JPH09317821A - Functional structural material - Google Patents

Functional structural material

Info

Publication number
JPH09317821A
JPH09317821A JP13200096A JP13200096A JPH09317821A JP H09317821 A JPH09317821 A JP H09317821A JP 13200096 A JP13200096 A JP 13200096A JP 13200096 A JP13200096 A JP 13200096A JP H09317821 A JPH09317821 A JP H09317821A
Authority
JP
Japan
Prior art keywords
structural material
rigidity
transformation point
shape
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13200096A
Other languages
Japanese (ja)
Inventor
Masaaki Shibata
昌明 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13200096A priority Critical patent/JPH09317821A/en
Publication of JPH09317821A publication Critical patent/JPH09317821A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a functional structural material wherein a change is made in the natural frequency of a structural material as occasion demands. vibration and noises are reduced and the rigidity of the structural material is increased during its use. SOLUTION: A shape memory alloy wire processed to be a desired shape is initially deformed by a tensile load given at a temperature of transformation point or lower, buried in a fiber reinforcing composite material while its initial deformation is maintained and, by adjusting a wire temperature before or after the transformation point, if it is necessary to increase the rigidity of a structural material having a vibration damping function in which the natural frequency of the composite material is adjusted, the wire temperature is set higher than the transformation point and the memorized shape is recovered and the rigidity is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、機械やその他の振
動源から伝達される励振力による振動や騒音を低減する
機能や、必要時に剛性を増加させる機能を備えた構造材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural member having a function of reducing vibration and noise caused by an exciting force transmitted from a machine or another vibration source and a function of increasing rigidity when necessary.

【0002】[0002]

【従来の技術】機械や構造物を構成する構造部材、特
に、薄板部材が、機械やその他の振動源から伝達される
励振力により、振動したり、その振動により騒音を発生
したりすることがある。一般に、機械や構造物を構成す
る構造材の固有振動数が、前記の励振力の周波数と一致
して共振すると、極めて大きな振動や騒音を発生する。
しかし、従来、構造材自体の固有振動数を変化させるこ
とができなかったので、その他の設計要因で振動や騒音
の発生を抑制していた。
2. Description of the Related Art A structural member constituting a machine or a structure, particularly a thin plate member, may vibrate or generate noise due to the excitation force transmitted from the machine or another vibration source. is there. Generally, when the natural frequency of the structural material that constitutes a machine or structure resonates with the frequency of the excitation force, resonance occurs and extremely large vibration and noise are generated.
However, conventionally, since the natural frequency of the structural material itself could not be changed, the generation of vibration and noise was suppressed by other design factors.

【0003】また、機械や構造物を構成する構造材の剛
性を選択するためには、材質の選択や複合材においては
その組み合わせによっていた。しかし、それらの構造材
には1つの剛性が存在するだけで、使用過程で構造材の
剛性を変化させて使用するとの発想が存在しなかった。
Further, in order to select the rigidity of the structural material constituting the machine or the structure, the selection of the material and the combination thereof in the composite material are used. However, there is only one rigidity in those structural materials, and there was no idea to change the rigidity of the structural materials in the process of use.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は、上
記の欠点を解消し、構造材の固有振動数を必要に応じ
て変化させることができ、構造材に加わる励振力の周波
数と一致しないように調整・制御することにより、騒音
を低減可能とする機能性構造材、及び、使用過程で構
造材の剛性を増加させることができる機能性構造材を提
供しようとするものである。後者において、ある限られ
た時間だけ高い剛性を必要とするときに、そのときだけ
高い剛性を付与できるため、機械や構造物の重量を軽量
化することができる。
Therefore, according to the present invention, the above-mentioned drawbacks can be solved and the natural frequency of the structural material can be changed as necessary, and the frequency does not match the frequency of the exciting force applied to the structural material. It is intended to provide a functional structural material capable of reducing noise and a functional structural material capable of increasing the rigidity of the structural material during the use process by adjusting and controlling as described above. In the latter case, when high rigidity is required for a limited time, high rigidity can be imparted only at that time, so that the weight of the machine or structure can be reduced.

