JPH09318457A - Method and apparatus for measurement of temperature of high-temperature object in fume atmosphere - Google Patents

Method and apparatus for measurement of temperature of high-temperature object in fume atmosphere

Info

Publication number
JPH09318457A
JPH09318457A JP8153332A JP15333296A JPH09318457A JP H09318457 A JPH09318457 A JP H09318457A JP 8153332 A JP8153332 A JP 8153332A JP 15333296 A JP15333296 A JP 15333296A JP H09318457 A JPH09318457 A JP H09318457A
Authority
JP
Japan
Prior art keywords
temperature
infrared camera
light receiving
fume
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8153332A
Other languages
Japanese (ja)
Inventor
Koichiro Kanefuji
▲紘▼一郎 金藤
Koichi Sugimoto
浩一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8153332A priority Critical patent/JPH09318457A/en
Publication of JPH09318457A publication Critical patent/JPH09318457A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure the temperature of a high-temperature object continuously and precisely by a method wherein the visual field of an infrared camera directed to the high-temperature object in a fume atmosphere is divided, the light receiving energy of respective divided parts is found and the temperature of the divided parts whose light receiving energy is high is computed and displayed. SOLUTION: An auxiliary electrode is inserted into a furnace near a slug discharge port, and a cover 1 is attached so as to surround the discharge port. A lens tube 22 is passed through the cover 1, and an infrared camera 2 takes a picture of a molten slug A which flows to the visual field and flows down from the slug discharge port. At the lens tube 22, a cooling-water passage is formed at the outside, and a purge gas passage is formed at the inside in order to prevent a lens 21 from being cooled and fume from being stuck to the tip part of the tube 22. The molten slug A is photographed by the infrared camera 2, a circular visual field D in a diameter of about 100mm is set on its image face so as to be divided into mesh shapes in a total of about 100 pieces, the light receiving energy of divided parts is found by a computing device 3 via a light receiving part 24, and only the divided parts whose light receiving energy is high are displayed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はヒューム雰囲気中に
おける高温物体温度(表面温度)の測定方法及び装置に
関する。溶解炉を用いて金属スクラップを溶解処理する
場合、或は溶融炉を用いて都市ごみ焼却残渣を溶融処理
する場合等においては、炉の安全運転を確保し、その処
理目的を達成するために、金属スクラップや都市ごみ焼
却残渣等から飛散或は輝発したヒューム雰囲気中で生成
する溶融物の温度を継続的且つ正確に測定することが肝
要である。本発明は、上記のようなヒューム雰囲気中に
おける高温物体温度を継続的且つ正確に測定することが
できる方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring a high temperature object surface (surface temperature) in a fume atmosphere. In the case of melting and processing metal scrap using a melting furnace, or in the case of melting and processing municipal waste incineration residues using a melting furnace, in order to ensure safe operation of the furnace and to achieve its processing purpose, It is important to continuously and accurately measure the temperature of the melt generated in the fume atmosphere scattered or radiated from metal scrap, municipal waste incineration residue, and the like. The present invention relates to a method and an apparatus capable of continuously and accurately measuring the temperature of a high temperature object in the above-described fume atmosphere.

【0002】[0002]

