JPH09317696A - Stator blade structure of axial flow compressor - Google Patents

Stator blade structure of axial flow compressor

Info

Publication number
JPH09317696A
JPH09317696A JP13193096A JP13193096A JPH09317696A JP H09317696 A JPH09317696 A JP H09317696A JP 13193096 A JP13193096 A JP 13193096A JP 13193096 A JP13193096 A JP 13193096A JP H09317696 A JPH09317696 A JP H09317696A
Authority
JP
Japan
Prior art keywords
flow
vane
axial
stator blade
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13193096A
Other languages
Japanese (ja)
Inventor
Kenichi Okuno
研一 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13193096A priority Critical patent/JPH09317696A/en
Publication of JPH09317696A publication Critical patent/JPH09317696A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce mixing loss by arranging a channel inclined toward the direction of a stator blade shaft on the hub side of a stator blade inlet. SOLUTION: An inner ring shroud 5 is circumferentially attached at the end of the hub side of a stator blade 2, and a fin 6 is arranged in the circumferential direction of the end. The fin 6 is normally arranged axially, and a leaking amount is reduced in front and rear of the stator blade 2. A throttling channel 8 by which the blowout a leakage flow F3 to the flow F1 of a main flow of is controlled and which is inclined in the axial direction of the stator blade 2, is formed on the hub side of the stator blade 2 between an inner ring shroud 6 and a rotor blade implanting part 7. A guide vane 9 is arranged on the inlet hub side of the stator blade 2 of the throttling channel 8 so that the blowout flow direction of the leakage flow F3 to the flow F1 of the main flow is matched to the best inflow angle of the stator blade 2. Hereby, the turbulence of the main flow can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は軸流圧縮機に係り、
特に静翼のクリアランス損失を低減させる軸流圧縮機の
静翼構造に関する。
TECHNICAL FIELD The present invention relates to an axial flow compressor,
In particular, the present invention relates to a stator vane structure of an axial flow compressor that reduces the clearance loss of the vane.

【0002】[0002]

【従来の技術】従来、ガスタービンプラントや、コンバ
インドサイクル発電プラントなどの性能を向上するため
には、そのコンポーネントの一つである軸流圧縮機の性
能を向上させることが重要であることは言うまでもな
い。
2. Description of the Related Art Needless to say, in order to improve the performance of a gas turbine plant, a combined cycle power plant, etc., it is important to improve the performance of an axial flow compressor which is one of its components. Yes.

【0003】従来、軸流圧縮機の性能を向上するために
は、種々の施策がなされている。特に、動翼および静翼
の先端の間隙に起因する漏洩損失は軸流圧縮機の損失の
中でも大きな割合を占めることは周知の事実である。こ
の損失を低減するため、従来より種々の方策が講じられ
ている。
Conventionally, various measures have been taken to improve the performance of an axial flow compressor. In particular, it is a well known fact that the leakage loss due to the gap between the tips of the moving blade and the stationary blade accounts for a large proportion of the loss of the axial compressor. In order to reduce this loss, various measures have been conventionally taken.

【0004】図5は従来の軸流圧縮機の流路部を示す断
面図である。図5に示すように、軸流圧縮機は、動翼1
および静翼2を有し、動翼1は回転部に取り付けたディ
スク3に設けられる一方、静翼2は流路を形成するケー
シング4に取り付けられている。そして、流入方向Xか
ら流入した流体は、ディスク3の回転エネルギーが動翼
1を介して伝達されることにより昇圧される。このと
き、動翼1および静翼2の前後において圧力差が発生
し、そのため翼の先端の間隙から流体が漏洩し損失とな
る。
FIG. 5 is a sectional view showing a flow path portion of a conventional axial flow compressor. As shown in FIG. 5, the axial compressor includes a moving blade 1
And the stationary vane 2, the moving vane 1 is provided on the disk 3 attached to the rotating part, while the stationary vane 2 is attached to the casing 4 forming the flow path. Then, the rotational energy of the disk 3 is transmitted through the moving blades 1 to increase the pressure of the fluid flowing in from the inflow direction X. At this time, a pressure difference is generated before and after the moving blade 1 and the stationary blade 2, so that the fluid leaks from the gap at the tip of the blade and becomes a loss.

