JPH09317530A - Air-fuel ratio compensating control unit - Google Patents

Air-fuel ratio compensating control unit

Info

Publication number
JPH09317530A
JPH09317530A JP8131558A JP13155896A JPH09317530A JP H09317530 A JPH09317530 A JP H09317530A JP 8131558 A JP8131558 A JP 8131558A JP 13155896 A JP13155896 A JP 13155896A JP H09317530 A JPH09317530 A JP H09317530A
Authority
JP
Japan
Prior art keywords
fuel ratio
catalyst
air
deterioration
oxygen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8131558A
Other languages
Japanese (ja)
Inventor
Koji Ishihara
康二 石原
Kenichi Sato
健一 佐藤
Takayuki Toshiro
隆之 戸城
Shunji Yamada
俊次 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8131558A priority Critical patent/JPH09317530A/en
Publication of JPH09317530A publication Critical patent/JPH09317530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-fuel ratio compensating control in which emission is improved by providing compensated auxiliary air fuel ratio with initial value. SOLUTION: This control unit is provided with a catalyst (a) disposed in the exhaust path of an internal combustion engine, an upstream side oxigen sensor (b) disposed on the exhaust path so as to locate on the upstream side of the catalyst (a), a downstream side oxigen sensor (c) disposed on the exhaust path so as to locate on the downstream side of the catalyst (a), a main air fuel ratio compensating means (d) for computing compensated main air fuel ratio value according to the output V1 of the upstream side oxigen sensor (b), an auxiliary air fuel ratio compensating means (e) for computing compensated auxiliary air fuel ratio value according to the output V2 of the downstream side oxigen sensor (c), an air-fuel ratio control means (f) for controlling the air fuel ratio of the internal combustion engine according to the compemsated main air fuel ratio value and the compensated auxiliary air fuel ratio value, a catalyst deterioration detecting mains (g) for detecting the degree of deterioration of the catalyst, a memorizing means (h) for memorizing the detected degree of deterioration, an initial value computing means (i) for computing the initial value of the compensated auxiliary air fuel ratio value. Thereby, this initial value is utilized to control the air fuel ratio being based on the compensated auxiliary air fuel ratio value after the internal combustion engine is started.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の空燃比
制御装置、詳しくは、触媒の上流側および下流側にそれ
ぞれ酸素センサを備え、上流側酸素センサ出力に基づく
主空燃比制御に加え、下流側酸素センサ出力に基づいて
補助空燃比制御を行う内燃機関の空燃比制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more specifically, it is equipped with oxygen sensors on the upstream side and the downstream side of a catalyst, respectively, and in addition to main air-fuel ratio control based on the output of the upstream oxygen sensor The present invention relates to an air-fuel ratio control device for an internal combustion engine that performs auxiliary air-fuel ratio control based on the output of a downstream oxygen sensor.

【0002】[0002]

【従来の技術】触媒の上流側に設けられた酸素センサ出
力に基づいて、内燃機関の空燃比を制御するものがよく
知られているが、酸素センサの出力特性にばらつきを生
じるために、空燃比の補正精度の改善に支障が生じてい
る。こうした酸素センサの出力特性のばらつきや経時的
な劣化等を補償するために、触媒の下流側に新たに酸素
センサを設け、上流側酸素センサ出力に基づく主空燃比
制御に加えて、下流側酸素センサ出力に基づいて補助空
燃比制御を導入するものが既に公知となっている。
2. Description of the Related Art It is well known that the air-fuel ratio of an internal combustion engine is controlled based on the output of an oxygen sensor provided on the upstream side of a catalyst. There is a problem in improving the correction accuracy of the fuel ratio. In order to compensate for such variations in the output characteristics of the oxygen sensor and deterioration over time, a new oxygen sensor is installed on the downstream side of the catalyst, and in addition to the main air-fuel ratio control based on the upstream oxygen sensor output, the downstream oxygen It is already known to introduce auxiliary air-fuel ratio control based on sensor output.

【0003】こうした内燃機関の空燃比制御装置に関し
て、例えば特開平4−342849号公報には、触媒の
劣化度合に応じて下流側酸素センサによる制御応答性を
変化させるものが開示されており、触媒の劣化度合が小
さいときは制御応答性を小さくし、触媒の劣化度合が大
きいときは制御応答性を大きくしている。
Regarding such an air-fuel ratio control device for an internal combustion engine, for example, Japanese Patent Application Laid-Open No. 4-342849 discloses a device in which the control response of a downstream oxygen sensor is changed according to the degree of deterioration of the catalyst. The control responsiveness is reduced when the degree of deterioration of is small, and the control responsiveness is increased when the degree of deterioration of the catalyst is large.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の空燃比制御装置にあっては、触媒の劣化度合
に応じて下流側酸素センサによる制御応答性を変化させ
るものであるが、内燃機関の始動後、下流側酸素センサ
による補助空燃比制御を開始するとき、補助空燃比制御
に基づく補助空燃比補正量が所望の値に収束するまで時
間がかかり、この間にエミッションが悪化するという問
題があった。
However, in such a conventional air-fuel ratio control device, the control responsiveness by the downstream oxygen sensor is changed according to the degree of deterioration of the catalyst. After starting, when starting the auxiliary air-fuel ratio control by the downstream oxygen sensor, it takes time for the auxiliary air-fuel ratio correction amount based on the auxiliary air-fuel ratio control to converge to a desired value, and during this time, there is a problem that emission deteriorates. there were.

【0005】すなわち、図3に示すように、始動後のし
ばらくの間は、触媒の劣化度合に拘わらず、触媒内の空
燃比はリッチを示す。これは、始動時の燃料増量によ
り、触媒内にCOが吸着されているからと考えられる
が、触媒の劣化度合に応じて程度が異なる。すなわち、
劣化度合が小さいとき(新品相当)には、触媒の貴金属
の劣化が少なくCOの吸着も多いため、リッチの程度が
大きくなる。一方、触媒が劣化しているときは、触媒内
の貴金属が劣化しており、COの吸着も新品時に比べて
小さいため、リッチの程度が小さい。
That is, as shown in FIG. 3, for some time after the engine is started, the air-fuel ratio in the catalyst remains rich regardless of the degree of deterioration of the catalyst. It is considered that this is because CO is adsorbed in the catalyst due to the increase in the amount of fuel at the start, but the degree varies depending on the degree of deterioration of the catalyst. That is,
When the degree of deterioration is small (corresponding to a new product), the precious metal of the catalyst is less deteriorated and CO is adsorbed more, so that the rich degree is increased. On the other hand, when the catalyst is deteriorated, the precious metal in the catalyst is deteriorated and CO adsorption is smaller than that of a new product, so that the rich degree is small.