【従来の技術】例えば溶融炉を用いて都市ごみ焼却残渣
を溶融処理する場合、炉内に溶融スラグが生成し、この
溶融スラグを炉のスラグ排出口から排出する。炉内には
都市ごみ焼却残渣から飛散或は輝発した微細なヒューム
が充満し、このヒュームは炉のスラグ排出口からも吹き
出す。かかるヒューム雰囲気中においては、溶融スラグ
の温度を通常の放射温度計では測定できない。そこで従
来は、炉内に生成する或は炉のスラグ排出口から排出す
る溶融スラグ中に消耗型熱電対を間欠的に差し込み、そ
の温度を間欠的に測定して、これに基づいて溶融炉の運
転条件を制御しているのが実情である。ところが、この
ような従来法では、溶融スラグの温度を間欠的にしか測
定できないため、種々の問題を生じる。溶融炉に投入す
る都市ごみ焼却残渣の性状や実体量は絶えず変動する
が、溶融スラグの温度を間欠的にしか測定しない従来法
では、溶融炉の運転条件をこのような変動に充分追従さ
せることができず、そのため炉のスラグ排出口から未溶
融物が排出したり、或は溶融炉への投入エネルギ不足に
よって炉内や炉のスラグ排出口に溶融スラグが渋滞した
り、逆に溶融炉への投入エネルギ過剰によって炉壁を溶
損したりする等、種々の問題を生じるのである。
2. Description of the Related Art For example, when melting an incineration residue of municipal solid waste by using a melting furnace, molten slag is produced in the furnace and the molten slag is discharged from a slag discharge port of the furnace. The inside of the furnace is filled with fine fumes scattered or radiated from the incineration residue of municipal waste, and the fumes are also blown out from the slag discharge port of the furnace. In such a fume atmosphere, the temperature of the molten slag cannot be measured by a normal radiation thermometer. Therefore, conventionally, a consumable thermocouple is intermittently inserted into the molten slag generated in the furnace or discharged from the slag discharge port of the furnace, the temperature is intermittently measured, and the temperature of the melting furnace is measured based on this. The reality is that the operating conditions are controlled. However, such a conventional method causes various problems because the temperature of the molten slag can be measured only intermittently. Although the properties and substantive amount of the municipal solid waste incineration residue that is input to the melting furnace are constantly changing, the conventional method that measures the temperature of the molten slag only intermittently is to make the operating conditions of the melting furnace sufficiently follow such fluctuations. Therefore, unmelted matter is discharged from the slag discharge port of the furnace, or the molten slag is congested inside the furnace or at the slag discharge port of the furnace due to insufficient energy input to the melting furnace, and conversely to the melting furnace. There are various problems such as melting and damage of the furnace wall due to excess input energy.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来法では、ヒューム雰囲気中における高
温物体温度を間欠的にしか測定できない点である。
The problem to be solved by the present invention is that the conventional method can only intermittently measure the temperature of a high temperature object in a fume atmosphere.

【0004】[0004]

【課題を解決するための手段】しかして本発明は、ヒュ
ーム雰囲気中の高温物体に向けた赤外線カメラの視野を
区割りして、各区割り部毎に受光エネルギを求め、受光
エネルギの高い区割り部のみの温度を演算表示すること
を特徴とするヒューム雰囲気中における高温物体温度の
測定方法に係る。また本発明は、水冷却式及び/又はガ
ス冷却式のレンズチューブを有する赤外線カメラと、こ
の赤外線カメラの受光部に接続された演算装置と、この
演算装置に接続された温度表示部とを備え、ヒューム雰
囲気中の高温物体に向けた赤外線カメラの視野を区割り
して、各区割り部毎に受光エネルギを求め、受光エネル
ギの高い区割り部のみの温度を演算表示するようにして
成ることを特徴とするヒューム雰囲気中における高温物
体温度の測定装置に係る。
SUMMARY OF THE INVENTION The present invention, however, divides the field of view of an infrared camera toward a high temperature object in a fume atmosphere, obtains received light energy for each divided portion, and only the divided portion having high received light energy. The present invention relates to a method for measuring the temperature of a high temperature object in a fume atmosphere, characterized in that the temperature of the object is calculated and displayed. Further, the present invention comprises an infrared camera having a water-cooled and / or gas-cooled lens tube, an arithmetic unit connected to a light receiving unit of the infrared camera, and a temperature display unit connected to the arithmetic unit. , The field of view of the infrared camera directed to a high temperature object in a fume atmosphere is divided, the received light energy is obtained for each divided portion, and the temperature of only the divided portion having a high received energy is calculated and displayed. The present invention relates to an apparatus for measuring a high temperature object temperature in a fume atmosphere.

【0005】本発明に係る測定方法では、赤外線カメラ
を用いる。0.4〜0.8μm程度の波長域の可視光に
感度を有する通常のカメラでは、可視光が高温物体の回
りの前述したようなヒュームにより吸収或は散乱されて
しまうため、高温物体を識別できないが、可視光よりも
波長域の長い赤外線に感度を有する赤外線カメラであれ
ば、かかる赤外線はヒュームに吸収或は散乱されずに透
過できるため、高温物体を識別できるからである。
An infrared camera is used in the measuring method according to the present invention. In a normal camera that is sensitive to visible light in the wavelength range of 0.4 to 0.8 μm, visible light is absorbed or scattered by the fumes around the high-temperature object, so it can identify high-temperature objects. This is because it is not possible, but with an infrared camera having sensitivity to infrared rays having a wavelength range longer than visible light, the infrared rays can be transmitted without being absorbed or scattered by the fumes, so that a high temperature object can be identified.

