JPH09316257A - Non-halogen-based flame retardant crosslinked polyolefin insulated wire - Google Patents

Non-halogen-based flame retardant crosslinked polyolefin insulated wire

Info

Publication number
JPH09316257A
JPH09316257A JP13551996A JP13551996A JPH09316257A JP H09316257 A JPH09316257 A JP H09316257A JP 13551996 A JP13551996 A JP 13551996A JP 13551996 A JP13551996 A JP 13551996A JP H09316257 A JPH09316257 A JP H09316257A
Authority
JP
Japan
Prior art keywords
halogen
compound
polyolefin
flame
insulated wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13551996A
Other languages
Japanese (ja)
Inventor
Masaru Terao
賢 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP13551996A priority Critical patent/JPH09316257A/en
Publication of JPH09316257A publication Critical patent/JPH09316257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a non-halogen-based flame retardant crosslinked polyolefin insulated wire having a sheath comprising a specific non-halogen-based polyolefin composition and excellent in mechanical characteristic and processability. SOLUTION: This crosslinked polyolefin insulated wire has a sheath comprising a non-halogen-based polyolefin composition composed of (A) 100 pts.wt. polyolefin resin obtained by grafting preferably 1-5 pts.wt. organic silane compound such as vinyltrimethoxysilane, (B) preferably 30-80 pts.wt. non-halogen- based flame retardant compound such as melamine or red phosphorus constituted of a phosphorus compound, a nitrogen compound, a phenol resin and an expanded graphite having <=70% amount unpassable through 80 mesh sieve and (C) a silanol catalyst such as dibutyltin dilaurate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、機械特性、ノンハ
ロゲンで難燃性に優れたノンハロゲン系難燃架橋ポリオ
レフィン絶縁電線に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a halogen-free flame-retardant cross-linked polyolefin insulated wire which is excellent in mechanical properties, halogen-free and flame-retardant.

【0002】[0002]

【従来の技術】難燃架橋ポリオレフィン絶縁電線の難燃
化はベース樹脂であるポリオレフィン樹脂が非常に燃焼
し易いため、従来ハロゲン系の難燃剤が使用されてき
た。しかし、ハロゲン系難燃剤は非常に難燃効果は高い
が、燃焼時の有害ガスの発生、環境問題などの欠点も判
明してきた。そこで、特公昭58−54443号公報な
どで水酸化マグネシウムを用いたノンハロゲン化が提案
されているが、要求される難燃性が厳しいため、従来公
知のノンハロゲン系難燃組成物では十分に対処すること
ができないという問題点があった。又、特開平6−25
476号公報では赤リンと分級により80メッシュオン
が80%以上含む膨張性黒鉛を用いたノンハロ難燃化が
提案されているが、この方法では確かに難燃性は向上す
るが膨張性黒鉛の粒径が大きいため成形外観が顕著に低
下し、実用上は使用不能といった問題点があった。
2. Description of the Related Art Flame-retardant cross-linked polyolefin insulated wires are flame-retarded because a polyolefin resin, which is a base resin, is extremely easy to burn, so that halogen-based flame retardants have been conventionally used. However, although halogen-based flame retardants have a very high flame retardant effect, drawbacks such as generation of harmful gas during combustion and environmental problems have been found. Therefore, non-halogenation using magnesium hydroxide has been proposed in Japanese Examined Patent Publication No. 58-54443 and the like. However, since the required flame retardancy is severe, conventionally known non-halogen flame-retardant compositions are adequately addressed. There was a problem that I could not do it. Also, JP-A-6-25
No. 476 proposes non-halogen flame retardation using expansive graphite containing 80% or more of 80 mesh-on by classification with red phosphorus, but this method certainly improves the flame retardancy but does not Since the particle size is large, the molding appearance is significantly reduced, and there is a problem that it cannot be used in practice.

【0003】[0003]

【発明が解決しようとする課題】本発明は特性の低下を
ほとんど招くことなくノンハロゲンで難燃性の向上した
ノンハロゲン系難燃架橋ポリオレフィン絶縁電線を提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-halogen flame-retardant cross-linked polyolefin insulated wire which is non-halogen and has improved flame retardancy with almost no deterioration in properties.