【0006】ここで、下流側酸素センサに基づく補助空
燃比制御にあっては、触媒内のリッチの程度に応じて補
助空燃比補正量をリーン側にふることで、触媒内の空燃
比をストイキ近傍に維持して、エミッションの改善に寄
与することが求められる。
Here, in the auxiliary air-fuel ratio control based on the downstream side oxygen sensor, the auxiliary air-fuel ratio correction amount is shifted to the lean side in accordance with the degree of richness in the catalyst, so that the air-fuel ratio in the catalyst is stoichiometric. It is required to maintain the vicinity and contribute to the improvement of emission.

【0007】ところが、従来の空燃比制御装置にあって
は、図3に一点鎖線で示したように補助空燃比補正量を
所望の値にまで収束させるまでに時間がかかり、触媒の
劣化度合が小さいときにはましてや多くの時間がかか
り、この間における触媒内の空燃比は補助空燃比補正量
が収束していないぶんだけリッチであり、エミッション
の改善が不十分であった。
However, in the conventional air-fuel ratio control device, as shown by the alternate long and short dash line in FIG. 3, it takes time for the auxiliary air-fuel ratio correction amount to converge to a desired value, and the degree of catalyst deterioration is reduced. When it is small, much more time is required, and during this period, the air-fuel ratio in the catalyst is so rich that the auxiliary air-fuel ratio correction amount has not converged, and the improvement of emission was insufficient.

【0008】本発明はこのような従来の問題点に着目し
てなされたもので、補助空燃比補正量に初期値を与える
ことにより、エミッションの改善が図れた空燃比補正制
御装置を提供することを目的とする。
The present invention has been made by paying attention to such a conventional problem, and provides an air-fuel ratio correction control device in which the emission is improved by giving an initial value to the auxiliary air-fuel ratio correction amount. With the goal.

【0009】[0009]

【課題を解決するための手段】本発明は上記の課題を解
決するために、図1に示すように、請求項1記載の発明
は、内燃機関の排気通路に設けられた触媒aと、触媒の
上流側の排気通路に設けられた上流側酸素センサbと、
触媒の下流側の排気通路に設けられた下流側酸素センサ
cと、上流側酸素センサの出力V1に応じて主空燃比補
正量を演算する主空燃比補正手段dと、下流側酸素セン
サの出力V2に応じて補助空燃比補正量を演算する補助
空燃比補正手段eと、主空燃比補正量と補助空燃比補正
量とに応じて内燃機関の空燃比を調整する空燃比調整手
段fと、触媒の劣化度合を検出する触媒劣化検出手段g
と、検出された劣化度合を記憶する記憶手段hと、記憶
された劣化度合に応じて補助空燃比補正量の初期値を演
算する初期値演算手段iとを備え、内燃機関の始動後、
前記初期値にて補助空燃比補正量による空燃比の調整を
開始するものである。
In order to solve the above-mentioned problems, the present invention, as shown in FIG. 1, provides a catalyst a provided in an exhaust passage of an internal combustion engine and a catalyst. An upstream oxygen sensor b provided in the exhaust passage on the upstream side of
The downstream oxygen sensor c provided in the exhaust passage on the downstream side of the catalyst, the main air-fuel ratio correction means d for calculating the main air-fuel ratio correction amount according to the output V1 of the upstream oxygen sensor, and the output of the downstream oxygen sensor. Auxiliary air-fuel ratio correction means e for calculating an auxiliary air-fuel ratio correction amount according to V2, and air-fuel ratio adjustment means f for adjusting the air-fuel ratio of the internal combustion engine according to the main air-fuel ratio correction amount and the auxiliary air-fuel ratio correction amount, Catalyst deterioration detecting means g for detecting the degree of deterioration of the catalyst
And a storage means h for storing the detected degree of deterioration and an initial value calculation means i for calculating an initial value of the auxiliary air-fuel ratio correction amount according to the stored degree of deterioration, and after starting the internal combustion engine,
The adjustment of the air-fuel ratio by the auxiliary air-fuel ratio correction amount is started at the initial value.

【0010】また、請求項2記載の発明は、図2に示す
ように、触媒の温度を検出する触媒温度検出手段を備
え、前記初期値演算手段は記憶された劣化度合と検出さ
れた触媒の温度とに応じて補助空燃比補正量の初期値を
演算するものである。
Further, as shown in FIG. 2, the invention according to claim 2 is provided with a catalyst temperature detecting means for detecting the temperature of the catalyst, and the initial value calculating means is for the stored degree of deterioration and the detected catalyst. The initial value of the auxiliary air-fuel ratio correction amount is calculated according to the temperature.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て添付の図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0012】図6は、本発明の第1の実施の形態におけ
る空燃比補正制御装置を示す図である。
FIG. 6 is a diagram showing an air-fuel ratio correction control apparatus according to the first embodiment of the present invention.

【0013】まず、第1の実施の形態の構成を説明する
と、エンジン1の上流には、吸気を浄化するエアクリー
ナ2と、吸気量を計測するエアフローメータ3と、吸気
量をコントロールするスロットルチャンバ4とが取り付
けられている。スロットルチャンバ4下流の吸気管5に
はインジェクタ6が取り付けられ、エンジン1にはエン
ジンの暖機状態を検出する水温センサ7とエンジンの回
転数を検出するクランク角センサ8が取り付けられてい
る。コントロールモジュール9では、エアフローメータ
3から送られる吸入空気量と、クランク角センサ8から
送られる回転数とから基本燃料噴射量を演算し、この基
本燃料噴射量に水温センサ7から送られる水温データに
基づく増量補正等、各種補正を加える。そして、こうし
て求められた燃料量に相当するパルス巾をインジェクタ
6に出力し吸気管6に燃料を噴射する。
First, to explain the configuration of the first embodiment, upstream of the engine 1, an air cleaner 2 for purifying intake air, an air flow meter 3 for measuring the intake air amount, and a throttle chamber 4 for controlling the intake air amount. And are attached. An injector 6 is attached to an intake pipe 5 downstream of the throttle chamber 4, and a water temperature sensor 7 for detecting a warm-up state of the engine and a crank angle sensor 8 for detecting a rotational speed of the engine are attached to the engine 1. The control module 9 calculates the basic fuel injection amount from the intake air amount sent from the air flow meter 3 and the rotation speed sent from the crank angle sensor 8, and uses this basic fuel injection amount as the water temperature data sent from the water temperature sensor 7. Various corrections such as increase correction based on the above are added. Then, the pulse width corresponding to the fuel amount thus obtained is output to the injector 6 and the fuel is injected into the intake pipe 6.

