JPH09317029A - Base isolation structure for building or the like - Google Patents

Base isolation structure for building or the like

Info

Publication number
JPH09317029A
JPH09317029A JP15347096A JP15347096A JPH09317029A JP H09317029 A JPH09317029 A JP H09317029A JP 15347096 A JP15347096 A JP 15347096A JP 15347096 A JP15347096 A JP 15347096A JP H09317029 A JPH09317029 A JP H09317029A
Authority
JP
Japan
Prior art keywords
steel plate
building
plate
seismic isolation
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15347096A
Other languages
Japanese (ja)
Other versions
JP2994262B2 (en
Inventor
Shinichi Izumi
▲真▼一 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8153470A priority Critical patent/JP2994262B2/en
Publication of JPH09317029A publication Critical patent/JPH09317029A/en
Application granted granted Critical
Publication of JP2994262B2 publication Critical patent/JP2994262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent earthquake damages by laying a base isolation structure between a lower panel secured to a foundation and an upper panel secured to a building, coupling spherical projections formed on many plates and another plate to the spherical recesses on the latter plate, and superposing all the plates via gaps with one another. SOLUTION: A steel plate 10 secured to a foundation 1 moves, due to an earthquake lateral shake, and laterally slides into the projection 7 of an upper steel plate 8, thereby pushing up the projection, 7. Also, the weight of a building acts on the upper steel plate 10 and applies a braking force thereto. The motion of the steel plate 10 is thereby stopped. The upper steel plate 8, then, moves and the projection 7 thereof laterally slides into the recess 9 of the steel plate 10. The motion of the steel plate 8 is stopped, due to a braking force resulting from the weight of the building. Similarly, the projection 7 and the recess 9 of steel plates 8 and 10 at an upper level sequentially slides in a lateral direction. Thus, a total lateral slide distance is set at a value larger than the predicted maximum amplitude of a lateral shake, and the lateral slide is kept at such a level as stopped within the spherical projections 7 and 9 at an amplitude equal to or smaller than the value. According to this construction, the upper panel can be kept free from the effect of a steel material fixed to the building, upon occurrence of an earthquake, and the occurrence of earthquake damages can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は、建築物等における
免震構造、詳しくは地震による基礎の振動が建築物への
伝わることをより小さくするようにして建築物の地震被
害を軽減する免震構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation structure for a building or the like, and more specifically, seismic isolation for reducing the vibration of the foundation caused by an earthquake from being transmitted to the building to reduce the earthquake damage of the building. Regarding the structure.

【0002】[0002]

【従来の技術】地震による基礎の振動を建築物へ伝えな
いようにする免震構造としては従来から種々のものが提
案され実用に供されている。例えば基礎と建築物との間
にクッションゴム、転動ボール、棒材束等の免震機構を
設置した構造のものは周知である。
2. Description of the Related Art Various seismic isolation structures have been proposed and put to practical use as seismic isolation structures for preventing the vibration of the foundation due to an earthquake from being transmitted to buildings. For example, a structure having a seismic isolation mechanism such as cushion rubber, rolling balls, and a bundle of rods installed between a foundation and a building is well known.