【0005】[0005]

【課題を解決するための手段】本発明は、下記の構成を
採用することにより、上記課題の解決を可能にしたもの
である。 (1) 所望の形状に記憶処理された、表面に微細な凹凸を
有する形状記憶合金線材を、変態点以下の温度で引張り
荷重を加えて初期歪みを与え、該歪みを維持した状態で
繊維強化型複合材料に埋め込み、前記線材の温度を前記
変態点前後で調節することにより、複合材料の固有振動
数を調節可能としたことを特徴とする制振機能を有する
構造材。
The present invention has made it possible to solve the above problems by adopting the following configuration. (1) Applying a tensile load to a shape memory alloy wire rod that has fine irregularities on the surface that has been subjected to a memory treatment in a desired shape to give an initial strain at a temperature below the transformation point, and fiber reinforced while maintaining that strain A structural material having a vibration damping function, characterized in that the natural frequency of the composite material can be adjusted by embedding it in a mold composite material and adjusting the temperature of the wire around the transformation point.

【0006】(2) 所望の形状に記憶処理された、表面に
微細な凹凸を有する形状記憶合金線材を、変態点以下の
温度で引張り荷重を加えて初期歪みを与え、該歪みを維
持した状態で繊維強化型複合材料に埋め込み、該構造材
の剛性を増加する必要があるときに、前記線材の温度を
前記変態点より高温にして、記憶形状を復元し、剛性を
増加可能にしたことを特徴とする剛性増加機能を有する
構造材。
(2) A state in which a shape-memory alloy wire having a fine shape on the surface, which has been subjected to a memory treatment in a desired shape, is subjected to an initial strain by applying a tensile load at a temperature below the transformation point and the strain is maintained. When it is necessary to increase the rigidity of the structural material by embedding it in the fiber-reinforced composite material with, the temperature of the wire is set higher than the transformation point to restore the memory shape and increase the rigidity. A structural material that has the characteristic of increasing rigidity.

【0007】(3) 前記線材を加熱用電源へ接続可能にし
たことを特徴とする上記(1) 又は(2) 記載の機能を有す
る構造材。 (4) 前記複合材料に加熱用ヒーターを埋め込んみ、該ヒ
ーターを加熱用電源へ接続可能にしたことを特徴とする
上記(1) 又は(2) 記載の機能を有する構造材。 (5) 前記線材が直線形状を有することを特徴とする上記
(1) 〜(4) のいずれか1つに記載の機能を有する構造
材。
(3) A structural material having the function described in (1) or (2), wherein the wire is connectable to a heating power source. (4) A structural material having the function described in (1) or (2) above, wherein a heater for heating is embedded in the composite material and the heater can be connected to a power source for heating. (5) The above characterized in that the wire has a linear shape
A structural material having the function according to any one of (1) to (4).

【0008】[0008]

【発明の実施の形態】本発明は、機械や構造物などの構
造材、特に薄板部材中に表面に微細な凹凸を有する形状
記憶合金線材を埋め込み、前記線材の温度を前記変態点
より高温にすることにより、前記構造材の固有振動数を
調節して振動や騒音を低減させ、また、必要時に剛性を
増加させることのできる機能性構造材である。なお、前
記微細な凹凸は、例えば20分間酸洗を行うことにより
形成することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention embeds a shape memory alloy wire having fine irregularities on its surface in a structural material such as a machine or a structure, particularly a thin plate member, and makes the temperature of the wire higher than the transformation point. By doing so, it is a functional structural material that can adjust the natural frequency of the structural material to reduce vibration and noise and increase the rigidity when necessary. The fine irregularities can be formed by performing pickling for 20 minutes, for example.

【0009】例えば、直線に形状記憶処理し、表面に微
細な凸凹を有する形状記憶合金線材を、前記線材の変態
点以下の温度で引張り荷重を加えた後除荷し、図4に示
すように初期歪みを与え、その歪みを維持した状態で繊
維強化型複合材料に埋め込んで薄板等の構造材を構成す
る。
[0009] For example, a shape memory alloy wire having a linear shape memory treatment and fine irregularities on the surface is unloaded after applying a tensile load at a temperature below the transformation point of the wire, as shown in FIG. An initial strain is applied and embedded in the fiber-reinforced composite material while maintaining the strain to form a structural material such as a thin plate.