【0014】エンジン1の下流の排気管10には、触媒
11を挟み込む様にして上流側酸素センサ12と下流側
酸素センサ13とが取り付けられ、上流側酸素センサ1
2と下流側酸素センサ13の信号に基づいてコントロー
ルモジュール9内では理論空燃比となるような補正値を
演算し、空燃比をフィードバック制御する。上流側酸素
センサ12は触媒に入る排気ガスを理論空燃比とするた
めに触媒11の直上に取り付けられており、こうした上
流側酸素センサ12のばらつき、経時劣化を補正するの
が触媒の下流に取り付けられた下流側酸素センサ13で
ある。つまり、上流側酸素センサ12は主空燃比補正制
御を行ない、下流側酸素センサ13は主空燃比補正を更
に補正する補助空燃比補正制御を行うものである。ま
た、触媒11には、触媒の温度を検出する温度センサ1
4が取り付けられている。
An upstream oxygen sensor 12 and a downstream oxygen sensor 13 are attached to an exhaust pipe 10 downstream of the engine 1 so as to sandwich a catalyst 11, and the upstream oxygen sensor 1
Based on the signals of 2 and the oxygen sensor 13 on the downstream side, the control module 9 calculates a correction value to obtain the stoichiometric air-fuel ratio, and feedback-controls the air-fuel ratio. The upstream oxygen sensor 12 is mounted directly above the catalyst 11 in order to make the exhaust gas entering the catalyst have a stoichiometric air-fuel ratio, and it is mounted downstream of the catalyst to correct such variations and deterioration with time of the upstream oxygen sensor 12. The downstream oxygen sensor 13 is installed. That is, the upstream oxygen sensor 12 performs the main air-fuel ratio correction control, and the downstream oxygen sensor 13 performs the auxiliary air-fuel ratio correction control that further corrects the main air-fuel ratio correction. Further, the catalyst 11 has a temperature sensor 1 for detecting the temperature of the catalyst.
4 is attached.

【0015】ここで、主・補助空燃比補正制御につい
て、図7に基づいて説明する。まず、ステップS1(以
下、ステップの文言を省略して記述する)にて、触媒の
上流側酸素センサ出力FVO2を検出する。S2ではフ
ラグFLGRICH=1か否かを判別する。FLGRI
CH=1ならば前回リッチであったと判定してS3へ進
み、FLGRICH=0ならば前回リーンであったと判
定してS6へ進む。S3では、上流側酸素センサ12の
出力FVO2がスライスレベルSL以下となったかを判
別する。FVO2<SLであれば、リッチ状態からリー
ンに反転したものと判定してS4へ進み、FVO2<S
Lでなければ、リッチ状態が続いているものと判定して
S5へ進む。S4では、リッチからリーンに移行したこ
とをうけて、今度はリッチ化するように制御P分PLに
てリッチ化し、S9にてフラグFLGRICHを0にセ
ットする。また、S5では、リッチ状態が続いているこ
とをうけて、制御I分にてリーン化する。
The main / auxiliary air-fuel ratio correction control will be described with reference to FIG. First, in step S1 (hereinafter, the wording of step is omitted and described), the upstream oxygen sensor output FVO2 of the catalyst is detected. In S2, it is determined whether or not the flag FLGRICH = 1. FLGRI
If CH = 1, it is determined to be rich last time, and the process proceeds to S3. If FLGRICH = 0, it is determined to be lean last time, and the process proceeds to S6. In S3, it is determined whether the output FVO2 of the upstream oxygen sensor 12 has become equal to or lower than the slice level SL. If FVO2 <SL, it is determined that the rich state is reversed to lean, and the process proceeds to S4, where FVO2 <S
If it is not L, it is determined that the rich state continues, and the process proceeds to S5. In S4, in response to the transition from rich to lean, the control P amount PL is made rich so as to make rich this time, and the flag FLGRICH is set to 0 in S9. Further, in S5, since the rich state continues, the control I is made lean.

【0016】一方、S2にて、FLGRICH=0つま
り前回リーンであったと判定した場合、S6で上流側酸
素センサ出力FVO2がスライスレベル以上であるかを
判別する。FVO2>SLであれば、リーン状態からリ
ッチに反転したものと判定してS7へ進み、FVO2>
SLでなければ、リーン状態が続いているものと判定し
てS8へ進む。S7では、リーンからリッチに移行した
ことをうけて、今度はリーン化するように制御P分PR
にてリーン化し、S10にてフラグFLGRICHを1
にセットする。また、S8では、リーン状態が続いてい
ることをうけて、制御I分にてリッチ化する。このよう
に、リッチ状態であれば、リーン化し、リーン状態であ
ればリッチ化することで、常に触媒上流の空燃比を略ス
トイキに保つ補正が主空燃比補正である(この制御につ
いて、図8にタイムチャートを示す)。しかし、上流側
酸素センサ12は、そのばらつきや経時劣化により、触
媒上流の空燃比をストイキから乖離して制御することが
あり、それを補正するものが、次に述べる補助空燃比補
正である。
On the other hand, if it is determined in S2 that FLGRICH = 0, that is, the previous lean was detected, it is determined in S6 whether the upstream oxygen sensor output FVO2 is equal to or higher than the slice level. If FVO2> SL, it is determined that the lean state has been inverted to rich, and the process proceeds to S7, where FVO2>
If it is not SL, it is determined that the lean state continues, and the process proceeds to S8. In S7, after the shift from lean to rich, this time control P to increase lean
To make it lean, and set the flag FLGRICH to 1 at S10
Set to. Further, in S8, since the lean state continues, the control I is enriched. As described above, the main air-fuel ratio correction is a correction that always keeps the air-fuel ratio upstream of the catalyst substantially stoichiometric by making the fuel lean in the rich state and making the fuel rich in the lean state. Shows the time chart). However, the upstream oxygen sensor 12 may control the air-fuel ratio upstream of the catalyst away from stoichiometry due to its variation and deterioration over time, and the auxiliary air-fuel ratio correction described below corrects this.