【0003】然し乍ら、前記各免震機構は、ゴムの弾
性、ボールの移動、棒の撓み等を利用して免震を行わせ
ようとするもので、免震の効果がそれぞれ完全とはいえ
ない点がある。
However, each of the seismic isolation mechanisms tries to provide seismic isolation by utilizing the elasticity of rubber, the movement of balls, the bending of rods, etc., and the seismic isolation effect cannot be said to be perfect. There is a point.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記課題を
解決するためになされたもので、建築物の基礎が振動す
ると、免震機構を構成する多数の板が移動してエネルギ
−を吸収し、制動力となる抵抗を受けるように構成し
て、地震の振動を効果的に吸収させるため免震の効果に
優れた建築物の地震被害の防止に顕著な効果を発揮する
建築物における免震構造を提供することをその課題とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems. When the foundation of a building vibrates, a large number of plates constituting the seismic isolation mechanism move to absorb energy. However, it is configured to receive the resistance that acts as a braking force, and effectively absorbs the vibration of the earthquake. The task is to provide a seismic structure.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
の手段として、本発明に係る請求項1の建築物等におけ
る免震構造は、基礎に固定した下盤と、建築物に固定し
た上盤との間に免震機構が設置される建築物等の免震構
造において、前記免震機構が多数の板を一方の板に設け
た球状凸面が他方の板に前記球状凸面より大きい半径で
設けた球状凹面に係合して各板間に僅かな隙間を存在す
るように重合された構成を採用することを特徴とする。
また、多数の板を一方の板に設けた球状凸面が他方の板
に前記球状凸面より大きい半径で設けた球状凹面に係合
して、各板間に僅かな隙間が存在するように重合させた
構造の免震機構の外側には、建築物に固定した上盤と基
礎に固定した下盤とを連結する可撓性の連結部材を配置
する構成であってもよい。
As a means for solving the above problems, a seismic isolation structure for a building or the like according to claim 1 of the present invention is a base plate fixed to a foundation and a base plate fixed to a building. In a seismic isolation structure such as a building in which a seismic isolation mechanism is installed between a board and the seismic isolation mechanism, the seismic isolation mechanism provides a large number of plates on one plate with a spherical convex surface that is larger than the spherical convex surface on the other plate. It is characterized by adopting a structure in which the spherical concave surfaces are provided so as to engage with each other so that there is a slight gap between the plates.
Further, a spherical convex surface provided on one plate with a large number of plates is engaged with a spherical concave surface provided on the other plate with a radius larger than the spherical convex surface, and superposed so that a slight gap exists between the plates. A flexible connecting member for connecting the upper board fixed to the building and the lower board fixed to the foundation may be arranged outside the seismic isolation mechanism having the above structure.

【0006】[0006]

【発明の実施の形態】以下、図面に基づいて本発明に係
る建築物における免震構造の実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a seismic isolation structure in a building according to the present invention will be described below with reference to the drawings.

【0007】図において、符号Aは本発明に係る建築物
における免震機構を示すもので、上記建築物における免
震機構Aは、図1に示す通り基礎1へ所要数のアンカー
ボルト2により固定した鋼材の下盤3と、建築物4へ所
要数の緊結ボルト5により固定した鋼材の上盤6との間
へ設置する。免震機構Aの詳しい構成は、両面に図4に
示す通り直径rの球状の凸面7を平面視が図1、図6の
通りとなるように一定間隔で多数設けた鋼材の板8と、
両面に図3に示す通り前記球状の凸面7に間隔を合わせ
て図4の通りこれよりも大きい直径Rの球状の凹面9を
設けた鋼材の板10とを、前記凹面9に前記凸面7を係
合させて鋼材の板8と鋼材の板10との間に僅かな隙間
hが形成されるように多数段を積み重ね、最下段と最上
段に鋼材の板10が位置するようにして、最下段の鋼材
の板10を下盤3に結合し、最上段の鋼材の板10を鋼
材の上盤6に結合する。
In the drawing, reference numeral A indicates a seismic isolation mechanism in a building according to the present invention. The seismic isolation mechanism A in the building is fixed to a foundation 1 by a required number of anchor bolts 2 as shown in FIG. It is installed between the lower plate 3 of the steel material and the upper plate 6 of the steel material fixed to the building 4 by the required number of fastening bolts 5. As for the detailed structure of the seismic isolation mechanism A, as shown in FIG. 4, steel plates 8 provided with a large number of spherical convex surfaces 7 having a diameter r at regular intervals as shown in FIGS.
As shown in FIG. 3, a steel plate 10 having spherical concave surfaces 9 having a diameter R larger than the spherical convex surfaces 7 is provided on both sides thereof as shown in FIG. 3, and the convex surface 7 is provided on the concave surface 9. A large number of stages are stacked so that a slight gap h is formed between the steel plate 8 and the steel plate 10 by engaging with each other, and the steel plates 10 are positioned at the lowermost stage and the uppermost stage. The lower steel plate 10 is connected to the lower plate 3, and the uppermost steel plate 10 is connected to the upper plate 6 of the steel.