【0004】[0004]

【課題を解決するための手段】本発明者らは難燃架橋ポ
リオレフィン絶縁電線のノンハロゲン難燃化について検
討した結果、リン化合物、チッソ化合物などを単純に添
加する方法では難燃性を向上するには多量の添加が必要
であり、添加量を多くするとブリード、機械特性の低下
などの欠点を生じることが判明した。また、ポリオレフ
ィン樹脂と比較して難燃性が良好であるフェノール樹脂
をブンレドする方法でも難燃性の向上には多量の添加が
必要となり、添加量を多くすると耐衝撃性が顕著に低下
した。
DISCLOSURE OF THE INVENTION As a result of studying the non-halogen flame retardation of flame-retardant cross-linked polyolefin insulated wires, the present inventors found that the flame retardancy is improved by a method of simply adding a phosphorus compound, a nitrogen compound or the like. It is necessary to add a large amount, and it has been found that when the addition amount is increased, defects such as bleeding and deterioration of mechanical properties occur. Further, even in the method of blending a phenol resin, which has better flame retardancy than a polyolefin resin, a large amount of addition is required to improve the flame retardancy, and the impact resistance remarkably deteriorates when the amount is increased.

【0005】そこで、異なるメカニズムを有する難燃化
合物を組み合わせることにより、相乗的に難燃性を向上
させることを鋭意検討した結果、炭化皮膜を形成するリ
ン化合物、炭化を促進するチッソ化合物、燃焼時に殻を
形成するフェノール樹脂及び膨張して断熱作用を有する
膨張性黒鉛を併用するとそれぞれの難燃メカニズムが相
乗的に作用し、従来では難燃性の改善効果の小さかった
80メッシュオンが70%以下の膨張性黒鉛を用いても
耐衝撃性の低下、ブリードなどの欠点が生じることなく
難燃性が飛躍的に向上することを見いだし、本発明を完
成させるに至った。
Therefore, as a result of earnestly studying synergistically improving the flame retardancy by combining flame retardant compounds having different mechanisms, a phosphorus compound which forms a carbonized film, a nitrogen compound which promotes carbonization, When the shell-forming phenolic resin and expansive graphite that expands and has adiabatic action are used together, each flame-retardant mechanism acts synergistically, and 80 mesh-on, which had a small flame-retardant improvement effect in the past, is 70% or less. It was found that even when the expansive graphite of No. 3 was used, the flame retardancy was dramatically improved without the occurrence of defects such as impact resistance deterioration and bleeding, and the present invention was completed.

【0006】即ち本発明は有機シラン化合物をグラフト
化したポリオレフィン樹脂(A)、リン化合物、チッソ
化合物、フェノール樹脂及び80メッシュオンが70%
以下の膨張性黒鉛で構成されたノンハロゲン系難燃性化
合物(B)及びシラノール触媒(C)からなるノンハロ
ゲン系ポリオレフィン組成物を溶融押し出し成形するこ
とにより得られるシースを有することを特徴とするノン
ハロゲン系難燃架橋ポリオレフィン絶縁電線に関するも
のであり、好ましくはノンハロゲン系難燃性化合物
(B)がポリリン酸アンモニウム、フェノールノボラッ
ク樹脂及び80メッシュオンが70%以下の膨張性黒鉛
であるノンハロゲン系難燃架橋ポリオレフィン絶縁電線
に関するものである。
That is, according to the present invention, a polyolefin resin (A) grafted with an organosilane compound, a phosphorus compound, a nitrogen compound, a phenol resin, and 80 mesh-on are 70%.
A non-halogen system having a sheath obtained by melt-extruding a non-halogen polyolefin composition comprising the following non-halogen flame retardant compound (B) composed of expandable graphite and silanol catalyst (C) Flame-retardant cross-linked polyolefin insulated wire, preferably non-halogen flame-retardant cross-linking polyolefin, wherein non-halogen flame-retardant compound (B) is expandable graphite with ammonium polyphosphate, phenol novolac resin and 80 mesh on 70% or less. It relates to insulated wires.

【0007】ノンハロゲン系難燃性化合物(B)に酸素
を遮断する作用を有するリン化合物、炭化促進作用を有
するチッソ化合物、燃焼時の殻形成性を有するフェノー
ル樹脂、燃焼時に膨張して断熱作用を有する膨張性黒鉛
を併用するとそれぞれの難燃メカニズムが相乗的に作用
し、顕著に難燃性が向上することが判明した。また、リ
ン化合物にリン含有量が比較的高く、フェノール樹脂と
顕著な相乗効果を有するポリリン酸アンモニウム、フェ
ノール樹脂に殻形成能の高いフェノールノボラック樹
脂、膨張性黒鉛に80メッシュオンが70%以下の膨張
性黒鉛を併用すると外観が良好なまま優れた難燃性を得
ることができる。
The non-halogen flame-retardant compound (B) has a phosphorus compound having an oxygen blocking action, a nitrogen compound having a carbonization promoting action, a phenol resin having a shell-forming property at the time of combustion, and an adiabatic action by expanding at the time of combustion. It was found that when the expandable graphite contained therein is used in combination, the respective flame retardant mechanisms act synergistically and the flame retardancy is remarkably improved. Further, ammonium polyphosphate having a relatively high phosphorus content in the phosphorus compound and having a remarkable synergistic effect with the phenol resin, phenol novolac resin having a high shell-forming ability in the phenol resin, and 80 mesh-on in the expansive graphite having 70% or less of 70% or less. When expandable graphite is used in combination, excellent flame retardancy can be obtained while maintaining good appearance.

