式に基づいて、その時の油中水分量を容易に且つ正
確に求めることができる。
Next, the inventors of the present invention used a moisture detector having a structure as shown in FIG. 1 and used three types of oil such as hydraulic oil and lubricating oil as samples in the transparent hollow tube cell 1. (A, B,
C) is made to flow, and the first measuring light source 4 of the light projecting unit 2 is
The center wavelength from the light emitting diode of a is 1.45 μm ± 0.0
The wavelength range at 3 μm and 50% of the maximum light intensity value is 1.4 to 1.
The light of 5 μm is emitted from the light emitting diode of the second comparative measurement light source 4b with the center wavelength of 0.94 μm and the maximum light intensity value of 50.
% Light having a wavelength range of 0.92 to 0.96 μm is projected onto the hollow tube cell 1, and the photodiodes (PD) 6a and 6b as the photodetectors of the light receiving section 2 respectively receive the hollow tube cell. 1
The amount of light that passed through the flowing sample was measured. Then, the water content in oil (wt%) and the absorbance difference (A W ) were obtained. The result is shown in the graph of FIG. From FIG. 5, it can be seen that there is a linear correlation between the water content in oil (wt%) and the absorbance difference (A W ). That is, if the sample oil is measured and the difference in absorbance (A W ) is determined, based on the previously known correlation diagram shown in FIG. 5 or the equation shown in the above equation (1) or (2), The water content in the oil at that time can be easily and accurately determined.

【0029】更に、本発明の油中水分検知器は、例え
ば、図6に示すような構成にて、自動的に油中の水分量
をディスプレー装置にて表示するか或はプリンタにて印
字して出力することができる。
Further, the water-in-oil detector of the present invention has a structure as shown in FIG. 6, for example, which automatically displays the amount of water in oil on a display device or prints it on a printer. Can be output.

【0030】つまり、油中水分検知器は、受光部3、即
ち、フォトダイオード6a、6bで受光した光量を電気
信号に変換する電子回路を有する。この電子回路として
は、本出願人が提案した特開平4−324328号公報
に開示されるような、受光部3で検出した光量を周波数
変換する電圧検出回路21(21a、21b)を好適に
用いることができる。この電圧検出回路21について図
6を参照して簡単に説明する。
That is, the water-in-oil detector has an electronic circuit for converting the amount of light received by the light receiving section 3, that is, the photodiodes 6a and 6b into an electric signal. As the electronic circuit, a voltage detection circuit 21 (21a, 21b) for frequency-converting the amount of light detected by the light receiving unit 3 as disclosed in JP-A-4-324328 proposed by the present applicant is preferably used. be able to. The voltage detection circuit 21 will be briefly described with reference to FIG.

【0031】図6は、この電圧検出回路21の基本構成
を示すブロック図である。本実施例では、受光部3の光
検出器としてのフォトダイオード6a、6bと直列にコ
ンデンサC(Ca、Cb)を接続し、入射する光の光量
に比例してフォトダイオード6a、6bから出力される
電流IPa、IPbをコンデンサCa、Cbに蓄積し、電圧
Ca、VCbに変換する。この充電電圧VCa、VCbを電圧
検出回路21(21a、21b)で検出して予め設定さ
れた基準電圧と比較し、充電電圧が基準電圧に達する
と、電圧検出回路21a、21bは出力信号レベルを変
化させる。この信号レベルの変化により、コンデンサC
a、Cbに蓄積された電荷を放電させ、再びこのコンデ
ンサCにフォトダイオードPDからの出力電流IP の蓄
積を開始させる。このようにして、電圧検出回路21
a、21bからは、受光部が受光した光強度に応じた周
波数信号が出力される。
FIG. 6 is a block diagram showing the basic configuration of the voltage detection circuit 21. In this embodiment, the capacitors C (Ca, Cb) are connected in series with the photodiodes 6a, 6b as the photodetectors of the light receiving section 3 and are output from the photodiodes 6a, 6b in proportion to the amount of incident light. The accumulated currents I Pa and I Pb are stored in the capacitors Ca and Cb and converted into voltages V Ca and V Cb . The charging voltages V Ca and V Cb are detected by the voltage detection circuit 21 (21a and 21b) and compared with a preset reference voltage. When the charging voltage reaches the reference voltage, the voltage detection circuits 21a and 21b output signals. Change the level. Due to this change in signal level, the capacitor C
The electric charges accumulated in a and Cb are discharged, and the capacitor C is caused to start accumulating the output current I P from the photodiode PD again. In this way, the voltage detection circuit 21
Frequency signals corresponding to the light intensity received by the light receiving unit are output from a and 21b.