【0017】S11では、下流側酸素センサ13の出力
RVO2を検出し、RVO2がスライスレベルRSL以
上であればフラグRFLGRICHを1にセットし、ス
ライスレベルRSL未満であればフラグRFLGRIC
Hを0にセットする。S12では、フラグRFLGRI
CH=1か否かを判別する。RFLGRICH=1なら
ばリッチと判定してS13へ進み、RFLGRICH=
0ならばリーンと判定してS14へ進む。S13では、
リッチであることをうけて、リーン化するように主空燃
比補正のたとえば制御P分を補正する。この場合、上流
側酸素センサ12がリーン出力からリッチ出力に移行す
る時の制御P分PRを増加させるか、上流側酸素センサ
12がリッチ出力からリーン出力に移行する時の制御P
分PLを減少させるかすることでリーン化する。そのほ
か、制御I分の減少を大きくするか、制御I分の増加を
小さくすることや、SLを小さく設定することでも同様
にリーン化できる。一方、S14では、リーンであるこ
とをうけて、リッチ化するように主空燃比補正のたとえ
ば制御P分を補正する。この場合、上流側酸素センサ1
2がリーン出力からリッチ出力に移行する時の制御P分
PRを減少させるか、上流側酸素センサ12がリッチか
らリーンに移行する時の制御P分PLを増加させるかす
ることでリッチ化する。そのほか、制御I分の減少を小
さくするか、制御I分の増加を大きくすることや、SL
を大きく設定することでも同様にリッチ化できる。これ
が、補助空燃比補正制御であり、主空燃比補正制御にお
ける上流側酸素センサ12のばらつきや経時劣化を補正
するもので、たとえば上述の制御P分PL,PRを増減
するように補正し、その結果、触媒内の空燃比を常に略
ストイキに保つことができるのである。
At S11, the output RVO2 of the downstream oxygen sensor 13 is detected, and if RVO2 is above the slice level RSL, the flag RFLGRICH is set to 1, and if it is below the slice level RSL, the flag RFLGRIC is set.
Set H to 0. In S12, the flag RFLGRI
It is determined whether CH = 1. If RFLGRICH = 1, it is determined to be rich, and the process proceeds to S13, where RFLGRICH =
If 0, it is judged to be lean and the process proceeds to S14. In S13,
Due to being rich, the main air-fuel ratio correction, for example, the control P amount is corrected so as to make the engine lean. In this case, the control P amount PR when the upstream oxygen sensor 12 shifts from the lean output to the rich output is increased, or the control P when the upstream oxygen sensor 12 shifts from the rich output to the lean output.
It is made lean by reducing the amount PL. In addition, leaning can also be achieved by increasing the decrease of the control I, decreasing the increase of the control I, or setting the SL to be small. On the other hand, in S14, the lean air-fuel ratio is corrected, so that the main air-fuel ratio is corrected, for example, by the control P so as to be rich. In this case, the upstream oxygen sensor 1
2 increases the control P amount PR when the lean output changes to the rich output or increases the control P amount PL when the upstream oxygen sensor 12 changes from the rich output to the lean output. In addition, decrease the amount of control I, increase the amount of control I, increase SL
Similarly, it can be made rich by setting a large value. This is the auxiliary air-fuel ratio correction control, which corrects variations and deterioration with time of the upstream oxygen sensor 12 in the main air-fuel ratio correction control. For example, the above-mentioned control P PL, PR is corrected so as to be increased or decreased. As a result, the air-fuel ratio in the catalyst can always be kept substantially stoichiometric.

【0018】次に、第1の実施の形態の作用を説明す
る。
Next, the operation of the first embodiment will be described.

【0019】図9のフローに示すように、まず、エンジ
ンの空燃比フィードバック制御に移行したかを判別する
ためにS20で水温TWが空燃比フィードバック制御開
始水温TWCLMP以上かを判別し、TW>TWCLM
PならばS21へ進み、TW>TWCLMPでなければ
リターンする。S21では、目標空燃比TFBYA=1
であるかを判別する。TFBYAは、燃料噴射に関する
係数で、始動時増量、低水温増量、高油水温増量、急加
速増量、全開時増量、ノック制御時増量時にはTFBY
A>1で、また減速時リーンクランプや燃料カット時に
は、TFBYA<1となる。ここで、TFBYA=1で
あれば、S22へ進み、TFBYA=1でなければリタ
ーンする。S22では、空燃比補正制御を行う上流側酸
素センサ12が活性して空燃比補正を開始できる状態か
を判別するため、フラグFLGCLを参照する。FLG
CLは上流側酸素センサ出力が、所定回数(たとえば1
回)反転していれば、FLGCL=1にセットされるも
のであり、上流側酸素センサが活性して空燃比補正を開
始できる状態ならば、S23へ進む。一方FLGCL=
1でなければ、上流側酸素センサ12が活性して空燃比
補正を開始できる状態でないと判断して、リターンす
る。
As shown in the flow chart of FIG. 9, first, in order to determine whether the engine air-fuel ratio feedback control has been entered, it is determined in S20 whether the water temperature TW is equal to or higher than the air-fuel ratio feedback control start water temperature TWCLMP, and TW> TWCLM.
If P, the process proceeds to S21. If TW> TWCLMP, the process returns. At S21, the target air-fuel ratio TFBYA = 1
Is determined. TFBYA is a coefficient related to fuel injection, and it is TFBY when increasing at startup, increasing low water temperature, increasing high oil temperature, rapidly increasing acceleration, increasing at full opening, and increasing during knock control.
A> 1, and TFBYA <1 at the time of lean clamp during deceleration or fuel cut. If TFBYA = 1, the process proceeds to S22, and if TFBYA = 1, the process returns. In S22, the flag FLGCL is referred to in order to determine whether or not the upstream oxygen sensor 12 that performs the air-fuel ratio correction control is activated and can start the air-fuel ratio correction. FLG
CL indicates that the upstream oxygen sensor output has reached a predetermined number of times (for example, 1
If it is reversed, FLGCL = 1 is set, and if the upstream oxygen sensor is activated and the air-fuel ratio correction can be started, the process proceeds to S23. On the other hand FLGCL =
If it is not 1, it is determined that the upstream oxygen sensor 12 is not activated and the air-fuel ratio correction cannot be started, and the routine returns.