【0008】[0008]

【発明の実施の形態】本発明で用いられる有機シラン化
合物をグラフト化したポリオレフィン樹脂(A)で使用
されるポリオレフィン樹脂は特に限定するものでなく市
販されているものである。例えば、高密度ポリエチレ
ン、低密度ポリエチレン、エチレン−酢酸ビニル共重合
体、エチレン−メチルメタクリレート共重合体、エチレ
ン−メタクリル酸共重合体、エチレン−プロピレン共重
合体などが挙げられ、これらポリオレフィン樹脂は単独
あるいは2種以上組み合わせて用いられる。これらポリ
オレフィン樹脂の中でも低温耐衝撃性の点でポリエチレ
ン系樹脂が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The polyolefin resin used in the polyolefin resin (A) grafted with the organosilane compound used in the present invention is not particularly limited and is commercially available. For example, high-density polyethylene, low-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-propylene copolymer and the like can be mentioned. Alternatively, they may be used in combination of two or more. Among these polyolefin resins, polyethylene resins are preferable from the viewpoint of low temperature impact resistance.

【0009】本発明の有機シラン化合物をグラフト化し
たポリオレフィン樹脂(A)で使用される有機不飽和シ
ランは、ベース樹脂相互の架橋点となるなるべくベース
樹脂にグラフト化されるものである。本発明において使
用される有機不飽和シランとしては、一般式RR’Si
2(Rは1価のオレフィン不飽和炭化水素基、Yは加水
分解しうる有機基、R’は脂肪族不飽和炭化水素以外の
1価の炭化水素基あるいはYと同じもの)で表せる化合
物が使用される。R’がYと同一で一般式RSiY3
表される有機不飽和シランを使用するのが望ましく、例
えばビニルトリメトキシシラン、ビニルトリエトキシシ
ラン、アリルトリエトキシシラン等が挙げられる。これ
らの添加量としてはベース樹脂100重量部に対して1
〜5重量部である。1重量部を下回ると十分なグラフト
化が起こらず、又、5重量部を上回ると成形不良を起こ
すとともに経済的でなくなる。
The organounsaturated silane used in the polyolefin resin (A) grafted with the organosilane compound of the present invention is grafted to the base resin so as to serve as a cross-linking point between the base resins. The organic unsaturated silane used in the present invention has the general formula RR'Si
A compound represented by Y 2 (R is a monovalent olefinically unsaturated hydrocarbon group, Y is a hydrolyzable organic group, and R ′ is a monovalent hydrocarbon group other than an aliphatic unsaturated hydrocarbon or the same as Y) Is used. It is desirable to use an organic unsaturated silane in which R ′ is the same as Y and is represented by the general formula RSiY 3 , and examples thereof include vinyltrimethoxysilane, vinyltriethoxysilane and allyltriethoxysilane. The addition amount of these is 1 with respect to 100 parts by weight of the base resin.
-5 parts by weight. When the amount is less than 1 part by weight, sufficient grafting does not occur, and when the amount is more than 5 parts by weight, molding failure occurs and it is not economical.

【0010】本発明の有機シラン化合物をグラフト化し
たポリオレフィン樹脂(A)で使用される遊離ラジカル
発生剤はシラングラフト化反応の開始剤として作用す
る。本発明において使用される遊離ラジカル発生剤には
重合開始作用の強い種々の有機過酸化物が用いられる。
これらの添加量としては0.01〜1重量部である。
0.01重量部を下回ると十分なシラングラフト化反応
が進行せず、また、1重量部を上回ると押出加工性が低
下するとともに成形表面が悪くなる。
The free radical generator used in the polyolefin resin (A) grafted with the organosilane compound of the present invention acts as an initiator of the silane grafting reaction. As the free radical generator used in the present invention, various organic peroxides having a strong polymerization initiation action are used.
The addition amount of these is 0.01 to 1 part by weight.
If it is less than 0.01 part by weight, the silane grafting reaction does not proceed sufficiently, and if it exceeds 1 part by weight, the extrusion processability is deteriorated and the molding surface is deteriorated.