【0005】このいわゆるクリアランス損失、特に静翼
2での漏洩量を低減させるため、従来では、静翼2のハ
ブ側先端に内輪シュラウド5を周方向に取り付け、さら
にその内輪シュラウド5の先端周方向にフィン6を設け
た構造としている。このフィン6は、通常軸方向に複数
個設置されており、静翼2前後での漏洩量を低減する機
能を有している。
In order to reduce this so-called clearance loss, particularly the amount of leakage at the stationary blade 2, an inner ring shroud 5 is conventionally attached to the hub-side tip of the stationary blade 2 in the circumferential direction, and the tip circumferential direction of the inner ring shroud 5 is further arranged. The fin 6 is provided in the structure. A plurality of fins 6 are usually installed in the axial direction and have a function of reducing the amount of leakage before and after the stationary blade 2.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
の技術では、内輪シュラウド5の先端に設けられたフィ
ン6の作用により漏洩量を低減しようとするものであ
る。
As described above, in the conventional technique, the amount of leakage is reduced by the action of the fins 6 provided at the tip of the inner ring shroud 5.

【0007】しかしながら、フィン6と回転部であるデ
ィスク3との間隙を0にすることは不可能であり、静翼
2の前後では、その圧力差とディスク3によるポンピン
グ効果のために、図6に示すように静翼2の出口開口部
から主流の流れF1が吸い込まれ、フィン6の先端の間
隙を通り、静翼2の入口に向かい主流の流れF1に噴出
するという漏れ流れF2による循環流が形成される。
However, it is impossible to reduce the gap between the fin 6 and the disk 3 which is the rotating portion to zero, and because of the pressure difference and the pumping effect of the disk 3 before and after the stationary blade 2, FIG. As shown in (4), the main flow F1 is sucked from the outlet opening of the vane 2, passes through the gaps at the tips of the fins 6 and is jetted into the main flow F1 toward the inlet of the vane 2 Is formed.

【0008】この循環量は、フィン6の効果のために、
漏洩量がある程度低減されてはいるものの、静翼2の入
口部分で、流れが半径方向に噴出し主流の流れF1に合
流する。このとき、図6に示すように軸方向に流れる主
流の流れF1が乱され、いわゆるミキシングロスが生
じ、損失の原因になっている。
This circulation amount is due to the effect of the fins 6,
Although the amount of leakage is reduced to some extent, the flow is radially ejected at the inlet portion of the vane 2 and merges with the main flow F1. At this time, as shown in FIG. 6, the mainstream flow F1 flowing in the axial direction is disturbed, causing so-called mixing loss, which causes the loss.

【0009】また、一般に静翼2のハブ近傍の軸流速度
分布は、境界層が成長することにより、図7に示すよう
な軸方向速度分布Yとなり、ハブ近傍は低エネルギー領
域となり、ハブ近傍の軸流速度は、主流の軸流速度に比
べ遅くなることが知られている。
Further, generally, the axial velocity distribution near the hub of the stationary blade 2 becomes an axial velocity distribution Y as shown in FIG. 7 due to the growth of the boundary layer, and the vicinity of the hub becomes a low energy region and the vicinity of the hub. It is known that the axial flow velocity of is slower than that of the main flow.

【0010】このときの状態を動翼1出口の速度三角形
を用いて図8に示す。主流での速度三角形をa1に示
す。動翼1を出た流れは、適正な入射角で静翼2に流入
していることがわかる。ハブ側での速度三角形は、a2
に示すようにハブ側軸流速度が主流軸流速度に比べて遅
いため、静翼2への流入速度ベクトルbは、適正な入射
角から外れる結果となっていることがわかる。
The state at this time is shown in FIG. 8 using the velocity triangle at the outlet of the moving blade 1. The velocity triangle in the mainstream is shown in a1. It can be seen that the flow exiting the moving blade 1 flows into the stationary blade 2 at an appropriate incident angle. The speed triangle on the hub side is a2
Since the hub side axial flow velocity is slower than the mainstream axial flow velocity as shown in FIG. 5, it can be understood that the inflow velocity vector b to the stationary blade 2 deviates from the proper incident angle.

【0011】しかも、漏れ流れによる循環流の主流への
吹出し方向速度ベクトルcが、ディスク3の回転により
誘起される周方向成分が支配的であり、軸方向成分をほ
とんど持たない。さらに、その向きが動翼1の回転方向
dと一致しているため、静翼2に対する入射角のずれを
助長することになっている。
Moreover, the velocity vector c in the blowing direction of the circulating flow to the main flow due to the leakage flow is dominated by the circumferential component induced by the rotation of the disk 3, and has almost no axial component. Further, since the direction thereof coincides with the rotating direction d of the moving blade 1, the deviation of the incident angle with respect to the stationary blade 2 is promoted.

【0012】一方、静翼に対する入射角と損失との関係
を示したものが図9である。横軸が静翼2の入射角の最
適点からの偏差、縦軸が損失係数をそれぞれ表してい
る。この図9によれば、適正な入射角を外れると、損失
係数が急激に増大することがわかる。
On the other hand, FIG. 9 shows the relationship between the incident angle with respect to the stationary blade and the loss. The horizontal axis represents the deviation of the incident angle of the stationary blade 2 from the optimum point, and the vertical axis represents the loss coefficient. According to FIG. 9, it is understood that the loss coefficient sharply increases when the incident angle deviates from the proper value.