【0032】このようにして光量に応じて変換された電
圧検出回路21からの各周波数信号は、演算計測手段2
2にて上記式(1)、(2)などにて示される演算式に
基づいて演算処理され、油中水分量に応じたパルス数に
変換される。演算計測手段22からのこの出力パルス
は、表示手段23へと送信され、油中水分量として、デ
ィスプレー装置にて表示されるか、或はプリンタにて印
字して出力される。所望に応じて、表示手段23には警
報装置を備え、油中水分量が規定量となった時、警報を
発するように構成することも可能である。
The respective frequency signals from the voltage detection circuit 21 thus converted according to the light quantity are calculated and measured by the calculation and measurement means 2.
At 2, the arithmetic processing is performed based on the arithmetic expressions shown in the above equations (1) and (2), and converted into the number of pulses according to the amount of water in oil. This output pulse from the calculation and measurement means 22 is transmitted to the display means 23 and displayed as the water content in oil on the display device or printed out by the printer and output. If desired, the display means 23 may be provided with an alarm device so as to issue an alarm when the amount of water in oil reaches a specified amount.

【0033】図7及び図8には、本発明の他の実施例で
あるポータブルタイプの油中水分検知器の構成が示され
る。この実施例によれば、油中水分検知器は、検出部1
00と本体部200とからなり、検出部100は一対の
細長のロッド100A、100Bを備えており、その長
さは用途に応じて任意に設定し得る。例えば1〜2mな
どとすることもできる。又、ロッド100A、100B
の先端部にはそれぞれセンサヘッド101A、101B
が設けられている。一方のセンサヘッド101Aは、石
英ガラスのような透明材料で作製された中空管セル1a
が配置され、この中空管セル1aの軸線に直交する方向
にLEDのような第1の測定光源4aを有した投光部
と、フォトダイオードのような光検出器6aを有した受
光部とが対向して配置されている。又、他方のセンサヘ
ッド101Bには、同じく、石英ガラスのような透明材
料で作製された中空管セル1bが配置され、この中空管
セル1bの軸線に直交する方向にLEDのような第2の
測定光源4bを有した投光部と、フォトダイオードのよ
うな光検出器6bを有した受光部とが対向して配置され
ている。本実施例の油中水分検知器は、そのセンサヘッ
ド101A、101Bを油中に浸漬することにより、油
が各中空管セル1a、1bの中へと供給される。
7 and 8 show the construction of a portable type moisture-in-oil detector which is another embodiment of the present invention. According to this embodiment, the water-in-oil detector includes the detection unit 1
00 and the main body 200, the detection unit 100 includes a pair of elongated rods 100A and 100B, the length of which can be arbitrarily set according to the application. For example, it may be 1 to 2 m. Also, rods 100A, 100B
The sensor heads 101A and 101B are respectively attached to the tips of the
Is provided. One of the sensor heads 101A is a hollow tube cell 1a made of a transparent material such as quartz glass.
And a light receiving section having a first measuring light source 4a such as an LED in a direction orthogonal to the axis of the hollow tube cell 1a, and a light receiving section having a photodetector 6a such as a photodiode. Are arranged facing each other. In addition, the other sensor head 101B is also provided with a hollow tube cell 1b made of a transparent material such as quartz glass, and the first tube such as an LED is arranged in a direction orthogonal to the axis of the hollow tube cell 1b. A light projecting unit having two measuring light sources 4b and a light receiving unit having a photodetector 6b such as a photodiode are arranged to face each other. In the water-in-oil detector of this embodiment, the sensor heads 101A and 101B are immersed in the oil to supply the oil into the hollow tube cells 1a and 1b.

【0034】本体部200には、図6にて説明したよう
な電圧検出回路21(21a、21b)、演算計測手段
22、表示手段23、その他の電子回路部品が配置され
ており、電源スイッチ201を操作することにより、表
示手段23としてのディスプレー装置の窓202に、油
中水分量が表示される。
The main body 200 is provided with the voltage detection circuit 21 (21a, 21b) as described with reference to FIG. 6, the arithmetic and measurement means 22, the display means 23, and other electronic circuit parts, and the power switch 201. By operating the, the amount of water in oil is displayed on the window 202 of the display device as the display means 23.