【0011】本発明の(B)成分であるフェノール樹脂
は、炭化促進機能、燃焼時に殻を形成する機能、溶融液
滴を防止する機能を有する大変重要な成分である。本発
明に用いられるフェノール樹脂は特に限定するものでな
く市販されているものであり、例えば、フェノール類と
ホルマリンとをホルムアルデヒド/フェノール類のモル
比が、0.5〜1.0となるような配合比率で反応釜に
仕込み、更にシュウ酸、塩酸、硫酸、トルエンスルフォ
ン酸等の触媒を加えた後加熱し、適当な時間還流反応を
行った後、分離した水を除去するため真空脱水あるいは
静置脱水し、更に残っている水と未反応のフェノール類
を除去する方法により得ることができる。これらの樹脂
あるいは複数の原料成分を用いることにより得られる共
縮合フェノール樹脂は、単独あるいは二種以上組み合わ
せて用いられる。フェノール樹脂は5〜30重量部の範
囲で配合することが好ましく、5重量部以下では難燃性
の改善効果が不十分になる傾向があり、30重量部以上
では耐衝撃性等が顕著に低下する。フェノール樹脂の中
でも燃焼時の殻形成能が優れるフェノールノボラック樹
脂が好適に用いられる。
The phenolic resin which is the component (B) of the present invention is a very important component having a carbonization promoting function, a function of forming a shell during combustion, and a function of preventing molten droplets. The phenol resin used in the present invention is not particularly limited and is commercially available. For example, phenols and formalin have a formaldehyde / phenols molar ratio of 0.5 to 1.0. The mixture was charged into a reaction kettle at a mixing ratio, and a catalyst such as oxalic acid, hydrochloric acid, sulfuric acid, and toluenesulfonic acid was further added, followed by heating and refluxing for an appropriate time. It can be obtained by a method in which it is allowed to stand for dehydration and the remaining water and unreacted phenols are removed. These resins or co-condensed phenolic resins obtained by using a plurality of raw material components are used alone or in combination of two or more. Phenol resin is preferably blended in the range of 5 to 30 parts by weight, and if it is 5 parts by weight or less, the effect of improving flame retardancy tends to be insufficient, and if it is 30 parts by weight or more, impact resistance and the like are markedly reduced. To do. Among the phenolic resins, a phenol novolac resin, which has an excellent shell-forming ability during combustion, is preferably used.

【0012】本発明の(B)成分であるリン化合物は炭
化促進機能、炭化皮膜を形成する機能を有する重要な成
分である。本発明に用いられるリン化合物は特に限定さ
れるものではなく市販されているものであり、例えば、
赤リン、ポリリン酸アンモニウム、リン酸メラミン、リ
ン酸エステルなどが挙げられる。リン化合物は5〜50
重量部の範囲で配合されることが好ましく、5重量部以
下では難燃性の改善効果が不十分となる傾向があり、5
0重量部以上ではブリードの発生、機械特性の低下など
の欠点が生じる。リン化合物の中でも、ポリリン酸アン
モニウムがリン含有量が多い点で好ましい。
The phosphorus compound which is the component (B) of the present invention is an important component having a carbonization promoting function and a function of forming a carbonized film. The phosphorus compound used in the present invention is not particularly limited and is commercially available, for example,
Examples include red phosphorus, ammonium polyphosphate, melamine phosphate, and phosphoric acid ester. 5 to 50 phosphorus compounds
It is preferable to blend in the range of 5 parts by weight, and if it is 5 parts by weight or less, the effect of improving flame retardancy tends to be insufficient.
If it is 0 parts by weight or more, defects such as bleeding and deterioration of mechanical properties occur. Among the phosphorus compounds, ammonium polyphosphate is preferable because it has a large phosphorus content.

【0013】本発明の(B)成分であるチッソ化合物
は、フェノール樹脂、リン化合物と併用すると相乗効果
で炭化を促進する重要な成分である。本発明に用いられ
るチッソ化合物は特に限定されるものではなく市販され
ているものであり、例えば、メラミン、メラミンシアヌ
レート等のトリアジン化合物が挙げられる。
The component (B) of the present invention, the nitrogen compound, is an important component that promotes carbonization by a synergistic effect when used in combination with a phenol resin and a phosphorus compound. The nitrogen compound used in the present invention is not particularly limited and is commercially available, and examples thereof include triazine compounds such as melamine and melamine cyanurate.