【0020】S23では、記憶していた触媒の劣化度合
TRDを参照する。劣化度合TRDの検出については後
述する。次にS24で劣化度合に応じたP分補正値の初
期値PHOSLを図10に示すマップから参照する。S
25では制御P分をたとえばPL=PL−PHOSL
(PRならばPR=PR+PHOSL)として補正す
る。ここで、S23〜25について詳しく説明すると、
始動後は始動時増量や水温増量の影響で触媒の空燃比
は、図3に示すようにリッチ気味となっている。この原
因は、触媒の貴金属に排気ガス中のCOが吸着している
ためと考えられる。このとき、空燃比補正制御を開始す
る場合、COが吸着したためにこうしたリッチ化した分
を補正する必要があり、このときの補正をPHOSLに
てリーン化する。この傾向は、図11に示すように触媒
が劣化していない状態ほどリッチ化する傾向がある。触
媒が劣化していなければ、触媒中の貴金属が劣化してい
ないため、COを吸着しやすい状態となっているのでリ
ッチ傾向が強い。逆に、触媒が劣化している場合は、触
媒の貴金属が劣化しているため、COを吸着しにくい状
態となっているのでリッチ傾向が弱い。よって、始動
後、空燃比補正制御が始まった直後の補正としては、触
媒の劣化度合に応じて補正する必要がある。また、この
補正は、触媒の活性途中にも有効で、触媒が完全に活性
した後に劣化を診断し、補正の更新速度を変更すること
で補正する従来の技術のように、適正な空燃比となるま
でに時間のかかることもなく、直ちに適正な補正を行う
ことができるので、エミッションに対して有効である。
In step S23, the stored deterioration degree TRD of the catalyst is referred to. The detection of the deterioration degree TRD will be described later. Next, in S24, the initial value PHOSL of the P correction value according to the degree of deterioration is referred to from the map shown in FIG. S
25, the control P component is, for example, PL = PL-PHOSL
(If PR, PR = PR + PHOSL). Here, in detail about S23 to 25,
After the engine is started, the air-fuel ratio of the catalyst becomes rich as shown in FIG. It is considered that this is because CO in the exhaust gas is adsorbed on the precious metal of the catalyst. At this time, when the air-fuel ratio correction control is started, it is necessary to correct such enrichment due to CO adsorption, and the correction at this time is made lean by PHOSL. This tendency tends to become richer as the catalyst is not deteriorated as shown in FIG. If the catalyst is not deteriorated, the noble metal in the catalyst is not deteriorated and CO is easily adsorbed, so that the rich tendency is strong. On the contrary, when the catalyst is deteriorated, since the precious metal of the catalyst is deteriorated and CO is hardly adsorbed, the rich tendency is weak. Therefore, as the correction immediately after the start of the air-fuel ratio correction control after the start, it is necessary to correct according to the degree of deterioration of the catalyst. In addition, this correction is effective even during the activation of the catalyst, and after the catalyst is completely activated, the deterioration is diagnosed, and the correction is performed by changing the update speed of the correction. This is effective for emission because it is possible to make a proper correction immediately without taking time until it becomes.

【0021】さて、S26では下流側酸素センサRVO
2の平均値AVRVO2を演算し、S27ではDLTA
V=AVRVO2−RSLを演算する。図12に示すよ
うにDLTAVが正ならば下流側酸素センサ13の出力
がリッチであることを意味しており、負ならばリーンで
あることを意味している。S28ではDLTAVに応じ
たPHOSを参照する。図13に示すようにPHOSは
DLTAVが正ならばリッチなので、リーン化するよう
に正の値をもち、DLTAVが負ならばリーンなので、
リッチ化するように負の値をもつ。S29ではPL−P
HOS(PR+PHOS)として主空燃比補正を更に補
正する。次に、S30にてDLTAV=0であるかを判
定する。DLTAV=0であれば、空燃比補正は適正と
判断されたことになり、S31へ進み、DLTAV=0
でなければ、S26へ戻り、DLTAV=0つまり適正
な空燃比となるまで続ける。
Now, in S26, the downstream oxygen sensor RVO
The average value AVRVO2 of 2 is calculated, and DLTA is executed in S27.
Calculate V = AVRVO2-RSL. As shown in FIG. 12, if DLTAV is positive, it means that the output of the downstream oxygen sensor 13 is rich, and if it is negative, it means that it is lean. In S28, PHOS corresponding to DLTAV is referred to. As shown in FIG. 13, PHOS is rich if DLTAV is positive, so it has a positive value so that it becomes lean, and PHOS is lean if DLTAV is negative.
It has a negative value to make it rich. PL-P in S29
The main air-fuel ratio correction is further corrected as HOS (PR + PHOS). Next, in S30, it is determined whether DLTAV = 0. If DLTAV = 0, it means that the air-fuel ratio correction is determined to be appropriate, and the process proceeds to S31, where DLTAV = 0.
If not, the process returns to S26 and continues until DLTAV = 0, that is, an appropriate air-fuel ratio.

【0022】次にS31では、上流側酸素センサ出力F
VO2の周波数と下流側酸素センサ出力RVO2の周波
数比HZRATEを演算し、S32でHZRATEから
求まる触媒の劣化度合を検出し、記憶する。これは、図
14,15に示すようにFVO2に対し、RVO2が十
分になまっていれば、HZRATE(=RVO2周波数
/FVO2周波数)は0に近づき、触媒の劣化度合が小
さいことを意味している。また、FVO2に対し、RV
O2の波形が近づくほど、HZRATEが1に近づき、
触媒の劣化度合が大きいことを意味している。よって、
HZRATEにより触媒の劣化度合を検出することがで
きる。
Next, in S31, the upstream oxygen sensor output F
The frequency ratio HZRATE of the frequency of VO2 and the downstream oxygen sensor output RVO2 is calculated, and the degree of catalyst deterioration obtained from HZRATE is detected and stored in S32. This means that if RVO2 is sufficiently larger than FVO2 as shown in FIGS. 14 and 15, HZRATE (= RVO2 frequency / FVO2 frequency) approaches 0, and the degree of catalyst deterioration is small. . Also, for FVO2, RV
HZRATE approaches 1 as the O2 waveform gets closer,
This means that the degree of deterioration of the catalyst is large. Therefore,
The degree of deterioration of the catalyst can be detected by HZRATE.

【0023】次に、本発明の第2の実施の形態について
説明する。
Next, a second embodiment of the present invention will be described.

【0024】この第2の実施の形態における空燃比補正
制御装置は、触媒の劣化が同等でも始動後、空燃比補正
制御が開始されてからの触媒内の空燃比が、その時の触
媒温度によって異なる。触媒内の空燃比は触媒の温度上
昇とともに、リッチ度合が小さくなる。これは、触媒温
度の上昇により、触媒の転化率が向上し、吸着している
COが転化されるため、触媒のリッチ化の傾向が小さく
なる。触媒の劣化度合・触媒温度とリッチ度合の傾向
は、図5に示すように、低温で劣化度合が小さいほど、
リッチ度合は大きく、逆に高温で劣化度合大の時は、リ
ッチ度合は小さくなる。例えば、高温再始動時の様な場
合、触媒の温度が高温なため、常温の時に比べてリッチ
度合が小さい。よって、これに対処するように第一実施
例のS24を図16のS33,S34におきかえて制御
を行う。
In the air-fuel ratio correction control apparatus according to the second embodiment, the air-fuel ratio in the catalyst after the start of the air-fuel ratio correction control is different after the start even if the deterioration of the catalyst is the same, depending on the catalyst temperature at that time. . The air-fuel ratio in the catalyst becomes less rich as the temperature of the catalyst rises. This is because, as the catalyst temperature rises, the conversion rate of the catalyst is improved, and the adsorbed CO is converted, so that the tendency of enrichment of the catalyst is reduced. As shown in FIG. 5, the degree of deterioration of the catalyst, the tendency of the catalyst temperature and the degree of richness are as follows:
The rich degree is large, and conversely, when the deterioration degree is large at high temperature, the rich degree becomes small. For example, in the case of restarting at high temperature, the temperature of the catalyst is high, so the degree of richness is smaller than that at normal temperature. Therefore, in order to cope with this, S24 of the first embodiment is replaced with S33 and S34 of FIG. 16 and control is performed.

【0025】まず、S23で触媒の劣化度合TRDを参
照した後、S33で触媒温度TCを検出する。これは、
エンジン回転と負荷値の積算による予測であっても同様
である。次に、S34で図17に示したTRDとTCに
て割り付けられたPHOSマップを参照する。低温で劣
化度合が小さいほど、触媒のリッチ度合は大きいため、
PHOSは大きくなり、逆に高温で劣化度合大の時はリ
ッチ度合は小さくなるため、PHOSは小さくなる。
First, after referring to the degree of deterioration TRD of the catalyst in S23, the catalyst temperature TC is detected in S33. this is,
The same applies to the prediction made by integrating the engine speed and the load value. Next, in S34, the PHOS map allocated by TRD and TC shown in FIG. 17 is referred to. The lower the degree of deterioration at low temperature, the greater the degree of richness of the catalyst.
PHOS becomes large, and conversely, when the degree of deterioration is large at high temperature, the degree of rich becomes small, so PHOS becomes small.

【0026】以上説明してきたように、第1の実施の形
態で示した発明によれば、補助空燃比補正量に初期値P
HOSLを与えたので、例えば図3に一点鎖線で示すよ
うに補助空燃比補正量が収束するまでの収束時間がなく
なり、下流側酸素センサ13による補助空燃比制御を開
始すると同時に、触媒11内の空燃比を所望(たとえば
ストイキ)に制御することが可能となり、この間でのエ
ミッションの改善が得られる。ましてや、この初期値は
触媒の劣化度合TRDに応じたものであるから、こうし
たエミッションの改善は触媒の劣化度合に関係なく得ら
れることになる。
As described above, according to the invention shown in the first embodiment, the auxiliary air-fuel ratio correction amount is set to the initial value P.
Since HOSL is applied, the convergence time until the supplementary air-fuel ratio correction amount converges as shown by the alternate long and short dash line in FIG. 3, and the supplementary air-fuel ratio control by the downstream oxygen sensor 13 is started, and at the same time, the catalyst 11 It becomes possible to control the air-fuel ratio to a desired value (for example, stoichiometry), and emission can be improved during this period. Furthermore, since this initial value depends on the degree of deterioration TRD of the catalyst, such an improvement in emission can be obtained regardless of the degree of deterioration of the catalyst.

【0027】また、第2の実施の形態で示した発明によ
れば、触媒11の劣化度合TRDに加えて、触媒の温度
TCを考慮して補助空燃比制御の初期値PHOSLを演
算したので、始動時の触媒温度に拘わらずエミッション
の改善が得られる。すなわち、触媒が所望する補助空燃
比補正量は前述のように触媒の劣化度合のみならず、図
4に示すように触媒の温度にも左右され、触媒の温度が
高いほど補助空燃比補正量の初期値は小さくなることが
要求される。これは、触媒温度が上昇すると触媒の転化
率は向上するので、吸着しているCOの転化が促され、
触媒内のリッチ程度は小さくなる傾向にあるからであ
る。このため、触媒内の空燃比は触媒の劣化度合TRD
と触媒温度TCとの関係において図5に示すような傾向
であるから、図17に示す関係から補助空燃比補正量の
初期値PHOSLを求めれば、補助空燃比補正量の収束
時間をより短くすることが可能となり、よりエミッショ
ンの改善を図ることができるのである。
Further, according to the invention shown in the second embodiment, the initial value PHOSL of the auxiliary air-fuel ratio control is calculated in consideration of the temperature TC of the catalyst in addition to the degree of deterioration TRD of the catalyst 11. Improved emissions are obtained regardless of catalyst temperature at start-up. That is, the auxiliary air-fuel ratio correction amount desired by the catalyst depends not only on the degree of deterioration of the catalyst as described above, but also on the temperature of the catalyst as shown in FIG. The initial value is required to be small. This is because when the catalyst temperature rises, the conversion rate of the catalyst improves, so the conversion of adsorbed CO is promoted,
This is because the rich degree in the catalyst tends to be small. Therefore, the air-fuel ratio in the catalyst depends on the degree of deterioration of the catalyst TRD.
Since the relationship between the catalyst temperature TC and the catalyst temperature TC has a tendency as shown in FIG. 5, if the initial value PHOSL of the auxiliary air-fuel ratio correction amount is obtained from the relationship shown in FIG. 17, the convergence time of the auxiliary air-fuel ratio correction amount is further shortened. It becomes possible to improve the emission.

【0028】[0028]

【発明の効果】以上説明してきたように、請求項1記載
の発明によれば、補助空燃比補正量に初期値を与えたの
で、例えば図3に一点鎖線で示すように補助空燃比補正
量が収束するまでの収束時間がなくなり、下流側酸素セ
ンサによる補助空燃比制御を開始すると同時に、触媒内
の空燃比を所望(たとえばストイキ)に制御することが
可能となり、この間でのエミッションの改善が得られ
る。ましてや、この初期値は触媒の劣化度合に応じたも
のであるから、こうしたエミッションの改善は触媒の劣
化度合に関係なく得られることになる。
As described above, according to the invention of claim 1, since the initial value is given to the auxiliary air-fuel ratio correction amount, the auxiliary air-fuel ratio correction amount is indicated by, for example, the one-dot chain line in FIG. It becomes possible to control the air-fuel ratio in the catalyst to the desired value (for example, stoichiometric) at the same time as starting the auxiliary air-fuel ratio control by the downstream oxygen sensor, and improving the emission during this time. can get. Furthermore, since this initial value depends on the degree of deterioration of the catalyst, such improvement in emission can be obtained regardless of the degree of deterioration of the catalyst.

【0029】また、請求項2記載の発明によれば、触媒
の劣化度合に加えて、触媒の温度を考慮して補助空燃比
制御の初期値を演算したので、始動時の触媒温度に拘わ
らずエミッションの改善が得られる。すなわち、触媒温
度が上昇すると触媒の転化率は向上するので、吸着して
いるCOの転化が促され、触媒内のリッチ程度は小さく
なる傾向にある。このため、触媒の温度が高いときは低
いときに比べて補助空燃比補正量をリーン側にふる必要
がなく、補助空燃比制御の初期値の演算に触媒温度を考
慮することで、補助空燃比補正量の収束時間をより短く
することが可能となり、よりエミッションの改善を図る
ことができる。
Further, according to the second aspect of the present invention, the initial value of the auxiliary air-fuel ratio control is calculated in consideration of the catalyst temperature in addition to the degree of catalyst deterioration, so that the catalyst temperature at the time of starting is calculated. Emission improvement is obtained. That is, since the conversion rate of the catalyst increases as the catalyst temperature rises, the conversion of adsorbed CO is promoted, and the rich degree in the catalyst tends to decrease. Therefore, when the temperature of the catalyst is high, it is not necessary to shift the auxiliary air-fuel ratio correction amount to the lean side compared to when it is low, and by considering the catalyst temperature in the calculation of the initial value of the auxiliary air-fuel ratio control, the auxiliary air-fuel ratio The convergence time of the correction amount can be shortened, and the emission can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の発明に対応する説明図。FIG. 1 is an explanatory diagram corresponding to the invention of claim 1.

【図2】請求項2記載の発明に対応する説明図。FIG. 2 is an explanatory diagram corresponding to the invention of claim 2.

【図3】従来例と本制御による空燃比の違いを示す説明
図。
FIG. 3 is an explanatory diagram showing a difference in air-fuel ratio between a conventional example and this control.

【図4】触媒温度と触媒内の空燃比の関係を示す説明
図。
FIG. 4 is an explanatory diagram showing a relationship between a catalyst temperature and an air-fuel ratio in the catalyst.

【図5】触媒温度と触媒の劣化度合と触媒内空燃比の関
係を示す説明図。
FIG. 5 is an explanatory diagram showing a relationship between a catalyst temperature, a catalyst deterioration degree, and an in-catalyst air-fuel ratio.

【図6】本発明の第1の実施の形態の構成を示す説明
図。
FIG. 6 is an explanatory diagram showing the configuration of the first embodiment of the present invention.

【図7】従来の主/補助空燃比補正制御を表わすフロー
チャート。
FIG. 7 is a flowchart showing a conventional main / auxiliary air-fuel ratio correction control.

【図8】主空燃比補正制御のタイムチャート。FIG. 8 is a time chart of main air-fuel ratio correction control.

【図9】本発明の第1の実施の形態の空燃比補正制御の
フローチャート。
FIG. 9 is a flowchart of air-fuel ratio correction control according to the first embodiment of this invention.

【図10】触媒劣化度合TRDとP分補正値PHOSL
の関係を示す説明図。
FIG. 10 is a degree of catalyst deterioration TRD and a correction value PHOSL for P component.
FIG.

【図11】触媒劣化度合TRDと触媒内空燃比の関係を
示す説明図。
FIG. 11 is an explanatory diagram showing a relationship between a catalyst deterioration degree TRD and an in-catalyst air-fuel ratio.

【図12】触媒下流側酸素センサ出力RVO2と空燃比
の関係を示す説明図。
FIG. 12 is an explanatory diagram showing a relationship between a catalyst downstream side oxygen sensor output RVO2 and an air-fuel ratio.

【図13】触媒下流側酸素センサ出力と下流側酸素セン
サのスライスレベルとの差分であるDLTAVとP分補
正値PHOSの関係を示す説明図。
FIG. 13 is an explanatory diagram showing the relationship between DLTAV, which is the difference between the catalyst downstream-side oxygen sensor output, and the slice level of the downstream-side oxygen sensor, and the P component correction value PHOS.

【図14】上流側酸素センサ出力FVO2と下流側酸素
センサ出力RVO2の周波数を比較する説明図。
FIG. 14 is an explanatory diagram comparing frequencies of an upstream oxygen sensor output FVO2 and a downstream oxygen sensor output RVO2.

【図15】FVO2とRVO2の周波数比であるHZR
ATEと劣化度合TRDの関係を示す説明図。
FIG. 15 is a frequency ratio of FVO2 and RVO2, HZR.
Explanatory drawing which shows the relationship between ATE and deterioration degree TRD.

【図16】本発明の第2の実施の形態のフローチャー
ト。
FIG. 16 is a flowchart of the second embodiment of the present invention.

【図17】触媒温度TCと触媒劣化度合TRDとP分補
正値の関係を示す説明図。
FIG. 17 is an explanatory diagram showing a relationship between a catalyst temperature TC, a catalyst deterioration degree TRD, and a P component correction value.