【0013】このように、従来の技術においては、静翼
2の先端間隙に起因するクリアランス損失は低減できて
いるものの、フィン6とディスク3との間隙を通る漏れ
流れF2による循環流が主流へ半径方向に噴出すること
によって、主流の流れF1が乱されてミキシングロスが
新たに生じ、且つその噴出流の持つ周方向速度成分によ
って、動翼1への入射角が適正な値から外れることが助
長され、損失が増大するという問題点がある。
As described above, in the prior art, although the clearance loss due to the tip clearance of the stationary blade 2 can be reduced, the circulation flow due to the leakage flow F2 passing through the clearance between the fin 6 and the disk 3 becomes the main flow. By jetting in the radial direction, the main flow F1 is disturbed and new mixing loss occurs, and the circumferential velocity component of the jet flow may cause the incident angle to the rotor blade 1 to deviate from an appropriate value. There is a problem that it is promoted and the loss is increased.

【0014】本発明は上述した事情を考慮してなされた
もので、漏洩によって生じる循環流の主流への吹き出し
速度ベクトルを制御することにより、ミキシングロスを
低減し、且つ静翼入射角の最適点からのずれによる損失
を低減する軸流圧縮機の静翼構造を提供することを目的
とする。
The present invention has been made in consideration of the above-mentioned circumstances. By controlling the blowing velocity vector of the circulating flow generated by the leakage to the main flow, the mixing loss is reduced and the optimum point of the incident angle of the stationary blade is reduced. It is an object of the present invention to provide a stationary blade structure for an axial flow compressor that reduces the loss due to the deviation from.

【0015】[0015]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の請求項1は、静翼のハブ側先端に内輪
シュラウドが取り付けられ、この内輪シュラウドの先端
周方向に、前記静翼の出口から入口に向かう流体の漏れ
流れの量を低減するフィンが設置された軸流圧縮機の静
翼構造において、前記静翼入口のハブ側に、静翼軸方向
に傾斜した流路を設けたことを特徴とする。
In order to solve the above-mentioned problems, according to claim 1 of the present invention, an inner ring shroud is attached to a hub-side tip of a stationary blade, and the inner ring shroud is provided with the inner ring shroud in the circumferential direction. In a vane structure of an axial compressor in which fins are installed to reduce the amount of fluid leakage flow from the outlet of the vane to the inlet, a flow passage inclined in the axial direction of the vane is provided on the hub side of the vane inlet. It is characterized by being provided.

【0016】請求項2は、請求項1記載の軸流圧縮機の
静翼構造において、前記静翼入口のハブ側に設けられた
流路は、絞り流路に形成されたことを特徴とする。
According to a second aspect of the present invention, in the stator vane structure of the axial compressor according to the first aspect, the passage provided on the hub side of the inlet of the vane is formed as a throttle passage. .

【0017】請求項3は、請求項1または2記載の軸流
圧縮機の静翼構造において、前記静翼入口のハブ側に設
けられた絞り流路の内輪シュラウド側に、流体の漏れ流
れの吹出し方向を制御するガイドベーンが設置されたこ
とを特徴とする。
According to a third aspect of the present invention, in the stator vane structure of the axial flow compressor according to the first or second aspect, the leakage flow of the fluid is caused on the inner ring shroud side of the throttle passage provided on the hub side of the stator vane inlet. It is characterized in that a guide vane was installed to control the blowing direction.

【0018】請求項4は、請求項1または2記載の軸流
圧縮機の静翼構造において、前記静翼入口のハブ側に設
けられた絞り流路の内輪シュラウド側に、流体の漏れ流
れの吹出し方向を制御するガイドプレートが設置された
ことを特徴とする。
According to a fourth aspect of the present invention, in the stator vane structure for an axial flow compressor according to the first or second aspect, a leakage flow of the fluid is generated on the inner ring shroud side of the throttle passage provided on the hub side of the stator vane inlet. A guide plate for controlling the blowing direction is installed.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は本発明に係る軸流圧縮機の静翼構造
の第1実施形態を示す断面図である。なお、従来の構成
と同一または対応する部分には図5と同一の符号を用い
て説明する。図1に示すように、本実施形態の軸流圧縮
機は、動翼1および静翼2を有し、動翼1は回転部に取
り付けたディスク3に設けられる一方、静翼2は流路を
形成するケーシング4に取り付けられている。
FIG. 1 is a sectional view showing a first embodiment of a stationary blade structure of an axial compressor according to the present invention. Parts that are the same as or correspond to those of the conventional configuration will be described using the same reference numerals as in FIG. As shown in FIG. 1, the axial flow compressor of the present embodiment has a moving blade 1 and a stationary blade 2, and the moving blade 1 is provided on a disk 3 attached to a rotating portion, while the stationary blade 2 is a flow passage. Is attached to the casing 4 forming the.