【0035】本発明に使用する上記各実施例における中
空管セル1は、投光部からの特定波長帯の近赤外光、即
ち、1.45μm及び0.95μmの光線を通過させ得
るものであれば、任意の材料を使用し得るが、上述した
石英ガラスの他に、FEP(四弗化エチレン−六弗化プ
ロピレン共重合樹脂)のような上記近赤外光に対して極
めて透過性の良い(ガラスと同程度)フッ素樹脂などに
て作製することができる。中空管セル1としては、外径
2〜10mm、内径1〜8mmの円形中空管が好適であ
る。
The hollow tube cell 1 in each of the above-mentioned embodiments used in the present invention is capable of passing near-infrared light of a specific wavelength band from the light projecting portion, that is, light rays of 1.45 μm and 0.95 μm. Any material may be used as long as it is extremely transparent to the near infrared light such as FEP (tetrafluoroethylene-hexafluoropropylene copolymer resin) other than the above-mentioned quartz glass. It can be made of a good fluororesin (about the same as glass). As the hollow tube cell 1, a circular hollow tube having an outer diameter of 2 to 10 mm and an inner diameter of 1 to 8 mm is suitable.

【0036】なお、上記実施例では中空管セルを用いた
が、本発明のセルは中空管セルに限定されるものではな
く、透明又は半透明平行板、赤外分析用ガラスセル、赤
外分析用透明プラスチックセルなどのセルも使用するこ
とができる。
Although a hollow tube cell was used in the above embodiment, the cell of the present invention is not limited to a hollow tube cell, and a transparent or semitransparent parallel plate, an infrared analysis glass cell, and a red cell are used. Cells such as transparent plastic cells for external analysis can also be used.

【0037】[0037]

【発明の効果】以上説明したように、本発明の油中水分
検知器は、透明なセルと、セルの片側に配置された投光
部と、セルの他の側に前記投光部と対向して配置された
受光部とを備え、セルに測定すべき油を供給し、受光部
の光量を測定することにより油中の水分量を検知するこ
とのできる油中水分検知器において、投光部は、波長域
が1.3〜1.6μmの光を発する第1の測定光源と、
波長域が0.85〜1.1μmの光を発する比較用の第
2の測定光源とを有する構成とされ、特に、第1の測定
光源は水分量に関する情報を得るのに使用し、第2の測
定光源は、前記水分量に関する情報に含まれるベースラ
インの変動に関する情報を得るのに使用して油中水分量
を測定するようにしたので、簡単な構成で、正確に油中
の水分量を測定することができるという効果を奏し得
る。
As described above, the water-in-oil detector of the present invention has a transparent cell, a light projecting section arranged on one side of the cell, and the light projecting section facing the other side of the cell. In the oil moisture detector, which is equipped with a light receiving section that is placed in the cell, supplies the oil to be measured to the cell and measures the light quantity of the light receiving section to detect the water content in the oil. The section includes a first measurement light source that emits light having a wavelength range of 1.3 to 1.6 μm,
A second measuring light source for comparison, which emits light having a wavelength range of 0.85 to 1.1 μm, is provided. In particular, the first measuring light source is used to obtain information regarding the water content, and the second measuring light source is used. The measurement light source of is used to measure the water content in the oil used to obtain the information about the fluctuation of the baseline included in the information about the water content, so that the water content in the oil can be accurately measured with a simple configuration. Can be measured.

【0038】また、本発明の油中水分量の測定方法は、
測定すべき油の、波長域が1.3〜1.6μmの第1の
光の吸光度と、波長域が0.8〜1.1μmの第2の光
の吸光度との差から、前記測定すべき油中の水分量を決
定する方法とされ、特に、予め測定しておいた前記測定
すべき油と水分量との相関と比較することにより、油中
の水分量を決定するようにしたので、簡単に、正確に油
中の水分量を測定することができるという効果を奏し得
る。
The method for measuring the water content in oil of the present invention is as follows:
From the difference between the absorbance of the first light in the wavelength range of 1.3 to 1.6 μm and the absorbance of the second light in the wavelength range of 0.8 to 1.1 μm of the oil to be measured, the measurement is performed. It is a method of determining the water content in the oil to be determined, and in particular, the water content in the oil is determined by comparison with the correlation between the oil to be measured and the water content that has been measured in advance. Therefore, it is possible to easily and accurately measure the water content in the oil.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の油中水分検知器の一実施例の概略構成
を示す図である。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of a water-in-oil detector of the present invention.