【0008】前記した鋼材の板8の凸面7と鋼材の板1
0の凹面との間において横辷りを生じさせるためには、
前記のように鋼材の板8と鋼材の板10との間に隙間h
を設けて両者が接触しないようにするだけでなく、凸面
7と凹面9との接触面を潤滑して摩擦抵抗を低減させる
とともに、鋼材の板8及び鋼材の板10に錆びや腐食を
生じさせないため、前記隙間hに耐熱油等の防錆を兼ね
た潤滑剤を充填して置くもので、潤滑剤の充填に際しこ
れが垂れ落ちることを防止するため鋼材の下盤3には外
側へ張り出す受皿11を取り付けて、この受皿11をア
ンカーボルト2や後記する可撓性連結部材が貫通する部
分には公知のコーキングを施して潤滑剤を漏洩させない
ようにする。
The convex surface 7 of the above-mentioned steel plate 8 and the steel plate 1
In order to cause stagnation between the concave surface of 0,
As described above, the gap h is formed between the steel plate 8 and the steel plate 10.
Not only to prevent them from coming into contact with each other, but also to lubricate the contact surface between the convex surface 7 and the concave surface 9 to reduce frictional resistance, and to prevent rust and corrosion on the steel plate 8 and the steel plate 10. Therefore, the gap h is filled with a lubricant that also serves as rust preventive, such as heat-resistant oil. To prevent the lubricant from dripping when the lubricant is filled, the lower plate 3 of the steel material has a saucer protruding outward. 11 is attached, and well-known caulking is applied to a portion through which the anchor bolt 2 and a flexible connecting member to be described later penetrate this receiving tray 11 so as to prevent the lubricant from leaking.

【0009】なお、前記のように積み重ねる各段の鋼材
の板8と鋼材の板10に設ける球状の凸面7と凹面9の
配置は、上の段の鋼材の板8及び鋼材の板10に設ける
凸面7及び凹面9を実線で示し、下の段の鋼材の板8及
び鋼材の板10とに設ける凸面7及び凹面9を点線で示
すと、図6のように実線で示す四つの凸面7及び凹面9
の中心に一つの点線で示す凸面7及び凹面9が位置する
ように上の段の鋼材の板8、鋼材の板10と下の段の鋼
材の板8、鋼材の板10とでは凸面7及び凹面9の位置
をずらして圧縮力を受ける点の数を増やし、多段の鋼材
の板8と鋼材の板10の積み重ねと相俟って多数の点に
圧縮力を分散させることにより、圧縮力に耐えて鋼材の
板8と鋼材の板10が隔離した状態で凸面7が凹面9内
を円滑に横辷りをするようにするとともに、各凸面7に
急激な圧縮力が作用するときは、多数の凸面7の変形歪
によってこの圧縮応力を吸収させるようにする。
The arrangement of the spherical convex surface 7 and the concave surface 9 provided on the steel plate 8 and the steel plate 10 at each stage to be stacked as described above is provided on the steel plate 8 and the steel plate 10 at the upper stage. The convex surface 7 and the concave surface 9 are indicated by solid lines, and the convex surface 7 and the concave surface 9 provided on the lower steel plate 8 and the steel plate 10 are indicated by dotted lines. As shown in FIG. Concave 9
The upper surface steel plate 8, the steel plate 10 and the lower steel plate 8 and the steel plate 10 have convex surfaces 7 and 7 such that the convex surface 7 and the concave surface 9 indicated by one dotted line are located at the center of By shifting the position of the concave surface 9 to increase the number of points that receive the compressive force, and by combining the stack of the multi-stage steel plate 8 and the steel plate 10 with each other, the compressive force is distributed to a large number of points, so that the compressive force is reduced. With the steel plate 8 and the steel plate 10 isolated from each other, the convex surface 7 smoothly sways inside the concave surface 9, and when a sharp compressive force acts on each convex surface 7, a large number of The compressive stress is absorbed by the deformation strain of the convex surface 7.