【0021】また、静翼2のハブ側先端には、内輪シュ
ラウド5が周方向に取り付けられ、その内輪シュラウド
5の先端周方向にフィン6が設けられている。このフィ
ン6は、通常軸方向に複数個設置されており、静翼2前
後での漏洩量を低減する機能を有している。
An inner ring shroud 5 is circumferentially attached to the tip of the stationary blade 2 on the hub side, and fins 6 are provided in the circumferential direction of the tip of the inner ring shroud 5. A plurality of fins 6 are usually installed in the axial direction and have a function of reducing the amount of leakage before and after the stationary blade 2.

【0022】さらに、本実施形態では、内輪シュラウド
6と動翼植込み部7との間であって静翼2のハブ側に、
漏れ流れF3の主流の流れF1への吹き出しを制御する
ため、静翼2の軸方向に傾斜した絞り流路8が形成され
ている。この絞り流路8における静翼2入口ハブ側に
は、漏れ流れF3の主流の流れF1への吹出し流れ方向
を静翼2最適流入角度に合わせるようにガイドベーン9
が設置されている。このガイドベーン9は、図2に示す
ように翼型に形成され、漏れ流れF3の吹出し方向を制
御することが可能である。
Further, in this embodiment, between the inner ring shroud 6 and the moving blade implanting portion 7 on the hub side of the stationary blade 2,
In order to control the blowing of the leak flow F3 to the main flow F1, the throttle flow passage 8 that is inclined in the axial direction of the stationary blade 2 is formed. On the inlet 2 hub side of the vane 2 in the throttle channel 8, the guide vanes 9 are arranged so that the flow direction of the leakage flow F3 to the main flow F1 is adjusted to the optimal inflow angle of the vane 2.
Is installed. The guide vane 9 is formed in a blade shape as shown in FIG. 2 and can control the blowing direction of the leakage flow F3.

【0023】次に、本実施形態の作用を説明する。Next, the operation of the present embodiment will be described.

【0024】静翼2の出口の圧力は入口の圧力に比べ高
いため、静翼2を通過する主流の一部が、静翼2出口に
おいて吸い込まれ、静翼2の内輪シュラウド5とディス
ク3との間からフィン6とディスク3との間隙を通り、
静翼2入口側に回り込み、漏れ流れF3の循環流を形成
する。この漏れ流れF3が静翼2入口側において主流に
吹き出す際に、さまざまな損失を生じることは前述した
通りである。
Since the pressure at the outlet of the vane 2 is higher than the pressure at the inlet, part of the main flow passing through the vane 2 is sucked in at the outlet of the vane 2 and the inner ring shroud 5 of the vane 2 and the disk 3 are absorbed. Through the gap between the fin 6 and the disk 3,
It circulates to the inlet side of the vane 2 and forms a circulating flow of the leakage flow F3. As described above, when the leak flow F3 blows out into the main flow at the inlet side of the stationary blade 2, various losses occur.

【0025】本実施形態によれば、静翼2入口側、すな
わち漏れ流れF3が主流に吹き出す部分に絞り流路8を
備えているため、漏れ流れF3の吹出し方向が軸方向に
制御され、図1に示すように主流の流れF1の乱れは低
減される。
According to this embodiment, since the throttle flow passage 8 is provided at the inlet side of the vane 2, that is, at the portion where the leakage flow F3 blows out to the main flow, the blowing direction of the leakage flow F3 is controlled in the axial direction. As shown in 1, the turbulence of the mainstream flow F1 is reduced.

【0026】また、この絞り流路8を通過した漏れ流れ
F3は、ここで増速される。さらに、この絞り流路8に
設置したガイドベーン9により、漏れ流れF3の吹出し
方向が静翼2の最適入射角に制御される。
The leak flow F3 passing through the throttle channel 8 is accelerated here. Furthermore, the blowing direction of the leakage flow F3 is controlled to the optimum incident angle of the stationary blade 2 by the guide vanes 9 installed in the throttle channel 8.