【0006】赤外線カメラはその受光素子が1.0〜
2.0μmの波長域(近赤外線領域)に高感度を有する
ものが好ましい。前述したような高温物体の回りのヒュ
ームは1μm以下の粒径のものが多く、また通常は12
00〜1600℃程度の温度範囲となる高温物体から放
射される電磁波は2.0μm以下の波長域を有するた
め、かかるヒュームに吸収されることなく高温物体から
放射される電磁波(近赤外線)を高感度で受光すること
ができるからである。また赤外線カメラはその受光素子
とレンズとの間に可視光カットフィルタを有するものが
好ましい。金属スクラップを溶解したり、或は都市ごみ
焼却残渣を溶融するための高温アークに起因する所謂ハ
レーションを防止することができるからである。更に赤
外線カメラは水冷却式及び/又はガス冷却式のレンズチ
ューブを有するものが好ましい。高温雰囲気から赤外線
カメラのレンズを保護することができるからである。
In the infrared camera, the light receiving element is 1.0 to
Those having high sensitivity in the wavelength region of 2.0 μm (near infrared region) are preferable. Most of the fumes around a high-temperature object as described above have a particle size of 1 μm or less, and usually 12
Electromagnetic waves radiated from a high-temperature object in the temperature range of about 0 to 1600 ° C have a wavelength range of 2.0 μm or less, so electromagnetic waves (near infrared rays) radiated from a high-temperature object are not absorbed by such fumes and are high. This is because light can be received with sensitivity. Further, the infrared camera preferably has a visible light cut filter between the light receiving element and the lens. This is because it is possible to prevent so-called halation caused by a high-temperature arc for melting the metal scrap or melting the municipal waste incineration residue. Furthermore, the infrared camera preferably has a water-cooled and / or gas-cooled lens tube. This is because the lens of the infrared camera can be protected from the high temperature atmosphere.

【0007】本発明に係る測定方法では、ヒューム雰囲
気中の高温物体に向けた赤外線カメラの視野を区割りし
て、各区割り部毎に受光エネルギを求め、受光エネルギ
の高い区割り部のみの温度を演算表示する。例えば赤外
線カメラの画像面に直径100mm程度の円形視野を設定
し、この円形視野を合計100個程度のメッシュ状に区
割りして、区割りした部分毎に受光エネルギを求め、そ
のなかから受光エネルギの高い部分についてのみその温
度を演算表示するのである。
In the measuring method according to the present invention, the field of view of the infrared camera directed to a high temperature object in a fume atmosphere is divided, the received light energy is obtained for each divided portion, and the temperature of only the divided portion having high received energy is calculated. indicate. For example, a circular visual field with a diameter of about 100 mm is set on the image plane of an infrared camera, and the circular visual field is divided into a total of about 100 meshes, and the received light energy is obtained for each divided portion. The temperature of only the part is calculated and displayed.

【0008】ヒューム雰囲気中における高温物体とし
て、都市ごみ焼却残渣を溶融処理する場合の、溶融炉の
スラグ排出口から排出される溶融スラグを例に挙げる
と、排出時における溶融スラグはその流出位置や流下位
置が左右及び上下に揺れる。また溶融スラグの一部が冷
却固化し、その固化物が流出乃至流下途中の溶融スラグ
の両側を挟むように存在したり、或は流出乃至流下途中
の溶融スラグ表面を部分的に覆うように存在する。この
ような実情の下においても、赤外線カメラの画像面に一
定の視野を設定することにより、その流出位置や流下位
置が揺れる溶融スラグを確実にとらえることができ、ま
た各区割り部のうちで受光エネルギの高い区割り部のみ
の温度を演算表示することにより、溶融スラグそれ自体
の温度を正確に測定することができる。そしていうまで
もなく、かくして赤外線カメラにより溶融スラグそれ自
体を常時監視するのであるから、溶融スラグそれ自体の
温度を継続的に測定することができる。
As an example of the molten slag discharged from the slag discharge port of the melting furnace when melting municipal waste incineration residue as a high-temperature object in a fume atmosphere, the molten slag at the time of discharge is The downflow position sways left and right and up and down. Further, a part of the molten slag is cooled and solidified, and the solidified product exists so as to sandwich both sides of the molten slag that is flowing or flowing, or partially covers the surface of the molten slag that is flowing or flowing. To do. Even under such circumstances, by setting a certain field of view on the image surface of the infrared camera, it is possible to reliably catch the molten slag whose outflow position or downflow position fluctuates, and to receive light within each division. The temperature of the molten slag itself can be accurately measured by calculating and displaying the temperature of only the section having high energy. And, needless to say, since the molten slag itself is constantly monitored by the infrared camera, the temperature of the molten slag itself can be continuously measured.