【0010】また、前記免震機構Aを構成する鋼材の板
8と鋼材の板10は、原理的には1枚でもよいが1枚の
鋼材の板8の両面に球状の凸面7を形成したり、一枚の
鋼材の板10の両面に凹面9を形成したりすることは困
難であるから、鋼材の板8と鋼材の板10は、図3に示
す通り2枚の鋼材の板8aと鋼材の板8b及び鋼材の板
10aと鋼材の板10bに分けて、鋼材の板8aと鋼材
の板8bにはそれぞれ凸面7を、鋼材の板10aと鋼材
の板10bにはそれぞれ凹面9を形成した後、二枚の鋼
材の板8aと鋼材の板8b及び鋼材の板10aと鋼材の
板10bとを重ね合わせて、周縁を溶接11によりて結
合して一体化すれば、両面に凸面7を有する鋼材の板8
と、両面に凹面9を有する鋼材の板10とを容易に形成
することができる。そして、鋼材の板10の最下段のも
のと最上段のものは、前記のように二枚重ねで使用して
もよいが、一枚は機能上は不要であるから、図3に最下
段の鋼材の板10を図示するように1枚だけを用いる。
In principle, the steel plate 8 and the steel plate 10 constituting the seismic isolation mechanism A may be one, but a spherical convex surface 7 is formed on both sides of one steel plate 8. Or, it is difficult to form the concave surfaces 9 on both sides of one steel plate 10. Therefore, the steel plate 8 and the steel plate 10 have two steel plates 8a as shown in FIG. The steel plate 8b and the steel plate 10a and the steel plate 10b are divided into the steel plate 8a and the steel plate 8b, and the convex surface 7 is formed respectively, and the steel plate 10a and the steel plate 10b are respectively formed with the concave surface 9. After that, the two steel plates 8a and 8b and the steel plate 10a and the steel plate 10b are overlapped with each other and the peripheral edges thereof are joined by welding 11 to be integrated with each other. Steel plate 8
The steel plate 10 having the concave surfaces 9 on both sides can be easily formed. The lowermost one and the uppermost one of the steel plates 10 may be used by stacking two sheets as described above, but one sheet is not functionally necessary, so that the steel sheet shown in FIG. Only one plate 10 is used as shown.

【0011】次に、符号12は可撓性を有する連結部材
を示すもので、図1に示すように多数のリング13を連
ねて形成することにより方向性のない可撓性が得られる
鎖を用いるもので上端と下端のリング13にそれぞれボ
ルト14を連結し、これらボルト14を基礎1に固定し
た下盤3にあけた孔と、建築物4に固定した鋼材の上盤
6にあけた孔とへ挿し通して、鋼材の下盤3及び鋼材の
上盤6から外へ出る部分にナット15を螺合させて、鋼
材の下盤3と鋼材の上盤6とを連結させたもので、この
可撓性の連結部材12を取り付けたり、交換したりする
ため建築物4と基礎1には欠き込み16を設けて、この
欠き込み16内においてボルト14へのナット15の螺
合及び離脱が容易に行えるようにする。しかし、建築物
によっては構造上、引き抜き力が作用しないものもある
から、このように建築物に対しては連結部材12は使用
しない場合もある。
Next, reference numeral 12 denotes a flexible connecting member. As shown in FIG. 1, a large number of rings 13 are formed in series so as to form a chain which provides flexibility without directivity. The bolts 14 are respectively connected to the upper and lower rings 13 used, and the holes made in the lower plate 3 fixing these bolts 14 to the foundation 1 and the holes made in the upper plate 6 of the steel material fixed to the building 4. And a nut 15 is screwed into a portion of the steel lower plate 3 and the steel upper plate 6 that is exposed to the outside to connect the steel lower plate 3 and the steel upper plate 6 together. A notch 16 is provided in the building 4 and the foundation 1 in order to attach or replace the flexible connecting member 12, and the nut 15 can be screwed into and removed from the bolt 14 in the notch 16. Make it easy. However, some structures have no pull-out force due to their structure, and thus the connecting member 12 may not be used for such structures.