【0027】これらの作用を図3に示す速度三角形を用
いて説明する。従来の技術による速度三角形をAに示
し、絞り流路8による速度三角形をBに示す。絞り流路
8を通過した流れは静翼2の軸方向に増速され、境界層
の低エネルギー領域を活性化することにより、ハブ近傍
の主流の軸流速度を上昇させる。これにより、ハブ近傍
における主流の速度三角形は図3に示すように改善さ
れ、静翼2の流入速度ベクトルは、C1からC2となり
最適入射角とのずれは従来に比べ補正される。
These actions will be described with reference to the velocity triangle shown in FIG. A speed triangle according to the related art is shown in A, and a speed triangle due to the throttle channel 8 is shown in B. The flow passing through the throttle channel 8 is accelerated in the axial direction of the stationary blade 2, and activates the low energy region of the boundary layer, thereby increasing the axial velocity of the main flow near the hub. As a result, the velocity triangle of the main flow in the vicinity of the hub is improved as shown in FIG. 3, and the inflow velocity vector of the stationary blade 2 is changed from C1 to C2, and the deviation from the optimum incident angle is corrected as compared with the conventional case.

【0028】さらに、絞り流路8に設置したガイドベー
ン9の作用により、漏れ流れF3の吹出し速度ベクトル
は、静翼流入設計角度を持つ速度ベクトルC4となり主
流に吹き出す。ここで、前述した主流の静翼流入速度ベ
クトルC2と合成され、静翼2への流入速度ベクトルは
C3となり、なお一層最適入射角とのずれが補正される
こととなる。
Further, due to the action of the guide vanes 9 installed in the throttle channel 8, the blowout velocity vector of the leakage flow F3 becomes the velocity vector C4 having the stationary blade inflow design angle and blows out to the mainstream. Here, the inflow velocity vector into the vane 2 becomes C3 by combining with the above-described mainstream vane inflow velocity vector C2, and the deviation from the optimum incident angle is further corrected.

【0029】このように本実施形態によれば、静翼2入
口のハブ側に、漏れ流れF3に軸方向速度成分を与え、
主流の流れF1に合流させるため、静翼2の軸方向に傾
斜する流路を設けたことにより、漏れ流れF3が主流に
吹き出すことによる主流の流れF1の乱れを低減させる
ことができる。
As described above, according to this embodiment, an axial velocity component is applied to the leakage flow F3 on the hub side of the inlet of the stationary blade 2,
Since the flow path is inclined to the axial direction of the stationary blade 2 in order to join the main flow F1, it is possible to reduce the turbulence of the main flow F1 caused by the leakage flow F3 blowing out into the main flow.

【0030】また、静翼2入口ハブ側に設けられた流路
が絞り流路8となっているために、漏れ流れF3が軸方
向速度成分を持つとともに、さらに増速され主流の流れ
F1に合流するため、境界層の低エネルギー領域を活性
化することにより、ハブ近傍での軸流速度が上昇し、ハ
ブ近傍での静翼2入射角度を適正値に近づけることがで
き、損失を低減させることができる。
Since the flow passage provided on the inlet hub side of the stationary blade 2 is the throttle flow passage 8, the leak flow F3 has an axial velocity component and is further accelerated to become the main flow F1. By activating the low-energy region of the boundary layer for merging, the axial flow velocity near the hub rises, and the incident angle of the stationary blade 2 near the hub can be brought close to an appropriate value, reducing loss. be able to.

【0031】さらに、静翼2入口ハブ側に設けられた絞
り流路8の内輪シュラウド5側に、ガイドベーン9を設
け、漏れ流れF3の主流への吹出し速度ベクトルを制御
し、その静翼2最適入射角に近づけることにより、なお
一層ハブ近傍での静翼2入射角度を適正値に近づけるこ
とができ、損失を低減させることができる。
Further, a guide vane 9 is provided on the inner ring shroud 5 side of the throttle channel 8 provided on the inlet vane 2 inlet hub side to control the blowing velocity vector of the leakage flow F3 to the main flow, and the vane 2 thereof. By approaching the optimum incident angle, the incident angle of the stationary blade 2 near the hub can be further approximated to an appropriate value, and the loss can be reduced.

【0032】図4は本発明に係る軸流圧縮機の静翼構造
の第2実施形態を示す斜視図である。なお、前記第1実
施形態と同一の部分には同一の符号を付して説明する。
FIG. 4 is a perspective view showing a second embodiment of the stationary blade structure of the axial compressor according to the present invention. The same parts as those in the first embodiment will be described with the same reference numerals.

【0033】前記第1実施形態では、漏れ流れF3の吹
出し制御を翼型断面を持つガイドベーン9により行うこ
ととしたが、本実施形態では、図4に示すようにガイド
ベーン9の代わりに板状のガイドプレート10を用いて
いる。したがって、本実施形態のように板状のガイドプ
レート10を用いても、前記第1実施形態と同様の効果
が得られる。
In the first embodiment, the blowout control of the leakage flow F3 is performed by the guide vane 9 having the airfoil cross section. However, in the present embodiment, the guide vane 9 is replaced by a plate as shown in FIG. The guide plate 10 in the shape of a circle is used. Therefore, even if the plate-shaped guide plate 10 is used as in the present embodiment, the same effect as in the first embodiment can be obtained.