【0009】ヒューム雰囲気中の高温物体に向けた赤外
線カメラの視野を区割りして、各区割り部毎に受光エネ
ルギを求め、受光エネルギの高い区割り部のみの温度を
演算表示するに際しては、各区割り部毎に受光エネルギ
を一定時間積分してその積分値を求め、積分値の高い区
割り部のみの温度を演算表示するのが好ましく、或は各
区割り部毎に受光エネルギの経時変化を求め、一定時間
継続して受光エネルギの高い区割り部のみの温度を演算
表示するのが好ましい。
When dividing the field of view of the infrared camera toward a high temperature object in a fume atmosphere to obtain the received light energy for each divided portion and calculating and displaying the temperature of only the divided portion having high received energy, each divided portion is calculated. It is preferable to integrate the received light energy for each fixed time to obtain the integrated value, and calculate and display the temperature of only the section where the integrated value is high. It is preferable to continuously calculate and display the temperature of only the section where the received light energy is high.

【0010】ヒューム雰囲気中における高温物体とし
て、都市ごみ焼却残渣を溶融処理する場合の、溶融炉の
スラグ排出口から排出される溶融スラグを例に挙げる
と、溶融スラグと共に未溶融物が排出される場合があ
り、また赤外線カメラでとらえた側の溶融スラグ表面が
その冷却固化物によって一時的に覆われる場合もある。
このような場合、単に各区割り部のうちで受光エネルギ
の高い区割り部についてその温度を演算表示するだけで
あると、演算表示した温度が一時的に大きく変動し、結
局は溶融炉の運転条件の制御を混乱させる。このような
場合でも、前述したように受光エネルギを一定時間積分
し、或は受光エネルギの経時的変化を求めることによ
り、溶融スラグそれ自体の温度を正確に測定でき、した
がって上記のような混乱を回避することができる。
[0010] As a high-temperature object in a fume atmosphere, in the case where molten slag discharged from a slag discharge port of a melting furnace in the case of melting and treating municipal waste incineration residue is taken as an example, unmelted matter is discharged together with the molten slag. In some cases, the surface of the molten slag captured by the infrared camera may be temporarily covered with the cooled solidified product.
In such a case, if the temperature of a section having a high received energy is simply calculated and displayed among the sections, the calculated and displayed temperature fluctuates greatly temporarily, and eventually the operating conditions of the melting furnace are changed. Confuse control. Even in such a case, the temperature of the molten slag itself can be accurately measured by integrating the received light energy for a certain period of time as described above, or by obtaining the change over time of the received light energy. It can be avoided.

【0011】本発明に係る測定装置は、水冷式又は空冷
式のレンズチューブを有する赤外線カメラと、この赤外
線カメラの受光部に接続された演算装置と、この演算装
置に接続された温度表示部とを備えている。受光部は1
個又は複数個の受光素子を有しており、また演算装置
は、赤外線カメラの視野を区割りする画像処理機能と、
各区割り部毎に受光エネルギを求め、受光エネルギの低
い区割り部は除外して、受光エネルギの高い区割り部の
みの温度をその受光エネルギから演算する演算処理機能
とを有している。
A measuring device according to the present invention includes an infrared camera having a water-cooled or air-cooled lens tube, a calculation device connected to a light receiving part of the infrared camera, and a temperature display part connected to the calculation device. Is equipped with. 1 light receiving part
It has an individual or a plurality of light receiving elements, and the arithmetic unit has an image processing function for dividing the field of view of the infrared camera,
It has an arithmetic processing function of calculating the received light energy for each divided portion, excluding the divided portion having low received energy, and calculating the temperature of only the divided portion having high received energy from the received light energy.