【0014】本発明の(B)成分である80メッシュオ
ンが70%以下の膨張性黒鉛は、フェノール樹脂及びリ
ン化合物と併用すると顕著な相乗効果を示し、燃焼時に
膨張して熱を遮断して、難燃性を顕著に向上させる効果
を有する大変重要な成分である。本発明に用いられる8
0メッシュオンが70%以下の膨張性黒鉛は特に限定さ
れるものでなく市販されているものであり、分級により
80メッシュオンを70%以下にすることあるいは粒径
の小さい黒鉛原料から膨張性黒鉛を製造することにより
得られる。膨張性黒鉛は5〜50重量部の範囲で配合さ
れることが好ましく、5重量部を下回ると難燃性の改善
効果が不十分となる傾向があり、50重量部を上回ると
機械特性等が低下などの欠点が生じる。膨張性黒鉛の粒
径は80メッシュオンが50%〜70%が好ましい。8
0メッシュオンが50%以下では膨張度が低下するため
難燃性の向上の効果が小さくなる傾向があり、80メッ
シュオンが70%以上では外観が非常に悪化する。
The expansive graphite containing 80% or less of 80 mesh on which is the component (B) of the present invention exhibits a remarkable synergistic effect when used in combination with a phenol resin and a phosphorus compound, and expands during combustion to block heat. , Is a very important component that has the effect of significantly improving flame retardancy. 8 used in the present invention
Expandable graphite having 0 mesh-on of 70% or less is not particularly limited and is commercially available, and 80 mesh-on can be adjusted to 70% or less by classification or expandable graphite from a graphite raw material having a small particle size. It is obtained by manufacturing. The expansive graphite is preferably blended in the range of 5 to 50 parts by weight, and if it is less than 5 parts by weight, the effect of improving the flame retardancy tends to be insufficient, and if it exceeds 50 parts by weight, the mechanical properties and the like are deteriorated. Defects such as deterioration occur. The particle size of the expandable graphite is preferably 50% to 70% when 80 mesh is on. 8
When 0 mesh-on is 50% or less, the expansion degree tends to be low, so that the effect of improving the flame retardancy tends to be small, and when 80 mesh-on is 70% or more, the appearance is extremely deteriorated.

【0015】本発明の(C)成分として使用されるシラ
ノール縮合触媒は特に限定されるものではなく市販され
ているものであり、例えばジブチルスズジラウレート、
酢酸第一スズ、ジブチルスズジアセテート、ジブチルス
ズジオクトエート等が挙げられる。ナフテン酸鉛、ステ
アリン酸亜鉛等の有機金属化合物が挙げられる。これら
の添加量としては、有機シラン化合物をグラフト化した
ポリオレフィン樹脂100重量部に対して0.01〜3
重量部が好ましい。0.01重量部を下回ると十分な架
橋反応が進まず、又、3重量部を上回ると押出時に押出
機内で局部的に架橋が進行して外観が著しく低下する。
The silanol condensation catalyst used as the component (C) of the present invention is not particularly limited and is commercially available, for example, dibutyltin dilaurate,
Stannous acetate, dibutyltin diacetate, dibutyltin dioctoate and the like can be mentioned. Organometallic compounds such as lead naphthenate and zinc stearate may be mentioned. The addition amount of these is 0.01 to 3 relative to 100 parts by weight of the polyolefin resin grafted with the organic silane compound.
Parts by weight are preferred. If the amount is less than 0.01 part by weight, a sufficient crosslinking reaction does not proceed, and if the amount is more than 3 parts by weight, crosslinking is locally promoted in the extruder at the time of extrusion and the appearance is remarkably deteriorated.

【0016】本発明のノンハロゲン系難燃架橋ポリオレ
フィン絶縁電線の製造方法は特に制限が無いが、よく用
いられる手法として有機シラン化合物をグラフト化した
ポリオレフィン樹脂(A)、ノンハロゲン系難燃性化合
物(B)及びシラノール触媒を一括に押し出し機に投入
して、次に導体を送線装置にセットし、プレヒーターを
通して所定の温度で導体を加熱しながらニップルを経て
ダイで成形しながら被覆を行い冷却槽に冷却する。この
時ライン上に設置した静電気容量測定器、外径測定器を
通しながら、設定した被覆径の時に所望する静電容量、
外観が得られるように線速あるいは温調計の設定温度を
微調整して、押出被覆を行っていく。被覆された線はス
パーキングテスターにて外傷などを検査し、所定の容器
などに収納された後、温水に数時間浸漬して架橋促進処
理を行う。
The method for producing the non-halogen flame-retardant cross-linked polyolefin insulated wire of the present invention is not particularly limited, but a polyolefin resin (A) grafted with an organosilane compound and a non-halogen flame-retardant compound (B) are commonly used. ) And silanol catalyst all at once into the extruder, then set the conductor in the wire feeder, heat the conductor at a predetermined temperature through the pre-heater, form a die through the nipple, and coat with a cooling tank. Cool to. At this time, while passing through the capacitance measuring device and outer diameter measuring device installed on the line, the desired capacitance at the set coating diameter,
Extrusion coating is performed by finely adjusting the linear velocity or the temperature set by the temperature controller so that the appearance can be obtained. The coated wire is inspected for external damage by a spark tester, stored in a predetermined container or the like, and then immersed in warm water for several hours to carry out a crosslinking promotion treatment.