【0034】なお、本発明は前記各実施形態に限定され
ることなく、種々の変更が可能である。例えば、前記第
1実施形態のガイドベーン9の代わりに、吹出し方向を
制御する溝などを形成してもよく、また当然のことなが
らこれらの制御機構を静止系である内輪シュラウド5で
はなく、回転部であるディスク3側に設けるようにして
もよい。
The present invention is not limited to the above-mentioned embodiments, and various modifications can be made. For example, instead of the guide vane 9 of the first embodiment, a groove or the like for controlling the blowing direction may be formed, and as a matter of course, these control mechanisms are not used for rotating the inner ring shroud 5 which is a stationary system but for rotating. It may be provided on the side of the disc 3 which is a part.

【0035】[0035]

【発明の効果】以上説明したように、本発明の請求項1
によれば、静翼入口のハブ側に、静翼軸方向に傾斜した
流路を設けたことにより、漏れ流れに軸方向速度成分を
与え、主流の向きに沿って合流させ、漏れ流れが半径方
向に主流に吹き出すことによる主流の乱れを低減させる
ことができる。
As described above, according to the first aspect of the present invention.
According to the authors, by providing a flow channel that is inclined in the axial direction of the stationary blade on the hub side of the inlet of the stationary blade, an axial velocity component is given to the leakage flow, and the leakage flow is merged along the direction of the main flow. It is possible to reduce the turbulence of the mainstream caused by blowing out in the mainstream in the direction.

【0036】請求項2によれば、請求項1記載の軸流圧
縮機の静翼構造において、静翼入口のハブ側に設けられ
た流路が絞り流路に形成されたことにより、漏れ流れが
軸方向速度成分を持つとともに、さらに増速されて主流
に合流するため、境界層の低エネルギー領域を活性化
し、ハブ近傍での軸流速度が上昇する。その結果、ハブ
近傍での静翼入射角度を適正値に近づけることができ、
損失を低減させることができる。
According to a second aspect of the present invention, in the stator vane structure of the axial compressor according to the first aspect, since the flow passage provided on the hub side of the stator vane inlet is formed in the throttle flow passage, the leakage flow is reduced. Has an axial velocity component and is further accelerated to join the main flow, activating the low energy region of the boundary layer and increasing the axial flow velocity near the hub. As a result, the incident angle of the vane near the hub can be brought close to an appropriate value,
The loss can be reduced.

【0037】請求項3によれば、請求項1または2記載
の軸流圧縮機の静翼構造において、静翼入口のハブ側に
設けられた絞り流路の内輪シュラウド側に、流体の漏れ
流れの吹出し方向を制御するガイドベーンが設置された
ことにより、漏れ流れの吹出し方向を静翼最適入射角に
近づけることで、ハブ近傍での静翼入射角度を一段と適
正値に近づけ、損失を著しく低減させることができる。
According to a third aspect of the present invention, in the stator vane structure of the axial flow compressor according to the first or second aspect, the leakage flow of the fluid flows to the inner ring shroud side of the throttle passage provided on the hub side of the stator vane inlet. By installing guide vanes that control the blowout direction of the stator, the blowout direction of the leak flow can be made closer to the optimum incident angle of the stationary blade, and the incident angle of the stationary blade near the hub can be made even closer to an appropriate value, and loss can be significantly reduced. Can be made.

【0038】請求項4によれば、請求項1または2記載
の軸流圧縮機の静翼構造において、静翼入口のハブ側に
設けられた絞り流路の内輪シュラウド側に、流体の漏れ
流れの吹出し方向を制御するガイドプレートが設置され
たことにより、請求項3と同様の効果が得られる。
According to a fourth aspect of the present invention, in the stator vane structure of the axial compressor according to the first or second aspect, the leakage flow of the fluid to the inner ring shroud side of the throttle passage provided on the hub side of the stator vane inlet. Since the guide plate for controlling the blowing direction of is installed, the same effect as the third aspect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る軸流圧縮機の静翼構造の第1実施
形態を示す断面図。
FIG. 1 is a sectional view showing a first embodiment of a stationary blade structure of an axial flow compressor according to the present invention.

【図2】図1のガイドベーンを示す拡大斜視図。FIG. 2 is an enlarged perspective view showing the guide vane of FIG.