【0012】前記のように構成される建築物等における
免震構造は、地震の横揺れで基礎1に固定した鋼材の板
10が図5に矢印で示す方向へ移動すると、その凹面9
は上側の鋼材の板8の凸面7に対してLだけ横辷し凸面
7を押上げようとする。しかし、上側の鋼材の板10に
は建築物4の荷重が作用して鋼材の板10に制動力を加
えるため鋼材の板10は止まる。すると、その上側の鋼
材の板8が矢印方向の移動を起こして凸面7をその上側
の鋼材の板10の凹面9内をLだけ横辷りさせて建築物
の荷重による制動力が作用すると止まるもので、この間
の横辷り距離はL+L=2Lであって、Lの大きさは凸
面7の半径rと凹面9の半径Rとの差と作用する横移動
の力に比例して変化するので、この値は鋼材の板8と鋼
材の板10の積み重ね段数等を勘案して予測される横揺
れの最大振幅を充分に吸収し得るように設定して置け
ば、前記横辷りは次々と上段の鋼材の板10と鋼材の板
8とへ伝達されてこれら鋼材の板8と鋼材の板10の凸
面7と凹面9が前記同様の横辷りを起こすため、鋼材の
板8と鋼材の板10との積み重ね段数をnとした場合
は、Lのn倍の総横辷り距離が得られるから、この総横
辷り距離を予測される横揺れの最大振幅よりも大きく設
定して置けば、これ以下の振幅では横辷りは免震機構A
の途中において収まり、建築物4を固定した鋼材の上盤
6へは到達しないため建築物4に地震の影響が及ばず、
したがって、建築物4の被害は防止される。また一方、
横辷り量が予測より大きい場合には予測した辷り量だけ
吸収したことになるので、その分だけ震度の小さい地震
とした扱いとなる。
In the seismic isolation structure of the building constructed as described above, when the steel plate 10 fixed to the foundation 1 moves in the direction shown by the arrow in FIG.
Tries to push up the convex surface 7 by moving it sideways by L with respect to the convex surface 7 of the upper steel plate 8. However, the load of the building 4 acts on the upper steel plate 10 to apply a braking force to the steel plate 10, so that the steel plate 10 stops. Then, the steel plate 8 on the upper side causes a movement in the arrow direction to cause the convex surface 7 to lie sideways in the concave surface 9 of the steel plate 10 on the upper side by L, and stops when the braking force due to the load of the building acts. Then, the lateral wandering distance during this period is L + L = 2L, and the size of L changes in proportion to the difference between the radius r of the convex surface 7 and the radius R of the concave surface 9 and the lateral movement force that acts. If the value is set so as to sufficiently absorb the maximum amplitude of the horizontal vibration predicted in consideration of the number of stacking steps of the steel plate 8 and the steel plate 10, etc., the lateral sloping is one after another. Of the steel plate 8 and the steel plate 8 are transmitted to the steel plate 8 and the steel plate 8, and the convex surfaces 7 and the concave surfaces 9 of the steel plate 8 cause the same lateral stumbling as described above. When the number of stacking steps is n, the total lateral crossing distance n times L is obtained. If you put Ri distance is set larger than the maximum amplitude of the roll to be predictive of this following skid seismic isolation mechanism A is the amplitude
Since it does not reach the upper plate 6 of the steel material to which the building 4 is fixed, the building 4 is not affected by the earthquake,
Therefore, damage to the building 4 is prevented. Meanwhile,
If the amount of sideways slip is larger than the forecast, it means that the estimated amount of slippage has been absorbed, so it is treated as an earthquake with a smaller seismic intensity.