【0010】この構造材は、前記線材の変態点より高い
温度において、マルテンサイト相からオーステナイト相
に変態し、図5に示すような応力−歪み特性となるの
で、温度と弾性係数の関係は図6のように変態点よりも
高い温度の方が弾性率が大きくなる。例えば、横弾性係
数Gは、変態点より低温のマルテンサイト相では800
〜1000kg/mであるのに対し、変態点より高温の
オーステナイト相では1800〜2200kg/mと大
きな値を示す。また、歪みを拘束した状態で温度を上昇
させると、図7に示すように大きな形状回復力が生ず
る。
This structural material transforms from the martensite phase to the austenite phase at a temperature higher than the transformation point of the wire and has a stress-strain characteristic as shown in FIG. The elastic modulus becomes higher at a temperature higher than the transformation point as in No. 6. For example, the transverse elastic modulus G is 800 in the martensite phase at a temperature lower than the transformation point.
˜1000 kg / m, whereas the austenite phase at a temperature higher than the transformation point shows a large value of 1800 to 2200 kg / m. Further, when the temperature is raised while restraining the strain, a large shape recovery force is generated as shown in FIG.

【0011】本発明にかかる構造材に埋め込まれた形状
記憶合金線材に電流を流すか、ヒータなどで前記線材を
変態点以上の温度に加熱すると、弾性係数が増加する。
そして、前記線材は、表面に微細な凸凹が付設されてい
るので、繊維強化型複合材料を構成する樹脂と、前記線
材が滑ることなく結合され、形状記憶合金線材は歪みの
拘束を受けるので、図7に示すように形状回復力が発生
する。
When a current is passed through the shape memory alloy wire embedded in the structural material according to the present invention, or the wire is heated to a temperature above the transformation point by a heater or the like, the elastic modulus increases.
Then, since the wire is provided with fine irregularities on the surface, the resin constituting the fiber-reinforced composite material and the wire are bonded without slipping, and the shape memory alloy wire is subject to strain constraint, As shown in FIG. 7, a shape recovery force is generated.

【0012】このように、形状記憶合金線材に生ずる形
状回復応力により、複合構造材に面内力が発生し、これ
によって複合構造材の等価な弾性係数を増加させること
ができる。この形状回復力に起因して生ずる複合構造材
の等価弾性係数の増加と、オーステナイト相に変態する
ことによって生ずる形状記憶合金線材そのものの弾性係
数の増加の両方の効果により、複合構造材の剛性を増加
させたり、固有振動数を変化させることができる。
As described above, the in-plane force is generated in the composite structural material due to the shape recovery stress generated in the shape memory alloy wire rod, whereby the equivalent elastic modulus of the composite structural material can be increased. The rigidity of the composite structural material is increased by the effects of both the increase in the equivalent elastic modulus of the composite structural material caused by this shape recovery force and the increase in the elastic coefficient of the shape memory alloy wire itself caused by transformation into the austenite phase. It can be increased or the natural frequency can be changed.

【0013】一般に、機械や構造物を構成する構造材の
固有振動数が振動力の周波数と一致し、共振した場合
は、極めて大きな振動や騒音を発生する。したがって、
前記のように、構造材の振動特性を変化させ、励振力の
周波数と一致しないように調整することにより、発生す
る振動や騒音を著しく低減させることが可能となる。ま
た、形状記憶合金材の温度上昇により生ずる回復応力を
利用して、剛性を増加させることができるので、通常の
状態において高い剛性を有するため重量の大きな構造材
を使用する必要がなく、同等の剛性を付与する他の方法
に比べて、構造材の軽量化を図ることができる。
In general, when the natural frequency of a structural material that constitutes a machine or a structure matches the frequency of the vibration force and resonates, extremely large vibration and noise are generated. Therefore,
As described above, by changing the vibration characteristics of the structural material and adjusting so as not to match the frequency of the exciting force, it is possible to significantly reduce the generated vibration and noise. In addition, since the rigidity can be increased by utilizing the recovery stress generated by the temperature rise of the shape memory alloy material, it is not necessary to use a heavy structural material because it has high rigidity under normal conditions, The weight of the structural material can be reduced as compared with other methods of imparting rigidity.