【0017】[0017]

【実施例】以下実施例により、本発明を説明するが、こ
れは単なる例示であり、本発明はこれに限定されるもの
ではない。押出し外観は目視で判定し○○>○>△>×
の順とし、○レベル以上を合格とした。静電容量はキャ
パシタンスモニターにより被覆した絶縁電線の静電容量
を測定し、所定値との比較により評価し、○>△>×の
順とし、○レベルを合格とした。難燃性はUL−62規
格のVW−1の垂直燃焼試験により、○>×の順とし、
○レベルを合格とした。端末加工性はポリブチレンテレ
フタレートを用いたコネクターへの圧接時の被覆絶縁電
線の変形の程度を評価し、○(初期の形状を維持)>△
(少し変形)>×(大きく変形)の順とし、○レベルを
合格とした。引張強さ及び伸びはJIS K6760に
よった。ゲル分率は120℃、20時間、キシレン浸漬
法によった。
EXAMPLES The present invention will be described below with reference to examples, but these are merely examples, and the present invention is not limited to these examples. Visually judge the appearance of extrusion. ○○ > ○ > △ > ×
The order was ∘, and the grade of ◯ or higher was passed. The capacitance was measured by measuring the capacitance of the insulated wire covered with a capacitance monitor, and evaluated by comparison with a predetermined value. The order was ◯>Δ> ×, and the ◯ level was passed. The flame retardance is in the order of ○> × by the vertical combustion test of VW-1 of UL-62 standard,
○ Level was passed. The terminal processability was evaluated by evaluating the degree of deformation of the coated insulated wire during pressure contact with a connector using polybutylene terephthalate, and ○ (maintaining the initial shape)> △
The order of (slightly deformed)> × (largely deformed) was set, and a level of ◯ was accepted. Tensile strength and elongation were according to JIS K6760. The gel fraction was 120 ° C. for 20 hours, and was determined by the xylene immersion method.

【0018】・有機不飽和シランをグラフト化したポリ
オレフィン樹脂の製造 表1に示すような配合割合に従って、まず、ポリオレフ
ィン樹脂に有機不飽和シラン及び遊離ラジカル発生剤と
を混和し、押出機を用いて押出温度200〜250℃で
混練し、ストランドカットして造粒し有機不飽和シラン
をグラフト化したポリオレフィン樹脂を得た。
Production of Polyolefin Resin Grafted with Organic Unsaturated Silane According to the blending ratio shown in Table 1, first, the organic unsaturated silane and the free radical generating agent are mixed with the polyolefin resin, and the mixture is extruded using an extruder. Kneading was performed at an extrusion temperature of 200 to 250 ° C., strand cutting was performed, and granulation was performed to obtain a polyolefin resin grafted with an organic unsaturated silane.

【0019】ポリオレフィン樹脂は高密度ポリエチレン
(HDPE、密度;0.968g/cm3、M.I.;
5.2g/10min)、低密度ポリエチレン(LDP
E、密度;0.925g/cm3、M.I.;2.0g/
10min)を用い、有機不飽和シラン化合物としては
ビニルトリメトキシシラン(VTMOS)、ラジカル発
生剤としてはジクミルパーオキサイド(DCP)を用い
た。
The polyolefin resin is a high density polyethylene (HDPE, density: 0.968 g / cm 3 , MI;
5.2g / 10min), low density polyethylene (LDP)
E, density; 0.925 g / cm 3 , M.I. I. 2.0 g /
10 min), vinyltrimethoxysilane (VTMOS) was used as the organic unsaturated silane compound, and dicumyl peroxide (DCP) was used as the radical generator.

【0020】[0020]

【表1】 [Table 1]

【0021】・電線の製造 得られた有機シラン化合物をグラフト化したポリオレフ
ィン樹脂(A)、ノンハロゲン系難燃性化合物(B)及
びシラノール触媒(C)を表2〜5の割合で混合し、単
軸押出機を用いて絶縁電線を押し出し、この時ライン上
に設置した測定器で静電容量を測定、更に温水中に浸漬
させることによって架橋処理を行った。
Manufacture of electric wire The obtained organosilane compound-grafted polyolefin resin (A), non-halogen flame-retardant compound (B) and silanol catalyst (C) are mixed in the proportions shown in Tables 2 to 5, The insulated electric wire was extruded by using a shaft extruder, the electrostatic capacity was measured by a measuring instrument installed on the line at this time, and further cross-linked by immersing in warm water.