【0013】また、前記免震機構Aの外側には鋼材の下
盤3と鋼材の上盤6とを連結する可撓性の連結部材12
が配設され、地震により引き抜き力が生じたとき、必要
とする抗力が得られるように単体の強度と設置本数等と
を設定するもので、可撓性を持たせる部材としてリング
13をつないだ鎖を用いると、この鎖が力の作用方向へ
自在に撓むと共に、個々のリング13が変形応力を内蔵
して引っ張り力を柔軟に吸収する作用をも果たす。又こ
の連結部材12はもし免震機構Aの横辷り量が不充分な
ため引っ張り力が生じたとき、この力に抗してこれを減
衰させるために作用するだけでなく、横辷りが発生する
前に引き抜きの引っ張り力が生ずるときこれに対抗して
有効に働くものである。なお、上述の実施例においては
下盤3、上盤6及び板8、10は鋼材によって形成され
ているが、必ずしもこれに限定されるものではなく、上
記鋼材と同等の強度が得られるものであれば、例えば強
化樹脂材によって形成されたものであってもよい。
On the outside of the seismic isolation mechanism A, a flexible connecting member 12 for connecting the lower plate 3 of steel and the upper plate 6 of steel.
Is installed and the strength of the single unit and the number of installations are set so that the required drag force can be obtained when the pulling force is generated by the earthquake. The ring 13 is connected as a member having flexibility. When a chain is used, the chain flexes freely in the force acting direction, and each ring 13 has a function of incorporating a deformation stress and flexibly absorbing the tensile force. Further, if a pulling force is generated due to an insufficient amount of lateral movement of the seismic isolation mechanism A, the connecting member 12 acts not only to damp this force but also to cause lateral movement. When pulling force of pulling out occurs before, it works effectively against this. Although the lower plate 3, the upper plate 6 and the plates 8 and 10 are made of steel in the above-mentioned embodiment, the present invention is not limited to this, and the same strength as the above steel can be obtained. If it exists, it may be formed of a reinforced resin material, for example.

【0014】前記構成のように、本発明に係る建築物に
おける免震構造は、球状の凸面と凹面とを係合させて僅
かな隙間で多数組の板を積み重ねた免震機構を用いるか
ら、地震により建築物の基礎が振動すると、免震機構の
多数の板がこれに追随して移動し制動力となる抵抗を受
ける構成であるため、充分な免震効果が得られて建築物
の地震の被害防止にほぼ完璧な効果を期待できて、しか
も、この発明は前記免震機構の外側で下盤と上盤を可撓
性の連結部材により連結して置くようにすれば、地震の
縦揺れにより免震機構に引き抜き力が作用してもこれを
連結部材が受けるから免震機構が保護されてしかも、連
結部材は地震の横揺れに対しても自由に追随して破損す
ることなく連結機能を保持すると共に鎖で可撓性を得る
ようにすれば、これの移動抵抗を振動減衰に利用するこ
ともできる。という効果を奏する。
As described above, the seismic isolation structure in the building according to the present invention uses the seismic isolation mechanism in which a large number of sets of plates are stacked with a slight gap by engaging the spherical convex surface and the concave surface. When the foundation of a building vibrates due to an earthquake, a large number of plates of the seismic isolation mechanism move to follow this and receive a resistance that acts as a braking force. It is possible to expect a nearly perfect effect in preventing damage of the earthquake. Moreover, according to the present invention, if the lower plate and the upper plate are connected by a flexible connecting member outside the seismic isolation mechanism, the vertical direction of the earthquake Even if pull-out force acts on the seismic isolation mechanism due to shaking, the coupling member receives this and the seismic isolation mechanism is protected, and the coupling member freely follows the lateral vibration of the earthquake and is connected without damage. If you keep the function and give the chain flexibility, The transfer resistance can also be used in the vibration damping. This has the effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る建築物における免震構造の正面図
である。
FIG. 1 is a front view of a seismic isolation structure in a building according to the present invention.

【図2】同上の建築物、上盤、免震機構の一部を破断し
た平面図である。
FIG. 2 is a plan view in which a part of the building, the upper board, and the seismic isolation mechanism is cut away.

【図3】同上における免震機構の構造を示す一部分の拡
大縦断側面図である。
FIG. 3 is a partially enlarged vertical side view showing the structure of the seismic isolation mechanism of the above.