【0012】前述したように、受光部を形成する受光素
子は、1.0〜2.0μmの波長域に高感度を有する受
光素子、例えばPbS或はGe製の受光素子が好まし
く、また演算装置は各区割り部毎に受光エネルギを一定
時間積分してその積分値を求める機能、或は各区割り部
毎に受光エネルギの経時変化を求める機能を有するもの
が好ましい。受光エネルギの高い区割り部の温度表示
は、受光エネルギの高い各区割り部毎に温度を表示して
もよいし、受光エネルギの高い各区割り部の温度の最高
値或は平均値を表示してもよい。
As described above, the light receiving element forming the light receiving portion is preferably a light receiving element having a high sensitivity in the wavelength range of 1.0 to 2.0 μm, for example, a light receiving element made of PbS or Ge. Is preferably one having a function of integrating the received light energy for each divided portion for a certain period of time to obtain the integrated value, or a function of obtaining the temporal change of the received light energy for each divided portion. For the temperature display of the section where the received light energy is high, the temperature may be displayed for each section where the received light energy is high, or the maximum value or the average value of the temperature of the section where the received light energy is high may be displayed. Good.

【0013】[0013]

【発明の実施の形態】図1は本発明に係る測定装置の実
施形態を略示する縦断面図である。1は図示しないスラ
グ排出口のカバー、2は赤外線カメラ、3は演算装置、
4は温度表示部である。赤外線カメラ2は、直列に配設
された合計3個のレンズ21、レンズ21を囲んで保護
する水冷及び空冷式のレンズチューブ22、レンズチュ
ーブ22に取付けられたケーシング23、ケーシング2
3に収納された受光部24、レンズ21と受光部24と
の間に取付けられた可視光カットフィルタ25とを備え
ている。
1 is a longitudinal sectional view schematically showing an embodiment of a measuring apparatus according to the present invention. 1 is a cover for a slag outlet not shown, 2 is an infrared camera, 3 is a computing device,
4 is a temperature display part. The infrared camera 2 includes a total of three lenses 21 arranged in series, a water-cooled and air-cooled lens tube 22 surrounding and protecting the lens 21, a casing 23 attached to the lens tube 22, and a casing 2.
3, a visible light cut filter 25 attached between the lens 21 and the light receiving portion 24.

【0014】図示しない溶融炉は、炉本体と、炉本体に
被着された炉蓋と、炉蓋から炉内へ挿入された主電極と
を備え、炉本体の側壁下部にスラグ排出口が開設されて
おり、スラグ排出口近くの炉内には補助電極が挿入され
ていてスラグ排出口を囲むようにカバー1が取付けられ
ている。そしてカバー1にレンズチューブ22が貫挿さ
れており、赤外線カメラ2がその視野にスラグ排出口か
ら流出及び流下する溶融スラグをとらえるようになって
いる。この場合のレンズチューブ22は外側に冷却水の
通路が形成され、また内側にパージガスの通路が形成さ
れたもので、パージガスはレンズ21をガス冷却すると
共に、レンズチューブ22の先端部にヒュームが付着す
るのを防止するようになっている。
The melting furnace (not shown) comprises a furnace body, a furnace lid attached to the furnace body, and a main electrode inserted into the furnace from the furnace lid, and a slag discharge port is opened at the bottom of the side wall of the furnace body. The auxiliary electrode is inserted in the furnace near the slag discharge port, and the cover 1 is attached so as to surround the slag discharge port. A lens tube 22 is inserted through the cover 1, so that the infrared camera 2 can catch the molten slag flowing out and flowing down from the slag discharge port in its field of view. In this case, the lens tube 22 has a cooling water passage formed on the outside and a purge gas passage formed on the inside. The purge gas cools the lens 21 and fumes adhere to the tip of the lens tube 22. It is designed to prevent you from doing so.

【0015】演算装置3は、赤外線カメラ2の受光部2
4に接続されており、赤外線カメラ2の視野を区割りす
る画像処理機能と、各区割り部毎に受光エネルギを求
め、受光エネルギの低い区割り部は除外して、受光エネ
ルギの高い区割り部のみの温度をその受光エネルギから
演算する演算処理機能とを有している。そして温度表示
部4は、演算装置3に接続されており、上記のように演
算処理された受光エネルギの高い区割り部の温度を表示
するようになっている。
The arithmetic unit 3 includes a light receiving section 2 of the infrared camera 2.
4, the image processing function for dividing the field of view of the infrared camera 2 and the received light energy for each divided portion are excluded, the divided portion with low received energy is excluded, and the temperature of the divided portion with high received energy is excluded. Has a calculation processing function of calculating from the received light energy. The temperature display unit 4 is connected to the arithmetic unit 3 and displays the temperature of the section having a high received light energy calculated as described above.