【図3】本発明の第1実施形態の作用を示す説明図。FIG. 3 is an explanatory diagram showing an operation of the first embodiment of the present invention.

【図4】本発明に係る軸流圧縮機の静翼構造の第2実施
形態を示す拡大斜視図。
FIG. 4 is an enlarged perspective view showing a second embodiment of the stationary blade structure of the axial compressor according to the present invention.

【図5】従来の軸流圧縮機の流路部を示す断面図。FIG. 5 is a sectional view showing a flow path portion of a conventional axial flow compressor.

【図6】従来の軸流圧縮機の静翼構造を示す断面図。FIG. 6 is a cross-sectional view showing a stationary blade structure of a conventional axial flow compressor.

【図7】従来の軸流圧縮機の静翼構造における軸方向速
度分布を示す断面図。
FIG. 7 is a cross-sectional view showing an axial velocity distribution in a stationary blade structure of a conventional axial flow compressor.

【図8】従来の軸流圧縮機の静翼構造の作用を示す説明
図。
FIG. 8 is an explanatory view showing the action of a stationary blade structure of a conventional axial flow compressor.

【図9】静翼入射角最適点からの偏差と損失係数との関
係を示す図。
FIG. 9 is a diagram showing a relationship between a deviation from a vane blade incident angle optimum point and a loss coefficient.

【符号の説明】[Explanation of symbols]

1 動翼 2 静翼 3 ディスク 4 ケーシング 5 内輪シュラウド 6 フィン 7 動翼植込み部 8 絞り流路 9 ガイドベーン 10 ガイドプレート DESCRIPTION OF SYMBOLS 1 moving blade 2 stationary blade 3 disk 4 casing 5 inner ring shroud 6 fins 7 blade inserting portion 8 throttle channel 9 guide vane 10 guide plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 静翼のハブ側先端に内輪シュラウドが取
り付けられ、この内輪シュラウドの先端周方向に、前記
静翼の出口から入口に向かう流体の漏れ流れの量を低減
するフィンが設置された軸流圧縮機の静翼構造におい
て、前記静翼入口のハブ側に、静翼軸方向に傾斜した流
路を設けたことを特徴とする軸流圧縮機の静翼構造。
1. An inner ring shroud is attached to a hub-side tip of a vane, and fins are installed in a circumferential direction of a tip of the inner ring shroud to reduce a leak flow amount of fluid flowing from an outlet of the vane to an inlet. In the stator vane structure of the axial flow compressor, a stator vane structure of the axial flow compressor is characterized in that a flow passage inclined in the stator vane axial direction is provided on the hub side of the stator vane inlet.
【請求項2】 請求項1記載の軸流圧縮機の静翼構造に
おいて、前記静翼入口のハブ側に設けられた流路は、絞
り流路に形成されたことを特徴とする軸流圧縮機の静翼
構造。
2. The axial flow compressor according to claim 1, wherein the flow passage provided on the hub side of the stator vane inlet is a throttle flow passage. Vane structure of the machine.
【請求項3】 請求項1または2記載の軸流圧縮機の静
翼構造において、前記静翼入口のハブ側に設けられた絞
り流路の内輪シュラウド側に、流体の漏れ流れの吹出し
方向を制御するガイドベーンが設置されたことを特徴と
する軸流圧縮機の静翼構造。
3. The stationary vane structure for an axial flow compressor according to claim 1, wherein a blowing direction of a fluid leakage flow is set to an inner ring shroud side of a throttle passage provided on the hub side of the stationary vane inlet. A stator vane structure for an axial compressor, which is equipped with a control guide vane.
【請求項4】 請求項1または2記載の軸流圧縮機の静
翼構造において、前記静翼入口のハブ側に設けられた絞
り流路の内輪シュラウド側に、流体の漏れ流れの吹出し
方向を制御するガイドプレートが設置されたことを特徴
とする軸流圧縮機の静翼構造。
4. The static vane structure for an axial flow compressor according to claim 1, wherein a blowing direction of a fluid leakage flow is set to an inner ring shroud side of a throttle channel provided on the hub side of the stator vane inlet. A stator blade structure for an axial flow compressor, characterized in that a control guide plate is installed.
JP13193096A 1996-05-27 1996-05-27 Stator blade structure of axial flow compressor Pending JPH09317696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13193096A JPH09317696A (en) 1996-05-27 1996-05-27 Stator blade structure of axial flow compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13193096A JPH09317696A (en) 1996-05-27 1996-05-27 Stator blade structure of axial flow compressor

Publications (1)

Publication Number Publication Date
JPH09317696A true JPH09317696A (en) 1997-12-09

Family

ID=15069540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13193096A Pending JPH09317696A (en) 1996-05-27 1996-05-27 Stator blade structure of axial flow compressor