【0014】[0014]

【実施例】以下、図面により、本発明の実施例を説明す
る。図8の右図に記載のMODE1〜9は形状記憶合金
線材を配置する方向(X,Y)及び本数を変化させた構
造材であり、図中の点線は振動モードの節を表し、図8
の左図は各モードの回復力と固有振動数との関係を示し
たものである。例えば、形状記憶合金線材を全てX方向
に配置したMODE2、5、9は、振動モードの節の増
加に伴い、固有振動数が高くなっていることが分かる。
また、図9は、MODE1及びMODE2の構造材の振
動解析の結果を示した図である。構造材中の形状記憶合
金線材の配置方向に対応して振動モード形が形成される
ことが分かる。
Embodiments of the present invention will be described below with reference to the drawings. MODEs 1 to 9 shown in the right diagram of FIG. 8 are structural materials in which the directions (X, Y) and the number of the shape memory alloy wire rods are changed, and the dotted lines in the figure represent the nodes of the vibration mode.
The left diagram of shows the relationship between the resilience of each mode and the natural frequency. For example, in MODES 2, 5, and 9 in which all shape memory alloy wire rods are arranged in the X direction, the natural frequency is increased as the number of vibration mode nodes is increased.
Further, FIG. 9 is a diagram showing a result of vibration analysis of the structural materials of MODE1 and MODE2. It can be seen that the vibration mode shape is formed corresponding to the arrangement direction of the shape memory alloy wire rod in the structural material.

【0015】〔具体例〕母材としてGPRPを使用し、
直径0.5mmの形状記憶合金線を20分間酸洗して表
面に凹凸を設け、体積含有率(Vf)30%で母材(G
PRP)中に一方向に配列して埋め込み構造材を作製し
た。その回復力(σ)を測定したところ、25kg/m
2 であり、固有振動数は約3倍に、剛性は約9倍に増
加した。なお、前記形状記憶合金線は、変態点より低温
のマルテンサイト相では800〜1000kg/mであ
るのに対し、変態点より高温のオーステナイト相では1
800〜2200kg/mと大きな値を示した。
[Specific Example] Using GPRP as a base material,
A shape memory alloy wire with a diameter of 0.5 mm is pickled for 20 minutes to form irregularities on the surface, and the base material (G
PRP) was arranged in one direction to prepare an embedded structural material. The recovery force (σ) was measured to be 25 kg / m
m 2 , the natural frequency increased about 3 times, and the rigidity increased about 9 times. The shape memory alloy wire has a martensite phase at a temperature lower than the transformation point of 800 to 1000 kg / m, whereas the shape memory alloy wire has an austenite phase at a temperature higher than the transformation point of 1 to 1.
It showed a large value of 800 to 2200 kg / m.

【0016】[0016]

【発明の効果】本発明は、上記の構成を採用することに
より、形状記憶合金線材の弾性係数の増加や形状回復力
により、形状記憶合金線材を埋設した構造材の固有振動
数や剛性を変化させることができるので、機械などの振
動源から伝達される励振力により発生する振動騒音を大
幅に低減することができ、また、ある有限時間の必要剛
性について、剛性増加機能を活用して、低剛性な設計が
可能になるので、機械や装置の軽量化を可能にした。
According to the present invention, by adopting the above configuration, the natural frequency and the rigidity of the structural material in which the shape memory alloy wire is embedded are changed by the increase of the elastic coefficient of the shape memory alloy wire and the shape recovery force. Therefore, it is possible to significantly reduce the vibration noise generated by the excitation force transmitted from the vibration source such as the machine. Since a rigid design is possible, it is possible to reduce the weight of machinery and equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる機能性構造材を構成する直線状
の形状記憶合金線材の表面に凸凹を付与した状態を示し
た図である。
FIG. 1 is a diagram showing a state in which unevenness is provided on the surface of a linear shape memory alloy wire rod that constitutes a functional structural material according to the present invention.

【図2】図1の直線状の形状記憶合金線材を繊維強化型
複合材に埋め込んだ複合材ラミナの説明図である。
FIG. 2 is an explanatory diagram of a composite material lamina in which the linear shape memory alloy wire material of FIG. 1 is embedded in a fiber reinforced composite material.

【図3】図2の複合材ラミナを積層した機能性構造材の
説明図である。
FIG. 3 is an explanatory view of a functional structural material in which the composite material lamina of FIG. 2 is laminated.

【図4】本発明で使用する形状記憶合金線材の変態点未
満における応力−歪みの関係を示したグラフである。
FIG. 4 is a graph showing the stress-strain relationship below the transformation point of the shape memory alloy wire used in the present invention.

【図5】本発明で使用する形状記憶合金線材の変態点以
上における応力−歪みの関係を示したグラフである。
FIG. 5 is a graph showing the stress-strain relationship above the transformation point of the shape memory alloy wire used in the present invention.

【図6】本発明で使用する形状記憶合金線材の温度と弾
性係数の関係を示したグラフである。
FIG. 6 is a graph showing the relationship between temperature and elastic modulus of the shape memory alloy wire used in the present invention.

【図7】本発明で使用する形状記憶合金線材の温度と形
状回復力の関係を示したグラフである。
FIG. 7 is a graph showing the relationship between the temperature and the shape recovery force of the shape memory alloy wire used in the present invention.

【図8】本発明にかかる、形状記憶合金線材を埋め込ん
だ構造材の形状回復力と固有振動数の関係を示したグラ
フである。
FIG. 8 is a graph showing the relationship between the shape recovery force and the natural frequency of the structural material having the shape memory alloy wire embedded therein according to the present invention.

【図9】図8のMODE1及びMODE2にかかる構造
材の振動解析結果を示した図である。
9 is a diagram showing a vibration analysis result of a structural material according to MODE1 and MODE2 in FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所望の形状に記憶処理された、表面に微
細な凹凸を有する形状記憶合金線材を、変態点以下の温
度で引張り荷重を加えて初期歪みを与え、該歪みを維持
した状態で繊維強化型複合材料に埋め込み、前記線材の
温度を前記変態点前後で調節することにより、複合材料
の固有振動数の調節を可能にしたことを特徴とする制振
機能を有する構造材。
1. A shape-memory alloy wire having a surface with fine irregularities which has been subjected to a memory treatment in a desired shape is subjected to an initial strain by applying a tensile load at a temperature below a transformation point, and the strain is maintained. A structural material having a vibration damping function, which is embedded in a fiber-reinforced composite material and is capable of adjusting the natural frequency of the composite material by adjusting the temperature of the wire before and after the transformation point.
【請求項2】 所望の形状に記憶処理された、表面に微
細な凹凸を有する形状記憶合金線材を、変態点以下の温
度で引張り荷重を加えて初期歪みを与え、該歪みを維持
した状態で繊維強化型複合材料に埋め込み、該構造材の
剛性を増加する必要があるときに、前記線材の温度を前
記変態点より高温にして、記憶形状を復元し、剛性を増
加可能にしたことを特徴とする剛性増加機能を有する構
造材。
2. A shape-memory alloy wire having a fine shape on the surface, which has been subjected to a memory treatment in a desired shape, is subjected to an initial strain by applying a tensile load at a temperature below a transformation point, and the strain is maintained. When embedded in a fiber-reinforced composite material and the rigidity of the structural material needs to be increased, the temperature of the wire is set higher than the transformation point to restore the memory shape and increase the rigidity. A structural material that has the function of increasing rigidity.
JP13200096A 1996-05-27 1996-05-27 Functional structural material Pending JPH09317821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13200096A JPH09317821A (en) 1996-05-27 1996-05-27 Functional structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13200096A JPH09317821A (en) 1996-05-27 1996-05-27 Functional structural material

Publications (1)

Publication Number Publication Date
JPH09317821A true JPH09317821A (en) 1997-12-12

Family

ID=15071219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13200096A Pending JPH09317821A (en) 1996-05-27 1996-05-27 Functional structural material

Country Status (1)

Country Link
JP (1) JPH09317821A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057014A1 (en) * 1997-06-12 1998-12-17 Hamid Davoodi Building system using shape memory alloy members
WO2002097149A1 (en) * 2001-05-29 2002-12-05 National Institute Of Advanced Industrial Science And Technology Functional composite material using shape memory alloy and production method therefor
EP1516936A1 (en) * 2002-06-04 2005-03-23 National Institute of Advanced Industrial Science and Technology Extremely fine shape memory alloy wire, composite material thereof and process for producing the same
DE102008061648A1 (en) 2008-12-12 2010-06-17 Rolls-Royce Deutschland Ltd & Co Kg Sensor holder for at least one sensor on a gas turbine
JP2014055527A (en) * 2012-09-11 2014-03-27 Smk Corp Flat type shape memory cable, and drive unit using the same
JP2016145582A (en) * 2016-05-19 2016-08-12 Smk株式会社 Drive unit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057014A1 (en) * 1997-06-12 1998-12-17 Hamid Davoodi Building system using shape memory alloy members
US6170202B1 (en) 1997-06-12 2001-01-09 University Of Puerto Rico Building system using shape memory alloy members
WO2002097149A1 (en) * 2001-05-29 2002-12-05 National Institute Of Advanced Industrial Science And Technology Functional composite material using shape memory alloy and production method therefor
US7253219B2 (en) 2001-05-29 2007-08-07 National Institute Of Advanced Industrial Science And Technology Functional composite material using shape memory alloy and production method therefor
DE10296902B4 (en) * 2001-05-29 2008-01-03 National Institute Of Advanced Industrial Science And Technology A method of making a composite functional material using shape memory alloys
EP1516936A1 (en) * 2002-06-04 2005-03-23 National Institute of Advanced Industrial Science and Technology Extremely fine shape memory alloy wire, composite material thereof and process for producing the same
EP1516936A4 (en) * 2002-06-04 2005-08-31 Nat Inst Of Advanced Ind Scien Extremely fine shape memory alloy wire, composite material thereof and process for producing the same
DE102008061648A1 (en) 2008-12-12 2010-06-17 Rolls-Royce Deutschland Ltd & Co Kg Sensor holder for at least one sensor on a gas turbine
JP2014055527A (en) * 2012-09-11 2014-03-27 Smk Corp Flat type shape memory cable, and drive unit using the same
JP2016145582A (en) * 2016-05-19 2016-08-12 Smk株式会社 Drive unit

Similar Documents

Publication Publication Date Title
US5458222A (en) Active vibration control of structures undergoing bending vibrations
Liao et al. The design of an active–adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance
Baz et al. Control of the natural frequencies of nitinol-reinforced composite beams
Birman Stability of functionally graded shape memory alloy sandwich panels
KR101564975B1 (en) A method for protecting taut cables from vibrations
Huang et al. Feasibility of shape memory alloy in a tuneable mass damper to reduce excessive in‐service vibration
Ray et al. Optimization of energy dissipation of active constrained layer damping treatments of plates
Baz et al. Control of axi-symmetric vibrations of cylindrical shells using active constrained layer damping
Watzky Non-linear three-dimensional large-amplitude damped free vibration of a stiff elastic stretched string
JPH09317821A (en) Functional structural material
Baz Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping
Yuvaraja et al. Comparative study on vibration characteristics of a flexible GFRP composite beam using SMA and PZT actuators
Lam et al. Hybrid damping models using the Golla-Hughes-McTavish method with internally balanced model reduction and output feedback
JP6991685B2 (en) Vibration power generator
Zhou et al. Modeling of distributed piezoelectric actuators integrated with thin cylindrical shells
Mininger et al. Modeling of magnetoelastic and piezoelectric coupling: Application to SRM noise damping
Kim et al. Sensor/actuator optimal design for active vibration control of shell structure
Murugesan et al. Enhancement of vibration characteristics in filament wound FRP composite shafts using nitinol wires
Chellabi et al. Direct optimal vibration control of a piezoelastic plate
Mahmoodi et al. Active vibration control of aerospace structures using a modified positive position feedback method
Zheng et al. Active and passive magnetic constrained damping treatment
Agnes et al. Structural integrity issues during piezoelectric vibration suppression of composite structures
Flatau et al. Magnetostrictive vibration control systems
Kim et al. Active vibration control of composite shell structure using modal sensor/actuator system
WO2013151653A2 (en) Stator coil removal method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031202