【図2】従来の水分検知器の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a conventional moisture detector.

【図3】近赤外分光光度計で採った種々の水分量の水を
含んだ油圧作動油のスペクトル図である。
FIG. 3 is a spectrum diagram of hydraulic oil containing water having various water contents, which is taken by a near infrared spectrophotometer.

【図4】油の劣化と吸光度と波長との関係を示す図であ
る。
FIG. 4 is a diagram showing the relationship between oil deterioration, absorbance and wavelength.

【図5】本発明の油中水分検知器にて得られる油中水分
量と吸光度差との相関を示す図である。
FIG. 5 is a diagram showing the correlation between the amount of water in oil and the absorbance difference obtained by the water-in-oil detector of the present invention.

【図6】本発明の油中水分検知器の電子回路構成の一実
施例を示すブロック図である。
FIG. 6 is a block diagram showing an embodiment of an electronic circuit configuration of the water-in-oil detector of the present invention.

【図7】本発明の油中水分検知器の他の実施例の概略構
成を示す正面図である。
FIG. 7 is a front view showing a schematic configuration of another embodiment of the water-in-oil detector of the present invention.

【図8】図6の油中水分検知器の側面図である。8 is a side view of the water-in-oil detector of FIG.

【符号の説明】[Explanation of symbols]

1 セル 2 投光部 3 受光部 4a 第1の測定光源 4b 第2の測定光源 6(6a、6b) 光検出器 21 電圧検出回路 22 演算計測手段 23 表示手段 DESCRIPTION OF SYMBOLS 1 cell 2 light emitting part 3 light receiving part 4a first measurement light source 4b second measurement light source 6 (6a, 6b) photodetector 21 voltage detection circuit 22 arithmetic and measurement means 23 display means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 透明なセルと、セルの片側に配置された
投光部と、セルの他の側に前記投光部と対向して配置さ
れた受光部とを備え、セルに測定すべき油を供給し、受
光部の光量を測定することにより油中の水分量を検知す
ることのできる油中水分検知器において、投光部は、波
長域が1.3〜1.6μmの光を発する第1の測定光源
と、波長域が0.8〜1.1μmの光を発する比較用の
第2の測定光源とを有することを特徴とする油中水分検
知器。
1. A cell comprising a transparent cell, a light projecting section arranged on one side of the cell, and a light receiving section arranged on the other side of the cell so as to face the light projecting section, to be measured on the cell. In a moisture detector in oil capable of detecting the amount of water in oil by supplying the oil and measuring the amount of light in the light receiving unit, the light emitting unit emits light in the wavelength range of 1.3 to 1.6 μm. A water-in-oil detector comprising: a first measurement light source that emits light; and a second measurement light source for comparison that emits light having a wavelength range of 0.8 to 1.1 μm.
【請求項2】 投光部は、中心波長が1.4〜1.5μ
mの光を発する第1の測定光源と、中心波長が0.9〜
1.0μmの光を発する比較用の第2の測定光源とを有
することを特徴とする請求項1の油中水分検知器。
2. The projection unit has a center wavelength of 1.4 to 1.5 μm.
A first measurement light source that emits m light and a center wavelength of 0.9 to
The water-in-oil detector according to claim 1, further comprising a second measurement light source for comparison, which emits light of 1.0 μm.
【請求項3】 第1の測定光源は、中心波長が1.45
μm±0.03μmの光を発する発光ダイオードであ
り、第2の測定光源は、中心波長が0.94μmの光を
発する発光ダイオードである請求項1の油中水分検知
器。
3. The first measurement light source has a center wavelength of 1.45.
The water-in-oil detector according to claim 1, which is a light emitting diode that emits light of μm ± 0.03 μm, and the second measurement light source is a light emitting diode that emits light having a center wavelength of 0.94 μm.
【請求項4】 第1の測定光源は水分量に関する情報を
得るのに使用し、第2の測定光源は、前記水分量に関す
る情報に含まれるベースラインの変動に関する情報を得
るのに使用する請求項1、2又は3の油中水分検知器。
4. A first measuring light source is used to obtain information about water content, and a second measuring light source is used to obtain information about baseline fluctuations included in the information about water content. Item 1, 2 or 3 water-in-oil detector.
【請求項5】 セルが中空管セルであることを特徴とす
る請求項1、2、3又は4の油中水分検知器。
5. The water-in-oil detector according to claim 1, wherein the cell is a hollow tube cell.
【請求項6】 測定すべき油の、波長域が1.3〜1.
6μmの第1の光の吸光度と、波長域が0.8〜1.1
μmの第2の光の吸光度との差から、前記測定すべき油
中の水分量を決定することを特徴とする油中水分量の測
定方法。
6. The wavelength range of the oil to be measured is 1.3-1.
Absorbance of 6 μm of first light and wavelength range of 0.8 to 1.1
A method for measuring the amount of water in oil, wherein the amount of water in the oil to be measured is determined from the difference from the absorbance of the second light of μm.
【請求項7】 測定すべき油の、波長域が1.3〜1.
6μmの第1の光の吸光度と、波長域が0.8〜1.1
μmの第2の光の吸光度との差を測定し、予め測定して
おいた前記測定すべき油と水分量との相関と比較するこ
とにより、前記測定すべき油中の水分量を決定すること
を特徴とする請求項6の油中水分量の測定方法。
7. The wavelength range of the oil to be measured is 1.3-1.
Absorbance of 6 μm of first light and wavelength range of 0.8 to 1.1
The amount of water in the oil to be measured is determined by measuring the difference from the absorbance of the second light of μm and comparing the difference with the previously measured correlation between the oil and water to be measured. The method for measuring the water content in oil according to claim 6, wherein
【請求項8】 第1の光の波長域が1.4〜1.5μm
であることを特徴とする請求項6又は7の油中水分量の
測定方法。
8. The wavelength range of the first light is 1.4 to 1.5 μm.
The method for measuring the water content in oil according to claim 6 or 7.
JP8886597A 1996-03-29 1997-03-24 Water-in-oil detector and measuring method of water-in-oil quantity Pending JPH09318526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8886597A JPH09318526A (en) 1996-03-29 1997-03-24 Water-in-oil detector and measuring method of water-in-oil quantity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-103354 1996-03-29
JP10335496 1996-03-29
JP8886597A JPH09318526A (en) 1996-03-29 1997-03-24 Water-in-oil detector and measuring method of water-in-oil quantity

Publications (1)

Publication Number Publication Date
JPH09318526A true JPH09318526A (en) 1997-12-12

Family

ID=26430204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8886597A Pending JPH09318526A (en) 1996-03-29 1997-03-24 Water-in-oil detector and measuring method of water-in-oil quantity

Country Status (1)

Country Link
JP (1) JPH09318526A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264795A (en) * 1998-03-19 1999-09-28 Sanyo Electric Co Ltd Moisture sensing device for object to be inspected
JPH11291895A (en) * 1998-04-09 1999-10-26 Honda Motor Co Ltd System for administrating brake fluid boiling point
JP2003515707A (en) * 1999-11-30 2003-05-07 マーレ フィルタージステーメ ゲゼルシャフト ミット ベシュレンクテル ハフツング Oil systems, especially hydraulic or lubricating oil systems
GB2423817A (en) * 2005-02-24 2006-09-06 Weatherford Lamb Multi-channel infrared optical phase fraction meter
WO2008091849A1 (en) * 2007-01-22 2008-07-31 Weatherford/Lamb, Inc. Water detection and 3-phase fraction measurement systems
JP2010513878A (en) * 2006-12-18 2010-04-30 エアバス フランス On-line sensor for monitoring chemical contamination in hydraulic fluid
CN109187426A (en) * 2018-08-30 2019-01-11 四川莱威盛世科技有限公司 A kind of water content in oil measuring instrument and measurement method based on infra-red sepectrometry
JP2019203799A (en) * 2018-05-23 2019-11-28 国立大学法人鳥取大学 Submersible pump and monitoring system for the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264795A (en) * 1998-03-19 1999-09-28 Sanyo Electric Co Ltd Moisture sensing device for object to be inspected
JPH11291895A (en) * 1998-04-09 1999-10-26 Honda Motor Co Ltd System for administrating brake fluid boiling point
JP2003515707A (en) * 1999-11-30 2003-05-07 マーレ フィルタージステーメ ゲゼルシャフト ミット ベシュレンクテル ハフツング Oil systems, especially hydraulic or lubricating oil systems
US8274041B2 (en) 2005-02-24 2012-09-25 Weatherford/Lamb, Inc. Water detection and 3-phase fraction measurement systems
US8436309B2 (en) 2005-02-24 2013-05-07 Weatherford/Lamb, Inc. Multi-channel infrared optical phase fraction meter
US8569686B2 (en) 2005-02-24 2013-10-29 Weatherford/Lamb, Inc. Multi-channel infrared optical phase fraction meter
GB2423817B (en) * 2005-02-24 2009-07-29 Weatherford Lamb Multi-channel infrared optical phase fraction meter
US7233001B2 (en) 2005-02-24 2007-06-19 Weatherford/Lamb, Inc. Multi-channel infrared optical phase fraction meter
US7834312B2 (en) 2005-02-24 2010-11-16 Weatherford/Lamb, Inc. Water detection and 3-phase fraction measurement systems
US8461519B2 (en) 2005-02-24 2013-06-11 Weatherford/Lamb, Inc. Water detection and 3-phase fraction measurement systems
US8039793B2 (en) 2005-02-24 2011-10-18 Weatherford/Lamb, Inc. Water detection and 3-phase fraction measurement systems
GB2423817A (en) * 2005-02-24 2006-09-06 Weatherford Lamb Multi-channel infrared optical phase fraction meter
JP2010513878A (en) * 2006-12-18 2010-04-30 エアバス フランス On-line sensor for monitoring chemical contamination in hydraulic fluid
GB2458592A (en) * 2007-01-22 2009-09-30 Weatherford Lamb Water detection and 3-phase fraction measurement systems
GB2458592B (en) * 2007-01-22 2011-06-22 Weatherford Lamb Water detection and 3-phase fraction measurement systems
WO2008091849A1 (en) * 2007-01-22 2008-07-31 Weatherford/Lamb, Inc. Water detection and 3-phase fraction measurement systems
JP2019203799A (en) * 2018-05-23 2019-11-28 国立大学法人鳥取大学 Submersible pump and monitoring system for the same
CN109187426A (en) * 2018-08-30 2019-01-11 四川莱威盛世科技有限公司 A kind of water content in oil measuring instrument and measurement method based on infra-red sepectrometry

Similar Documents

Publication Publication Date Title
CN106525742B (en) Gas concentration monitoring method, apparatus and system
US20050088646A1 (en) Apparatus for measuring oil oxidation using fluorescent light reflected from oil
CN101517399B (en) Method and device for monitoring the condition of a medium
US4201914A (en) Electrical instrument to detect the presence of liquid and method of operating the same
US20090257064A1 (en) Optical Absorption Spectrometer and Method for Measuring Concentration of a Substance
US4118625A (en) Nephelometer having pulsed energy source
SE453017B (en) SET AND DEVICE FOR DETERMINING PARAMETERS FOR GASFUL SUBSTANCES PRESENT IN THE BURNING PROCESSES AND OTHER PROCESSES AT HIGH TEMPERATURE
WO2015038217A1 (en) Fiber optic gas monitoring system
FI80341C (en) FOERFARANDE OCH ANORDNING FOER BESTAEMNING AV MALD CELLULOSAMASSAS KONSISTENS.
EP2694948B1 (en) Analyzer instrument and methods for operating same
JPH09318526A (en) Water-in-oil detector and measuring method of water-in-oil quantity
US5640245A (en) Spectroscopic method with double modulation
Johnston Gas monitors employing infrared LEDs
US7166843B2 (en) Technique for detecting ethylene oxide in air
US20140036257A1 (en) Analyzer Instrument And Methods For Operating Same
US5077480A (en) Transmissometer having solid state light source
GB2215038A (en) Improvements relating to optical sensing arrangements
JPH1137936A (en) Liquid concentration detector
EP0462755A1 (en) Detecting the presence of a substance in a fluid
JP2895330B2 (en) Gamma ray measuring device
Hyvarinen et al. Rugged multiwavelength NIR and IR analyzers for industrial process measurements
US5796481A (en) Suspended particle concentration monitor
Mabbitt et al. Methane and carbon dioxide detection using LED sources
GB2578921A (en) Fluid analysis system
US6333507B1 (en) System for measuring concentration of chemical composition of fluid