Country Status (1)

Country Link
JP (1) JPH09317696A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002221001A (en) * 2001-01-22 2002-08-09 Ishikawajima Harima Heavy Ind Co Ltd Mainstream blowoff method for gas turbine purge air
JP2005240727A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Impulse axial flow turbine
GB2452297A (en) * 2007-08-30 2009-03-04 Rolls Royce Plc Compressor leakage flow control
US20110158797A1 (en) * 2009-12-31 2011-06-30 General Electric Company Systems and apparatus relating to compressor operation in turbine engines
JP2012102728A (en) * 2010-11-05 2012-05-31 General Electric Co <Ge> Shroud leakage cover
KR101467210B1 (en) * 2011-12-30 2014-12-02 두산중공업 주식회사 Flow stabilization structure of compressor for a gas turbine
CN109964045A (en) * 2016-11-22 2019-07-02 日本电产伺服有限公司 Air supply device
CN110094364A (en) * 2018-01-31 2019-08-06 中国航发商用航空发动机有限责任公司 A kind of rotor blade and axial flow compressor
CN113366193A (en) * 2019-01-31 2021-09-07 三菱动力株式会社 Rotary machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586276B2 (en) * 2001-01-22 2010-11-24 株式会社Ihi Gas turbine purge air mainstream blowing method and structure
JP2002221001A (en) * 2001-01-22 2002-08-09 Ishikawajima Harima Heavy Ind Co Ltd Mainstream blowoff method for gas turbine purge air
JP2005240727A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Impulse axial flow turbine
GB2452297A (en) * 2007-08-30 2009-03-04 Rolls Royce Plc Compressor leakage flow control
GB2452297B (en) * 2007-08-30 2010-01-06 Rolls Royce Plc A compressor
US8616838B2 (en) * 2009-12-31 2013-12-31 General Electric Company Systems and apparatus relating to compressor operation in turbine engines
US20110158797A1 (en) * 2009-12-31 2011-06-30 General Electric Company Systems and apparatus relating to compressor operation in turbine engines
JP2012102728A (en) * 2010-11-05 2012-05-31 General Electric Co <Ge> Shroud leakage cover
KR101467210B1 (en) * 2011-12-30 2014-12-02 두산중공업 주식회사 Flow stabilization structure of compressor for a gas turbine
CN109964045A (en) * 2016-11-22 2019-07-02 日本电产伺服有限公司 Air supply device
CN110094364A (en) * 2018-01-31 2019-08-06 中国航发商用航空发动机有限责任公司 A kind of rotor blade and axial flow compressor
CN113366193A (en) * 2019-01-31 2021-09-07 三菱动力株式会社 Rotary machine
US11655723B2 (en) 2019-01-31 2023-05-23 Mitsubishi Heavy Industries, Ltd. Rotating machine

Similar Documents

Publication Publication Date Title
US8202039B2 (en) Blade shroud with aperture
JP3592387B2 (en) Gas turbine engine
JP5235253B2 (en) Convex compressor casing
CA2548894C (en) Deflectors for controlling entry of fluid leakage into the working fluid flowpath of a gas turbine engine
US7189055B2 (en) Coverplate deflectors for redirecting a fluid flow
JP3789131B2 (en) Rotor blade with controlled tip leakage flow
US20060269400A1 (en) Blade and disk radial pre-swirlers
JP2003065299A (en) Compressor assembly of gas turbine engine
JP2007321721A (en) Axial flow turbine stage and axial flow turbine
CN100383364C (en) Flow passage sealing of turbine and streamline structure thereof
JP5651459B2 (en) System and apparatus for compressor operation in a turbine engine
JP2009085185A (en) Axial flow turbine and axial flow turbine stage structure
US20120032403A1 (en) Seal assembly
JP2016109124A (en) Axial compressor endwall treatment for controlling leakage flow
US10619490B2 (en) Turbine rotor blade arrangement for a gas turbine and method for the provision of sealing air in a turbine rotor blade arrangement
JP2013526680A (en) Vortex generator for generating vortices upstream of compressor blade cascade
US20160177833A1 (en) Engine and method for operating said engine
JP2010159667A (en) Axial flow turbine
JPH0635878B2 (en) Compressor with recessed annular surface
EP3330491B1 (en) Fixed blade for a rotary machine and corresponding rotary machine
JP2011106474A (en) Axial flow turbine stage and axial flow turbine
JPH09317696A (en) Stator blade structure of axial flow compressor
US11326619B2 (en) Diffuser for a radial compressor
US10823197B2 (en) Vane diffuser and method for controlling a compressor having same
CN110431286B (en) Tip balancing slit for a turbomachine