【符号の説明】[Explanation of symbols]

a 触媒 b 上流側酸素センサ c 下流側酸素センサ d 主空燃比補正手段 e 補助空燃比補正手段 f 空燃比補正手段 g 触媒劣化検出手段 h 記憶手段 i 初期値演算手段 j 触媒温度検出手段 1 エンジン 2 エアクリーナ 3 エアフロメータ 4 スロットルチャンバル 5 吸気管 6 インジェクタ 7 水温センサ 8 クランク角センサ 9 コントロールモジュール 10 排気管 11 触媒 12 上流側酸素センサ 13 下流側酸素センサ a catalyst b upstream oxygen sensor c downstream oxygen sensor d main air-fuel ratio correction means e auxiliary air-fuel ratio correction means f air-fuel ratio correction means g catalyst deterioration detection means h storage means i initial value calculation means j catalyst temperature detection means 1 engine 2 Air cleaner 3 Air flow meter 4 Throttle chamber 5 Intake pipe 6 Injector 7 Water temperature sensor 8 Crank angle sensor 9 Control module 10 Exhaust pipe 11 Catalyst 12 Upstream oxygen sensor 13 Downstream oxygen sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 俊次 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunji Yamada 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に設けられた触媒
と、触媒の上流側の排気通路に設けられた上流側酸素セ
ンサと、触媒の下流側の排気通路に設けられた下流側酸
素センサと、上流側酸素センサの出力に応じて主空燃比
補正量を演算する主空燃比補正手段と、下流側酸素セン
サの出力に応じて補助空燃比補正量を演算する補助空燃
比補正手段と、主空燃比補正量と補助空燃比補正量とに
応じて内燃機関の空燃比を調整する空燃比調整手段と、
触媒の劣化度合を検出する触媒劣化検出手段と、検出さ
れた劣化度合を記憶する記憶手段と、記憶された劣化度
合に応じて補助空燃比補正量の初期値を演算する初期値
演算手段とを備え、内燃機関の始動後、前記初期値にて
補助空燃比補正量による空燃比の調整を開始することを
特徴とする内燃機関の空燃比制御装置。
1. A catalyst provided in an exhaust passage of an internal combustion engine, an upstream oxygen sensor provided in an exhaust passage upstream of the catalyst, and a downstream oxygen sensor provided in an exhaust passage downstream of the catalyst. A main air-fuel ratio correction unit that calculates a main air-fuel ratio correction amount according to the output of the upstream oxygen sensor; and an auxiliary air-fuel ratio correction unit that calculates an auxiliary air-fuel ratio correction amount according to the output of the downstream oxygen sensor. Air-fuel ratio adjusting means for adjusting the air-fuel ratio of the internal combustion engine according to the air-fuel ratio correction amount and the auxiliary air-fuel ratio correction amount,
A catalyst deterioration detecting means for detecting a deterioration degree of the catalyst, a storage means for storing the detected deterioration degree, and an initial value calculating means for calculating an initial value of the auxiliary air-fuel ratio correction amount according to the stored deterioration degree. An air-fuel ratio control apparatus for an internal combustion engine, comprising: starting the adjustment of the air-fuel ratio by the auxiliary air-fuel ratio correction amount at the initial value after the internal combustion engine is started.
【請求項2】 触媒の温度を検出する手段を備え、前記
初期値演算手段は記憶された劣化度合と検出された触媒
の温度とに応じて補助空燃比補正量の初期値を演算する
ことを特徴とする請求項1記載の内燃機関の空燃比制御
装置。
2. A means for detecting the temperature of the catalyst, wherein the initial value calculation means calculates the initial value of the auxiliary air-fuel ratio correction amount according to the stored degree of deterioration and the detected temperature of the catalyst. An air-fuel ratio control system for an internal combustion engine according to claim 1.
JP8131558A 1996-05-27 1996-05-27 Air-fuel ratio compensating control unit Pending JPH09317530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8131558A JPH09317530A (en) 1996-05-27 1996-05-27 Air-fuel ratio compensating control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8131558A JPH09317530A (en) 1996-05-27 1996-05-27 Air-fuel ratio compensating control unit

Publications (1)

Publication Number Publication Date
JPH09317530A true JPH09317530A (en) 1997-12-09

Family

ID=15060885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8131558A Pending JPH09317530A (en) 1996-05-27 1996-05-27 Air-fuel ratio compensating control unit

Country Status (1)

Country Link
JP (1) JPH09317530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252472A (en) * 2010-06-04 2011-12-15 Hitachi Automotive Systems Ltd Control device of engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252472A (en) * 2010-06-04 2011-12-15 Hitachi Automotive Systems Ltd Control device of engine

Similar Documents

Publication Publication Date Title
JP5095973B2 (en) Fuel injection control device for various types of fuel engines
JP3498817B2 (en) Exhaust system failure diagnosis device for internal combustion engine
JPS60240840A (en) Control device of air-fuel ratio in internal-combustion engine
JPS6165038A (en) Air-fuel ratio control system
JPH08158918A (en) Air fuel ratio learning control device for internal combustion engine
JP3206357B2 (en) Fuel injection amount control device for internal combustion engine
JP3052642B2 (en) Air-fuel ratio control device for internal combustion engine
JPH04339147A (en) Control device for air-fuel ratio of internal combustion engine
US20040050378A1 (en) Air-fuel ratio control apparatus for internal combustion engine
JP2912474B2 (en) Air-fuel ratio control method for internal combustion engine
JP3203440B2 (en) Air-fuel ratio feedback control device for internal combustion engine
US5634449A (en) Engine air-fuel ratio controller
JPH09317530A (en) Air-fuel ratio compensating control unit
JP3061277B2 (en) Air-fuel ratio learning control method and device
JP2001304018A (en) Air/fuel ratio control device for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP3687128B2 (en) Engine air-fuel ratio control device
JPH11287145A (en) Air-fuel ratio controller for multiple cylinder internal combustion engine
JPH07180580A (en) Air-fuel ratio control device for engine
JP2510857B2 (en) Feedback Controller with Learning Function for Internal Combustion Engine
JP3183068B2 (en) Fuel supply control device for internal combustion engine
JP3517985B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000097081A (en) Air-fuel ratio control device of internal-combustion engine
JP2912475B2 (en) Air-fuel ratio control method for internal combustion engine
JP3186186B2 (en) Air-fuel ratio control device for internal combustion engine