【0022】ノンハロゲン系難燃性化合物(B)として
はリン化合物として赤リン[燐化学(株)製 ノーバエ
クセルST−140]、ポリリン酸アンモニウム[AP
P;住友化学(株)製 スミセーフP]、チッソ化合物
としてメラミンシアヌレート[MC−410;日産化学
(株)製]、フェノール樹脂としてフェノールノボラッ
ク樹脂[PN;住友デュレズ(株)製 PR−5147
0]、膨張性黒鉛として、80メッシュオンが65%の
膨張性黒鉛[膨張性黒鉛;中央化成(株)製EXP−
G 8099−60]、80メッシュオンが38%の膨
張性黒鉛[膨張性黒鉛;中央化成(株)製 EXP−
G 194]、80メッシュオンが80%以上の膨張性
黒鉛[膨張性黒鉛;中央化成(株)製 EXP−G
8099]、80メッシュオンが40%の膨張性黒鉛
[膨張性黒鉛;中央化成(株)製 EXP−G 80
99−40]を用いた。シラノール触媒(C)として
は、ジブチルスズジラウレート[DBDTL;三共有機
合成(株)製]を用いた。
As the halogen-free flame-retardant compound (B), phosphorus compounds such as red phosphorus [Nova Excel ST-140 manufactured by Rin Kagaku Co., Ltd.], ammonium polyphosphate [AP
P; Sumitomo Chemical Co., Ltd. Sumysafe P], melamine cyanurate as a Chisso compound [MC-410; Nissan Chemical Co., Ltd.], phenol novolak resin as a phenol resin [PN; Sumitomo Durez Co., Ltd. PR-5147
0], as the expansive graphite, expansive graphite having 80% mesh on 65% [expandable graphite; EXP- manufactured by Chuo Kasei Co., Ltd.]
G 8099-60], 80 mesh on 38% expandable graphite [expandable graphite; manufactured by Chuo Kasei Co., Ltd. EXP-
G 194], 80 mesh on 80% or more of expandable graphite [expandable graphite; manufactured by Chuo Kasei Co., Ltd. EXP-G
8099], 80 mesh 40% expandable graphite [expandable graphite; manufactured by Chuo Kasei Co., Ltd. EXP-G 80
99-40] was used. As the silanol catalyst (C), dibutyltin dilaurate [DBDTL; manufactured by Sansha Kisei Co., Ltd.] was used.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】表から明らかなように本発明ノンハロゲン
系難燃架橋ポリオレフィン絶縁電線はノンハロゲンで難
燃性に優れ、機械特性、成形外観も良好な電線である。
As is apparent from the table, the halogen-free flame-retardant cross-linked polyolefin insulated wire of the present invention is non-halogen, has excellent flame resistance, and has excellent mechanical properties and molding appearance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機シラン化合物をグラフト化したポリ
オレフィン樹脂(A)、リン化合物、チッソ化合物、フ
ェノール樹脂及び80メッシュオンが70%以下の膨張
性黒鉛で構成されたノンハロゲン系難燃性化合物(B)
及びシラノール触媒(C)からなるノンハロゲン系ポリ
オレフィン組成物よりなるシースを有することを特徴と
するノンハロゲン系難燃架橋ポリオレフィン絶縁電線。
1. A non-halogen flame-retardant compound (B) composed of a polyolefin resin (A) grafted with an organosilane compound, a phosphorus compound, a nitrogen compound, a phenol resin and an expansive graphite containing 80 mesh-on at 70% or less. )
And a non-halogen flame-retardant cross-linked polyolefin insulated wire having a sheath made of a non-halogen polyolefin composition including a silanol catalyst (C).
【請求項2】 有機シラン化合物をグラフト化したポリ
オレフィン樹脂(A)が、ベースとなるポリオレフィン
樹脂100重量部に対して、有機不飽和シランを1〜5
重量部及び遊離ラジカル発生剤を0.01〜1重量部と
を反応させてなる請求項1記載のノンハロゲン系難燃架
橋ポリオレフィン絶縁電線。
2. The polyolefin resin (A) grafted with an organic silane compound contains 1 to 5 parts of an organic unsaturated silane with respect to 100 parts by weight of a base polyolefin resin.
The non-halogen flame-retardant crosslinked polyolefin insulated wire according to claim 1, which is obtained by reacting 1 part by weight and 0.01 to 1 part by weight of a free radical generator.
【請求項3】 有機シラン化合物をグラフト化したポリ
エチレン系樹脂(A)、ポリリン酸アンモニウム、フェ
ノールノボラック樹脂及び80メッシュオンが70%以
下の膨張性黒鉛で構成されたノンハロゲン系難燃性化合
物(B)30〜80重量部及びシラノール触媒(C)か
らなるノンハロゲン系ポリオレフィン組成物よりなるシ
ースを有することを特徴とするノンハロゲン系難燃架橋
ポリオレフィン絶縁電線。
3. A halogen-free flame-retardant compound (B) comprising a polyethylene-based resin (A) grafted with an organosilane compound, ammonium polyphosphate, a phenol novolac resin, and expansive graphite with 80 mesh-on of 70% or less. ) A halogen-free flame-retardant crosslinked polyolefin insulated wire having a sheath made of a halogen-free polyolefin composition comprising 30 to 80 parts by weight and a silanol catalyst (C).
JP13551996A 1996-05-29 1996-05-29 Non-halogen-based flame retardant crosslinked polyolefin insulated wire Pending JPH09316257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13551996A JPH09316257A (en) 1996-05-29 1996-05-29 Non-halogen-based flame retardant crosslinked polyolefin insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13551996A JPH09316257A (en) 1996-05-29 1996-05-29 Non-halogen-based flame retardant crosslinked polyolefin insulated wire