【0016】図2は本発明に係る測定方法の実施形態を
略示する想定図、図3は図2の部分拡大図である。図示
しない溶融炉の炉本体の側壁下部に開設されたスラグ排
出口11から都市ごみ焼却残渣を溶融処理したときに生
成する溶融スラグAが流出及び流下している。スラグ排
出口11の近くの炉内には補助電極12が挿入されてお
り、流出及び流下途中の溶融スラグAの両側には溶融ス
ラグAの冷却固化物B,Cがつらら様に垂れ下がってい
る。
FIG. 2 is a schematic view showing an embodiment of the measuring method according to the present invention, and FIG. 3 is a partially enlarged view of FIG. Molten slag A produced when the municipal solid waste incineration residue is melted and discharged flows out and flows down from a slag discharge port 11 opened at a lower portion of a side wall of a furnace body of a melting furnace (not shown). An auxiliary electrode 12 is inserted in the furnace near the slag discharge port 11, and cooling solidified products B and C of the molten slag A hang down like an icicle on both sides of the molten slag A during the outflow and the downflow.

【0017】図1について前述したような測定装置を用
い、上記のような溶融スラグAの流出及び流下状況を監
視する場合、流出及び流下途中の溶融スラグAを赤外線
カメラ2でとらえ、その画像面に直径100mm程度の円
形視野Dを設定し、この円形視野Dを図3に示すように
合計100個程度のメッシュ状に区割りして、区割りし
た部分毎にその受光エネルギを受光部24を介して演算
装置3で求め、かくして求めた受光エネルギのなかで受
光エネルギの低い区割り部を除外し、受光エネルギの高
い区割り部(図3では流出及び流下途中の溶融スラグA
に相当する点付け部)のみの温度を演算装置3を介して
温度表示部4に演算表示する。
When the outflow and downflow conditions of the molten slag A as described above are monitored by using the measuring apparatus as described above with reference to FIG. 1, the infrared scam 2 captures the molten slag A in the middle of the outflow and downflow, and its image plane is displayed. A circular field of view D having a diameter of about 100 mm is set in this area, and this circular field of view D is divided into a total of about 100 meshes as shown in FIG. Of the received energies thus obtained by the arithmetic unit 3, the divided parts with low received energy are excluded, and the divided parts with high received energy (in FIG. 3, molten slag A flowing out and flowing down)
The temperature of only the scoring part corresponding to (1) is calculated and displayed on the temperature display part 4 via the calculation device 3.

【0018】受光部3として複数個の受光素子の配設体
を用いる場合には、各区割り部の受光エネルギを各区割
り部に相当する受光素子毎に求めることもできるが、受
光部3として1個の受光素子を用いる場合には、この1
個の受光素子を各区割り部へ光学的に走査することによ
って求めることができる。例えば図3においては、1段
目の左側から右側へと各区割り部を走査した後、次に2
段目の右側から左側へと各区割り部を走査するという手
順で全区割り部を走査し、各区割り部の受光エネルギを
求める。そして温度表示は、受光エネルギの高い区割り
部毎にその温度を数値又はグラフで表示することもでき
るが、受光エネルギの高い区割り部のなかでも最も受光
エネルギの高い区割り部のみの温度を表示することがで
き、また受光エネルギの高い区割り部の各温度の平均値
を表示することもできる。
When a plurality of light receiving element arrangements are used as the light receiving section 3, the light receiving energy of each dividing section can be calculated for each light receiving element corresponding to each dividing section. When using one light receiving element,
It can be obtained by optically scanning the individual light receiving elements to each of the divisions. For example, in FIG. 3, after scanning each section from the left side to the right side of the first stage,
All the divisions are scanned by the procedure of scanning each division from the right side to the left side of the step, and the received light energy of each division is obtained. The temperature can be displayed as a numerical value or a graph for each section of high received energy, but the temperature of only the section of highest received energy among the sections of high received energy must be displayed. It is also possible to display the average value of each temperature of the section where the received light energy is high.

【0019】[0019]

【発明の効果】既に明らかなように、以上説明した本発
明には、ヒューム雰囲気中における高温物体の温度を継
続的且つ正確に測定できるという効果がある。
As is apparent from the above, the present invention described above has an effect that the temperature of a high temperature object in a fume atmosphere can be continuously and accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る測定装置の実施形態を略示する縦
断面図。
FIG. 1 is a vertical sectional view schematically showing an embodiment of a measuring device according to the present invention.