【図4】同上免震機構の一方の板の凸面と他方の板の凹
面との常態での係合常態を示す拡大縦断正面図である。
FIG. 4 is an enlarged vertical sectional front view showing a normal engagement state of the convex surface of one plate and the concave surface of the other plate of the seismic isolation mechanism in the normal state.

【図5】同上凸面と凹面の地震による係合のずれを示す
拡大縦断正面図である。
FIG. 5 is an enlarged vertical sectional front view showing displacement of engagement between the convex surface and the concave surface due to an earthquake.

【図6】免震機構を構成する二組の板の凸面と凹面の平
面的な配置関係を示す説明図である。
FIG. 6 is an explanatory diagram showing a planar arrangement relationship between a convex surface and a concave surface of two sets of plates constituting the seismic isolation mechanism.

【符号の説明】 1 基礎 3 鋼材の下盤 4 建築物 6 鋼材の上盤 A 免震機構 7 凸面 8 鋼材の板 9 凹面 10 鋼材の板 12 可撓性の連結部材[Explanation of symbols] 1 Foundation 3 Steel lower plate 4 Building 6 Steel upper plate A Seismic isolation mechanism 7 Convex surface 8 Steel plate 9 Concave surface 10 Steel plate 12 Flexible connecting member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基礎に固定した下盤と、建築物に固定し
た上盤との間に免震機構が設置される建築物等の免震構
造において、前記免震機構が多数の板を一方の板に設け
た球状凸面が他方の板に前記球状凸面より大きい半径で
設けた球状凹面に係合して各板間に僅かな隙間を存在す
るように重合される構成であることを特徴とする建築物
等における免震構造。
1. In a seismic isolation structure for a building, etc., in which a seismic isolation mechanism is installed between a lower panel fixed to a foundation and an upper panel fixed to a building, the seismic isolation mechanism has a large number of plates. Characterized in that the spherical convex surface provided on the plate is engaged with the spherical concave surface provided on the other plate with a radius larger than the spherical convex surface and superposed so that there is a slight gap between the plates. Seismic isolation structure for buildings.
【請求項2】 多数の板を一方の板に設けた球状凸面が
他方の板に前記球状凸面より大きい半径で設けた球状凹
面に係合して、各板間に僅かな隙間が存在するように重
合させた構造の免震機構の外側に、建築物に固定した上
盤と基礎に固定した下盤とを連結する可撓性の連結部材
を配置したことを特徴とする請求項1記載の建築物等に
おける免震構造。 【0001】
2. A spherical convex surface provided on one plate with a large number of plates is engaged with a spherical concave surface provided on the other plate with a radius larger than the spherical convex surface so that a slight gap exists between the plates. 2. A flexible connecting member for connecting an upper board fixed to a building and a lower board fixed to a foundation is arranged outside a seismic isolation mechanism having a structure superposed on each other. Seismic isolation structure for buildings. [0001]
JP8153470A 1996-05-24 1996-05-24 Seismic isolation structure for buildings, etc. Expired - Fee Related JP2994262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8153470A JP2994262B2 (en) 1996-05-24 1996-05-24 Seismic isolation structure for buildings, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8153470A JP2994262B2 (en) 1996-05-24 1996-05-24 Seismic isolation structure for buildings, etc.

Publications (2)

Publication Number Publication Date
JPH09317029A true JPH09317029A (en) 1997-12-09
JP2994262B2 JP2994262B2 (en) 1999-12-27

Family

ID=15563280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8153470A Expired - Fee Related JP2994262B2 (en) 1996-05-24 1996-05-24 Seismic isolation structure for buildings, etc.