Publications (1)

Publication Number Publication Date
JPH09316257A true JPH09316257A (en) 1997-12-09

Family

ID=15153671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13551996A Pending JPH09316257A (en) 1996-05-29 1996-05-29 Non-halogen-based flame retardant crosslinked polyolefin insulated wire

Country Status (1)

Country Link
JP (1) JPH09316257A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036226A (en) * 2004-07-08 2005-02-10 Furukawa Electric Co Ltd:The Flame retardant resin composition for coating of electric cable or optical fiber and wiring using the same
JP2005048168A (en) * 2004-07-08 2005-02-24 Furukawa Electric Co Ltd:The Flame-retardant resin composition and molded article using the same
JP2007059336A (en) * 2005-08-26 2007-03-08 Swcc Showa Cable Systems Co Ltd Flame-resistant wire/cable
KR100717721B1 (en) * 2006-05-11 2007-05-11 제이에스전선 주식회사 One-packing composition for sealant
EP1925628A1 (en) * 2006-11-23 2008-05-28 Ciba Holding Inc. Process for polyolefin silane crosslinking
JP2010513685A (en) * 2006-12-20 2010-04-30 ダウ グローバル テクノロジーズ インコーポレイティド Semiconductive polymer composition for preparing wires and cables

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005036226A (en) * 2004-07-08 2005-02-10 Furukawa Electric Co Ltd:The Flame retardant resin composition for coating of electric cable or optical fiber and wiring using the same
JP2005048168A (en) * 2004-07-08 2005-02-24 Furukawa Electric Co Ltd:The Flame-retardant resin composition and molded article using the same
JP2007059336A (en) * 2005-08-26 2007-03-08 Swcc Showa Cable Systems Co Ltd Flame-resistant wire/cable
KR100717721B1 (en) * 2006-05-11 2007-05-11 제이에스전선 주식회사 One-packing composition for sealant
EP1925628A1 (en) * 2006-11-23 2008-05-28 Ciba Holding Inc. Process for polyolefin silane crosslinking
JP2010513685A (en) * 2006-12-20 2010-04-30 ダウ グローバル テクノロジーズ インコーポレイティド Semiconductive polymer composition for preparing wires and cables

Similar Documents

Publication Publication Date Title
JP6287919B2 (en) Wire covering material composition, insulated wire and wire harness
JP5843427B2 (en) Thermoplastic resin composition, polymer composition, and molded article comprising the composition
JP5703789B2 (en) Wire covering material composition, insulated wire and wire harness
JPH107913A (en) Flame-retardant and halogen-free composition
JP2009019190A (en) Non-halogen flame-retardant resin composition and non-halogen flame-retardant electric wire or cable
JP2012057080A (en) Composition for wire coating material, insulated wire, and wire harness
US6303681B1 (en) Flame-retardant polyolefin-type resin composition, method for the preparation thereof, and flame retardant cables
JPWO2012124589A1 (en) Non-halogen flame retardant resin composition and insulated wire and tube using the same
US20030207979A1 (en) Wear resistant, flame-retardant composition and electric cable covered with said composition
JPH0992055A (en) Manufacture of flame resisting foam bridging polyolefine insulating electric wire
WO2015029621A1 (en) Halogen-free flame-retardant insulated wire
JPH09316257A (en) Non-halogen-based flame retardant crosslinked polyolefin insulated wire
JPH10255560A (en) Flame retardant wire and cable
JPS58118828A (en) Preparation of flame-retardant crosslinked polyolefin molding
JPS60147463A (en) Flame-retardant polyolefin composition
JP3325490B2 (en) Olefin resin foam
JP2003160702A (en) Flame-retardant resin composition and insulated electric wire using the same
JP2003096306A (en) Flame-retardant resin composition
JPH09320358A (en) Flame resistant insulated wire
JP7545790B2 (en) Flame-retardant resin composition, cable and wire harness using same
JP3457157B2 (en) Flame-retardant crosslinked olefin resin composition
JP2002042573A (en) Polyolefin insulating coated wire
JP3445119B2 (en) Flame retardant composition and flame retardant electric wire / cable using the same
JP3105938B2 (en) Flame retardant resin composition
JP2000265013A (en) Flame-retarded crosslinked resin composition and electric wire/cable therefrom