【図2】本発明に係る測定方法の実施形態を略示する想
定図。
FIG. 2 is an assumed view schematically showing an embodiment of a measuring method according to the present invention.

【図3】図2の部分拡大図。FIG. 3 is a partially enlarged view of FIG.

【符号の説明】[Explanation of symbols]

1・・・カバー、11・・・スラグ排出口、12・・・
補助電極、2・・・赤外線カメラ、21・・・レンズ、
22・・・レンズチューブ、23・・・ケーシング、2
4・・・受光部、25・・・可視光カットフィルタ、3
・・・演算装置、4・・・温度表示部、A・・・溶融ス
ラグ、D・・・視野
1 ... Cover, 11 ... Slag outlet, 12 ...
Auxiliary electrode, 2 ... infrared camera, 21 ... lens,
22 ... Lens tube, 23 ... Casing, 2
4 ... Light receiving part, 25 ... Visible light cut filter, 3
... Computing device, 4 ... Temperature display, A ... Molten slag, D ... Field of view

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ヒューム雰囲気中の高温物体に向けた赤
外線カメラの視野を区割りして、各区割り部毎に受光エ
ネルギを求め、受光エネルギの高い区割り部のみの温度
を演算表示することを特徴とするヒューム雰囲気中にお
ける高温物体温度の測定方法。
1. A field of view of an infrared camera directed to a high-temperature object in a fume atmosphere is divided, the received light energy is obtained for each divided portion, and the temperature of only the divided portion having high received energy is calculated and displayed. Method for measuring the temperature of a high temperature object in a fume atmosphere.
【請求項2】 赤外線カメラが水冷却式及び/又はガス
冷却式のレンズチューブを有するものである請求項1記
載のヒューム雰囲気中における高温物体温度の測定方
法。
2. The method for measuring the temperature of a high temperature object in a fume atmosphere according to claim 1, wherein the infrared camera has a water-cooled and / or gas-cooled lens tube.
【請求項3】 赤外線カメラがその受光素子が1.0〜
2.0μmの波長域に高感度を有するものである請求項
1又は2記載のヒューム雰囲気中における高温物体温度
の測定方法。
3. The infrared camera has a light receiving element of 1.0 to
The method for measuring a high temperature object temperature in a fume atmosphere according to claim 1 or 2, which has a high sensitivity in a wavelength range of 2.0 µm.
【請求項4】 各区割り部毎に受光エネルギを一定時間
積分してその積分値を求め、積分値の高い区割り部のみ
の温度を演算表示する請求項1、2又は3記載のヒュー
ム雰囲気中における高温物体温度の測定方法。
4. The fume atmosphere according to claim 1, 2 or 3, wherein the received light energy is integrated for each divisional portion for a certain period of time to obtain an integrated value, and the temperature of only the divisional portion having a high integral value is calculated and displayed. How to measure the temperature of high temperature objects.
【請求項5】 各区割り部毎に受光エネルギの経時変化
を求め、一定時間継続して受光エネルギの高い区割り部
のみの温度を演算表示する請求項1、2又は3記載のヒ
ューム雰囲気中における高温物体温度の測定方法。
5. A high temperature in a fume atmosphere according to claim 1, 2 or 3, wherein a temporal change in received light energy is obtained for each divided portion, and the temperature of only the divided portion having a high received energy is calculated and displayed continuously for a certain period of time. How to measure body temperature.
【請求項6】 水冷却式及び/又はガス冷却式のレンズ
チューブを有する赤外線カメラと、この赤外線カメラの
受光部に接続された演算装置と、この演算装置に接続さ
れた温度表示部とを備え、ヒューム雰囲気中の高温物体
に向けた赤外線カメラの視野を区割りして、各区割り部
毎に受光エネルギを求め、受光エネルギの高い区割り部
のみの温度を演算表示するようにして成ることを特徴と
するヒューム雰囲気中における高温物体温度の測定装
置。
6. An infrared camera having a water-cooled and / or gas-cooled lens tube, an arithmetic unit connected to a light receiving unit of the infrared camera, and a temperature display unit connected to the arithmetic unit. , The field of view of the infrared camera directed to a high-temperature object in a fume atmosphere is divided, the received light energy is obtained for each divided portion, and the temperature of only the divided portion having a high received energy is calculated and displayed. Measuring device for high temperature objects in fume atmosphere.
【請求項7】 赤外線カメラがその受光部とレンズとの
間に可視光カットフィルタを有するものである請求項6
記載のヒューム雰囲気中における高温物体温度の測定装
置。
7. The infrared camera has a visible light cut filter between the light receiving portion and the lens.
Apparatus for measuring the temperature of a high temperature object in the described fume atmosphere.
JP8153332A 1996-05-24 1996-05-24 Method and apparatus for measurement of temperature of high-temperature object in fume atmosphere Pending JPH09318457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8153332A JPH09318457A (en) 1996-05-24 1996-05-24 Method and apparatus for measurement of temperature of high-temperature object in fume atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8153332A JPH09318457A (en) 1996-05-24 1996-05-24 Method and apparatus for measurement of temperature of high-temperature object in fume atmosphere

Publications (1)

Publication Number Publication Date
JPH09318457A true JPH09318457A (en) 1997-12-12

Family

ID=15560179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8153332A Pending JPH09318457A (en) 1996-05-24 1996-05-24 Method and apparatus for measurement of temperature of high-temperature object in fume atmosphere

Country Status (1)

Country Link
JP (1) JPH09318457A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430703C (en) * 2005-02-28 2008-11-05 宝山钢铁股份有限公司 High furnace infrared thermoviewer protecting device
CN106583723A (en) * 2016-12-15 2017-04-26 南京中科煜宸激光技术有限公司 Photographic device for material increase manufacturing
JPWO2022172771A1 (en) * 2021-02-10 2022-08-18

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430703C (en) * 2005-02-28 2008-11-05 宝山钢铁股份有限公司 High furnace infrared thermoviewer protecting device
CN106583723A (en) * 2016-12-15 2017-04-26 南京中科煜宸激光技术有限公司 Photographic device for material increase manufacturing
JPWO2022172771A1 (en) * 2021-02-10 2022-08-18
WO2022172771A1 (en) * 2021-02-10 2022-08-18 Jfeスチール株式会社 Video-device-equipped electric furnace
TWI809701B (en) * 2021-02-10 2023-07-21 日商杰富意鋼鐵股份有限公司 Electric furnace with imaging device

Similar Documents

Publication Publication Date Title
TW505701B (en) System and method for minimizing slag carryover during the production of steel
US4656331A (en) Infrared sensor for the control of plasma-jet spray coating and electric are heating processes
KR101223104B1 (en) Method and apparatus for monitoring an operation of iron & steel-making furnace
EP0518536A1 (en) Method and apparatus for casting an electron beam melted metal in ingot form
JPH05192746A (en) Method and device of casting arc-fused metal- lic material in ingot
EP0481653B1 (en) Methods of measuring temperature and apparatus for use therewith
RU2090814C1 (en) Method of restoration of damaged refractory lining of furnace and device for realization of this method (versions)
JPH09318457A (en) Method and apparatus for measurement of temperature of high-temperature object in fume atmosphere
EP1759790A2 (en) Apparatus for detecting entry of contaminants during melting
Patra et al. Infrared-based slag monitoring and detection system based on computer vision for basic oxygen furnace
KR100518325B1 (en) A Method for Monitoring the Escape of Molten Steel in Continuous Casting Mold
JP3240701B2 (en) Method for detecting the level of a glass raw material layer in a glass melting furnace
KR100620098B1 (en) Apparatus And Method for Observing Section View of Sintered Cakes Dropping on Sintering Machine
CN101135651A (en) System for detecting contaminant during fusion
JP2005155944A (en) Device and method of monitoring exhaust gas duct
JPH06160195A (en) Thermal image monitoring method for melting furnace
JPH09243434A (en) Method for monitoring liquid surface of melting furnace
KR100919426B1 (en) Apparatus for detecting onset of slag entrainment in a molten metal stream and method thereof
JPH0678543B2 (en) Coal gasifier slag tap monitoring method and device
JP3496304B2 (en) Fixture for liquid level detection device in casting equipment
KR20230009951A (en) Detection of metal separation from casting molds
SU594061A1 (en) Device for monitoring position of founding zone boundary in bath glass-making furnaces
Starchenko Contact-remote method for monitoring the temperature of a melt
JPH07204817A (en) Method for observing molten metal surface in mold
JPH0416259B2 (en)