Country Status (1)

Country Link
JP (1) JP2994262B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088046A (en) * 1998-09-10 2000-03-28 Shinichi Izumi Base isolating structure of building, etc.
WO2011132666A1 (en) * 2010-04-21 2011-10-27 Sato Takanori Seismic isolation device
US20110289863A1 (en) * 2007-10-12 2011-12-01 Takanori Sato Seismic isolation apparatus and structure having seismic isolation apparatus
JP5002724B1 (en) * 2011-10-26 2012-08-15 孝典 佐藤 Installation method of seismic isolation floor
AU2008229882B2 (en) * 2007-10-12 2016-06-16 Ideal Brain Co., Ltd. Seismic isolation apparatus and structure having seismic isolation apparatus
JP2017190572A (en) * 2016-04-11 2017-10-19 株式会社 林物産発明研究所 Block and housing vibration absorptive column formed of block

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088046A (en) * 1998-09-10 2000-03-28 Shinichi Izumi Base isolating structure of building, etc.
US9175490B2 (en) * 2007-10-12 2015-11-03 Takanori Sato Seismic isolation apparatus and structure having seismic isolation apparatus
US20110289863A1 (en) * 2007-10-12 2011-12-01 Takanori Sato Seismic isolation apparatus and structure having seismic isolation apparatus
AU2008229882B2 (en) * 2007-10-12 2016-06-16 Ideal Brain Co., Ltd. Seismic isolation apparatus and structure having seismic isolation apparatus
WO2011132666A1 (en) * 2010-04-21 2011-10-27 Sato Takanori Seismic isolation device
CN102812266A (en) * 2010-04-21 2012-12-05 佐藤孝典 Seismic isolation device
JP5181080B2 (en) * 2010-04-21 2013-04-10 孝典 佐藤 Seismic isolation device
AU2011243638B2 (en) * 2010-04-21 2016-03-10 Ideal Brain Co., Ltd Seismic isolation device
JPWO2011132666A1 (en) * 2010-04-21 2013-07-18 佐藤 孝典 Seismic isolation device
WO2013061508A1 (en) * 2011-10-26 2013-05-02 Sato Takanori Method for installing seismic isolation floor
CN103890295A (en) * 2011-10-26 2014-06-25 理想制导株式会社 Method for installing seismic isolation floor
US9212480B2 (en) 2011-10-26 2015-12-15 Ideal Brain Co., Ltd. Method of installing seismic isolation floor
JP2013091997A (en) * 2011-10-26 2013-05-16 Takanori Sato Installation method for base-isolated floor
JP5002724B1 (en) * 2011-10-26 2012-08-15 孝典 佐藤 Installation method of seismic isolation floor
JP2017190572A (en) * 2016-04-11 2017-10-19 株式会社 林物産発明研究所 Block and housing vibration absorptive column formed of block

Also Published As

Publication number Publication date
JP2994262B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US20180155949A1 (en) Resilient slip friction joint
Harvey Jr et al. A review of rolling-type seismic isolation: Historical development and future directions
EP3158148B1 (en) A sliding bearing for seismic protection
JPH09317029A (en) Base isolation structure for building or the like
KR101670177B1 (en) Apparatus of complex damper for construction
JP4360559B2 (en) Bearing device with rotation absorbing layer
US11371241B2 (en) Damper for energy dissipation
KR100283782B1 (en) Friction dampening rubber feet for seismic isolation of structures
JP3550574B2 (en) Sliding bearing seismic isolation device
JP2014152448A (en) Viscous wall structure
JP6267457B2 (en) Three-sided slide support device for structures
WO2013051702A1 (en) Seismic isolation support device for traveling crane
JP2002070943A (en) Slip support device for base isolation
JP4359958B2 (en) Complex seismic isolation unit and seismic isolation structure
JP3825081B2 (en) Seismic isolation system and lift prevention device in the seismic isolation system
KR200222439Y1 (en) Bridge Bearing equipped with deck restrainer
JPH0464675A (en) Anti-quake damper by means of leaden viscosity
JP3734911B2 (en) Cable damping device for cable stayed bridge
JP2662774B2 (en) Seismic isolation bearing structure for structures
KR100992615B1 (en) Elastic supporting device utilizing friction
JP7121543B2 (en) Fall prevention device for side blocks in bridge bearings
SU1033679A1 (en) Earthquake-proof structure
JP2000088046A (en) Base isolating structure of building, etc.
JP2002081480A (en) Composite viscoelastic damper
JP2000074137A (en) Base isolation device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees