JPH0931621A - Film formation - Google Patents

Film formation

Info

Publication number
JPH0931621A
JPH0931621A JP7201849A JP20184995A JPH0931621A JP H0931621 A JPH0931621 A JP H0931621A JP 7201849 A JP7201849 A JP 7201849A JP 20184995 A JP20184995 A JP 20184995A JP H0931621 A JPH0931621 A JP H0931621A
Authority
JP
Japan
Prior art keywords
film
aqueous solution
plasma jet
gas
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7201849A
Other languages
Japanese (ja)
Inventor
Tsuneo Mita
常夫 三田
Masami Nimata
正美 二俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP7201849A priority Critical patent/JPH0931621A/en
Publication of JPH0931621A publication Critical patent/JPH0931621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily form a thin film having a dense and smooth surface by supplying an aqueous solution of metallic compound into the plasma jet produced by means of a tungsten electrode and a nozzle electrode, allowing it to collide and to be laminated with and on the surface of a work, and forming a film on the surface. SOLUTION: A working gas is formed into plasmic state by means of the arc formed between a tungsten electrode 27 and a nozzle electrode 28 made of copper and sprayed as a plasma jet through a nozzle 40 at the end of the nozzle electrode 28. An aqueous solution, in which a metallic compound such as CuCl2 .2H2 O is dissolved, is supplied as film formation material into the plasma jet via an inlet 43 in a sprayed state, allowed to fly while being melted, allowed to collide with a work, and laminated on it, by which a film is formed on the surface of the work. By this method, the thin film of <=1μm thick, having smooth surface, can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はワーク表面の性状を
改質するいわゆる溶射法の1つであるプラズマ溶射法の
改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a plasma spraying method, which is one of so-called thermal spraying methods for modifying the properties of a work surface.

【0002】[0002]

【従来の技術】溶接・接合便覧(溶接学会編、発行:1
990年9月、発行所:丸善。以下、文献1という)の
第712〜718頁には、耐摩耗性、耐食性、耐酸化性
あるいは熱・電気絶縁性に優れる材料の溶滴を高速度で
ワークに吹き付け、ワークの表面の性能改善、あるいは
機能付加に好適な種々の溶射法が記載されている。中で
も、プラズマ溶射法は104度Kを越える高温が利用で
きること、プラズマジェットの流速を亜音速から超音速
域まで制御できること、Arガス、Heガス、N2
ス、H2ガス等多種のガスが使用できる等の理由から、
現在の溶射法の主流となっている(文献1の第715〜
716頁)。さらに、より緻密で結合性の良い皮膜を形
成するため、減圧雰囲気中でプラズマジェットを作動さ
せ、高温領域の拡大および流速の高速化を計る減圧プラ
ズマ溶射法(文献1の第717頁)や、水を高速で旋回
させるときにできるトンネル状の空間にアークを発生さ
せ、壁面に相当する水面から発生する蒸気から生成する
2およびH2を作動ガスとする水安定化プラズマ溶射法
が開発されている(文献1の第716〜717頁)。
[Prior Art] Welding and Joining Handbook (Edited by Welding Society, published: 1
Publisher, Maruzen, September 990. Pp. 712 to 718 (hereinafter referred to as Document 1), spraying droplets of a material having excellent wear resistance, corrosion resistance, oxidation resistance or heat / electrical insulation properties onto a work at a high speed to improve the surface performance of the work. , Or various thermal spraying methods suitable for adding functions have been described. Among them, the plasma spraying method can use a high temperature exceeding 10 4 K, can control the flow velocity of the plasma jet from a subsonic speed to a supersonic speed range, and can use various gases such as Ar gas, He gas, N 2 gas and H 2 gas. Because it can be used,
It is the mainstream of the current thermal spraying method (Nos. 715 to 515 of Reference 1).
716). Furthermore, in order to form a denser and better bondable film, a plasma jet is operated in a reduced pressure atmosphere to expand the high temperature region and increase the flow velocity, and a low pressure plasma spraying method (page 717 of Document 1), A water-stabilized plasma spraying method has been developed in which an arc is generated in a tunnel-shaped space created when water is swirled at high speed, and O 2 and H 2 generated from steam generated from a water surface corresponding to a wall surface are used as working gases. (Pages 716 to 717 of Document 1).

【0003】[0003]

【発明が解決しようとする課題】上記した従来のプラズ
マ溶射法では、粒度が数μm〜数100μmの皮膜材料
を使用している。このため、厚さが数10〜数100μ
mの皮膜は容易に形成できるが、厚さを10μm以下に
することが困難で、1μm以下の薄い皮膜を形成するこ
とは殆どできない。また、形成した皮膜の表面粗さもか
なり粗い。さらに、粉末の形状や粒度によっては粉末の
供給が不連続になることがあった。
In the above-mentioned conventional plasma spraying method, a coating material having a particle size of several μm to several 100 μm is used. Therefore, the thickness is several tens to several hundreds μ.
Although a m-thick film can be easily formed, it is difficult to form a film having a thickness of 10 μm or less, and a thin film having a thickness of 1 μm or less can hardly be formed. In addition, the surface roughness of the formed film is considerably rough. Further, depending on the shape and particle size of the powder, the powder supply may be discontinuous.

【0004】本発明の目的は、上記した課題を解決し、
表面が緻密かつ滑らかで、厚さが1μm以下〜10μm
の薄い皮膜を形成することができ、しかも皮膜形成材料
の供給が容易である皮膜形成方法を提供するにある。
The object of the present invention is to solve the above problems,
The surface is dense and smooth, and the thickness is 1 μm or less to 10 μm.
Another object of the present invention is to provide a method for forming a film capable of forming a thin film, and easily supplying a film forming material.

【0005】[0005]

【課題を解決するための手段】上記した課題は、タング
ステン電極とノズル電極との間に発生させたアークによ
って作動ガスをプラズマ化し、ノズル電極の先端から噴
出するプラズマジェット中に皮膜形成材料を供給し、上
記皮膜形成材料をプラズマジェット中で溶融させつつ飛
行させワークに衝突・積層させることによりワークの表
面に皮膜を形成する皮膜形成方法において、金属化合物
を溶解させた水溶液を皮膜形成材料とすることにより解
決される。さらに、金属化合物を溶解させた水溶液を霧
状にしてプラズマジェット中に供給することによりさら
に効果的に解決される。
Means for Solving the Problems The above-mentioned problem is that the working gas is turned into plasma by the arc generated between the tungsten electrode and the nozzle electrode, and the film-forming material is supplied into the plasma jet ejected from the tip of the nozzle electrode. Then, in the film forming method of forming a film on the surface of the work by causing the film forming material to fly while being melted in a plasma jet and colliding and stacking with the work, an aqueous solution in which a metal compound is dissolved is used as the film forming material. Will be solved. Furthermore, the solution can be more effectively solved by atomizing an aqueous solution in which a metal compound is dissolved and supplying it into a plasma jet.

【0006】即ち、水溶液中において溶質である金属化
合物はプラスの金属イオンとマイナスの非金属イオンと
に電離している。この水溶液をプラズマジェット中に供
給すると、プラスの金属イオンは、雰囲気中に存在する
マイナスのガスイオン等と結合して金属化合物を生成す
る。新たに生成した金属化合物の粒度は、従来の粉末に
比べて極めて小さい。この結果、表面が滑らかで薄い皮
膜を形成することができる。
That is, the solute metal compound in the aqueous solution is ionized into positive metal ions and negative non-metal ions. When this aqueous solution is supplied into the plasma jet, the positive metal ions combine with negative gas ions or the like existing in the atmosphere to generate a metal compound. The particle size of the newly formed metal compound is extremely smaller than that of the conventional powder. As a result, a thin film having a smooth surface can be formed.

【0007】[0007]

【発明の実施の形態】図1は本発明の一実施例を示す全
体構成図である。同図において、1はプラズマガン2に
電力を供給する直流の電源。3は電源1を制御するため
の制御装置。4はプラズマガン2を冷却するための冷却
水装置。5はプラズマジェットを発生させるための作動
ガスとして用いるArガスを充填したガス容器。6a,
6bは高圧のArガスを所定の圧力に低下させる圧力調
整器で、6aは作動ガス用、6bはシールドガス用であ
る。7a,7bはArガスの流量を制御する流量調整
器。8a,8bはソレノイドバルブ。9は金属化合物を
溶解させた水溶液10の容器。11は水溶液の流量を制
御する流量調整器。12は水溶液を送出するポンプ。1
3はワークである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall configuration diagram showing an embodiment of the present invention. In the figure, 1 is a direct current power source for supplying electric power to the plasma gun 2. A control device 3 controls the power supply 1. Reference numeral 4 is a cooling water device for cooling the plasma gun 2. 5 is a gas container filled with Ar gas used as a working gas for generating a plasma jet. 6a,
Reference numeral 6b is a pressure regulator that lowers the high-pressure Ar gas to a predetermined pressure, 6a is a working gas, and 6b is a shield gas. 7a and 7b are flow rate regulators that control the flow rate of Ar gas. 8a and 8b are solenoid valves. 9 is a container of an aqueous solution 10 in which a metal compound is dissolved. 11 is a flow rate regulator that controls the flow rate of the aqueous solution. 12 is a pump for delivering the aqueous solution. 1
3 is a work.

【0008】図2はプラズマガン2の要部断面図であ
る。同図において、21、22は通電用の端子で、端子
21は電源1のマイナス側出力端子に、端子22は電源
1のプラス側出力端子にそれぞれ接続される。23、2
4は冷却水用の端子で、冷却水装置4に接続される。2
5は絶縁物で端子21、22と一体に成形してある。2
6は作動ガスとしてのArガスの入口端子で、流量調整
器7aに接続される。27はタングステン電極で、端子
21に着脱自在に保持されている。28は銅製のノズル
電極で、図示しない手段により端子22の穴29に着脱
自在に保持されている。30はノズル電極28の中心部
に設けた穴。31はノズル電極28と端子22との間に
形成される空間。32はセラミック製のシールドノズル
で、図示しない手段により端子22の外周に着脱自在に
保持されている。33はシールドガスとしてのArガス
の入口で、流量調整器7bに接続される。34は端子2
3と穴29とを接続する穴である。40はセラミック製
のノズルで、図示しない手段によりノズル電極28の端
面41に着脱自在に固定されている。42はノズル40
の中心部に設けた穴。なお、ノズル40をノズル電極2
8に固定したとき、穴30と穴42はほぼ同軸になる。
43は水溶液の入口である。以上の構成であるから、図
示しない起動スイッチをオンすると、先ず、冷却水装置
4が作動し、冷却水は端子23、穴34、空間31、端
子24を経て冷却水装置4に戻る。また、ソレノイドバ
ルブ8a,8bが開き、Arガスが入口端子26、33
に供給される。次に電源1がオンとなり、タングステン
電極27とノズル電極28との間にアークが発生し、プ
ラズマジェットJが発生する。
FIG. 2 is a sectional view of the main part of the plasma gun 2. In the figure, reference numerals 21 and 22 denote energizing terminals, the terminal 21 is connected to the negative output terminal of the power supply 1, and the terminal 22 is connected to the positive output terminal of the power supply 1. 23, 2
A cooling water terminal 4 is connected to the cooling water device 4. Two
Reference numeral 5 is an insulator, which is formed integrally with the terminals 21 and 22. Two
6 is an inlet terminal of Ar gas as a working gas, which is connected to the flow rate regulator 7a. A tungsten electrode 27 is detachably held by the terminal 21. A nozzle electrode 28 made of copper is detachably held in the hole 29 of the terminal 22 by means not shown. 30 is a hole provided in the center of the nozzle electrode 28. Reference numeral 31 is a space formed between the nozzle electrode 28 and the terminal 22. A shield nozzle 32 made of ceramic is detachably held on the outer periphery of the terminal 22 by means not shown. 33 is an inlet of Ar gas as a shield gas, which is connected to the flow rate regulator 7b. 34 is terminal 2
3 is a hole connecting the hole 29. A ceramic nozzle 40 is detachably fixed to the end face 41 of the nozzle electrode 28 by means not shown. 42 is the nozzle 40
Hole in the center of the. The nozzle 40 is connected to the nozzle electrode 2
When fixed to position 8, hole 30 and hole 42 are substantially coaxial.
43 is an inlet for the aqueous solution. With the above configuration, when a start switch (not shown) is turned on, first, the cooling water device 4 is activated, and the cooling water returns to the cooling water device 4 via the terminal 23, the hole 34, the space 31, and the terminal 24. Further, the solenoid valves 8a and 8b are opened, and Ar gas is supplied to the inlet terminals 26 and 33.
Is supplied to. Next, the power supply 1 is turned on, an arc is generated between the tungsten electrode 27 and the nozzle electrode 28, and a plasma jet J is generated.

【0009】以下、動作原理を示す図3を参照しながら
詳細な動作について説明する。上記の状態で図示しない
溶射開始スイッチをオンすると、ポンプ12が金属化合
物を溶解させた水溶液10を入口43に供給する。良く
知られているように、水溶液10において金属化合物は
プラスの金属イオンとマイナスの非金属イオンとに電離
している。この水溶液をプラズマジェット中に供給する
と、水分の大部分は蒸発するが、一部は熱により水素イ
オンと酸素イオンに解離する。そして、プラスの金属イ
オンは、雰囲気中に存在するマイナスのガスイオン(例
えば、水が熱解離することにより発生する上記酸素イオ
ン、空気中の酸素が熱解離することにより発生する酸素
イオン等)と結合して新たな金属化合物(以下、生成金
属と呼ぶ。)となり、プラズマジェットJに吹き飛ばさ
れてワーク13の表面に衝突する。また、溶質の非金属
イオンは、さらに分解したりあるいは水が熱解離するこ
とにより発生する上記水素イオンと結合することにより
ガス化して周辺部に放出される。生成金属の粒度は、従
来の粉末に比べて極めて小さい。この結果、表面が滑ら
かで薄い皮膜を形成することができる。
The detailed operation will be described below with reference to FIG. 3 showing the operating principle. When the spraying start switch (not shown) is turned on in the above state, the pump 12 supplies the aqueous solution 10 in which the metal compound is dissolved to the inlet 43. As is well known, the metal compound in the aqueous solution 10 is ionized into positive metal ions and negative non-metal ions. When this aqueous solution is supplied into the plasma jet, most of the water vaporizes, but part of it dissociates into hydrogen ions and oxygen ions due to heat. Then, the positive metal ions are negative gas ions existing in the atmosphere (for example, the above-mentioned oxygen ions generated by thermal dissociation of water, oxygen ions generated by thermal dissociation of oxygen in the air, etc.). They are combined to form a new metal compound (hereinafter referred to as a produced metal), blown off by the plasma jet J, and collide with the surface of the work 13. The solute non-metal ions are further decomposed or combined with the hydrogen ions generated by the thermal dissociation of water to be gasified and released to the peripheral portion. The particle size of the produced metal is extremely small compared with the conventional powder. As a result, a thin film having a smooth surface can be formed.

【0010】上記の実施の形態では、水溶液10を液状
のまま供給するようにしたが、水溶液10を霧状にして
供給してもよい。以下、図4を用いて詳細に説明する。
図4は水溶液10を霧状にして供給する装置の一実施例
を示すものである。同図において、50a,50bは圧
力調整器、51、52は流量調整器。53は噴霧器であ
る。なお、この実施例における容器9は密閉した容器で
ある。
In the above embodiment, the aqueous solution 10 is supplied in a liquid state, but the aqueous solution 10 may be supplied in a mist state. Hereinafter, a detailed description will be given with reference to FIG.
FIG. 4 shows an embodiment of an apparatus for supplying the aqueous solution 10 in the form of mist. In the figure, 50a and 50b are pressure regulators, and 51 and 52 are flow rate regulators. 53 is a sprayer. The container 9 in this embodiment is a closed container.

【0011】以下、動作について説明する。容器9内の
水溶液10は圧力調整器50aで設定された圧力で加圧
され、流量調整器52で設定される流量が噴霧器53に
送出される。そして、噴霧器53において、圧力調整器
50b、流量調整器51により制御されたArガスによ
り霧状になり、入口43を経由してプラズマジェットJ
に供給される。
The operation will be described below. The aqueous solution 10 in the container 9 is pressurized at the pressure set by the pressure regulator 50a, and the flow rate set by the flow rate regulator 52 is delivered to the sprayer 53. Then, in the atomizer 53, it is atomized by the Ar gas controlled by the pressure regulator 50b and the flow rate regulator 51, and the plasma jet J is passed through the inlet 43.
Is supplied to.

【0012】[0012]

【実施例】以下、実験結果の例を説明する。 実施例1 (1)溶射条件 アーク電流 :150A ノズル端面とワーク表面との距離:100mm 作動ガスの種類および流量 :Arガス,40l/min 水溶液の供給量 :2.7ml/min 水溶液中の溶質の種類 :Fe(NO33・9H2Oの飽和水溶液 移動速度 :25mm/min(1パス) (2)結果 表面粗さの測定結果を表1に示す。なお、比較のため、
従来の粉末を用いるプラズマ溶射法、ガス溶射法で得ら
れる一般的な表面粗さも記入してある。また、外観写真
を図5に示す。
EXAMPLES Examples of experimental results will be described below. Example 1 (1) Spraying conditions Arc current: 150 A Distance between nozzle end face and work surface: 100 mm Type and flow rate of working gas: Ar gas, 40 l / min Amount of aqueous solution supplied: 2.7 ml / min Solute in aqueous solution type: Fe (NO 3) 3 · 9H 2 O , saturated aqueous traveling speed: 25 mm / min (1 pass) (2) results the surface roughness of the measurement results are shown in Table 1. For comparison,
The general surface roughness obtained by the plasma spraying method using a conventional powder and the gas spraying method is also described. A photograph of the appearance is shown in FIG.

【0013】[0013]

【表1】 表1から明らかなように、得られた皮膜の表面粗さは、
従来のものに比べ、Rmaxで1/5,Raで約1/1
0であった。なお、皮膜厚さは約5μmであった。ま
た、皮膜をX線回折分析をしたが、分析スペクトルには
結晶構造を示すピークがなく、アモルファス状態である
ことが分かった。なお、水溶液10は液状のままでプラ
ズマジェットJに供給した。
[Table 1] As is clear from Table 1, the surface roughness of the obtained film is
Rmax is about 1/5 and Ra is about 1/1 compared to the conventional one
It was 0. The film thickness was about 5 μm. Further, the film was subjected to X-ray diffraction analysis, and it was found that the analysis spectrum had no peak showing a crystal structure and was in an amorphous state. The aqueous solution 10 was supplied to the plasma jet J in a liquid state.

【0014】実施例2 (1)溶射条件 アーク電流 :200A ノズル端面とワーク表面との距離:100mm 作動ガスの種類 :Arガス 水溶液の供給量 :3.0ml/min 水溶液中の溶質の種類 :FeCl3・6H2Oの飽和水溶液 溶射時間 :30sec 上記条件のもとで作動ガス流量を20〜60l/min
の間で変化させた。 (2)結果 外観写真である図6に示すように、作動ガスの流量が2
0〜60l/minの範囲において良好な皮膜を形成す
ることができた。また、作動ガスの流量が増加すると表
面粗さがやや粗くなる傾向を示すことを確認した。な
お、水溶液10は霧状にしてプラズマジェットJに供給
した。
Example 2 (1) Spraying conditions Arc current: 200 A Distance between nozzle end face and work surface: 100 mm Type of working gas: Ar gas Amount of aqueous solution supply: 3.0 ml / min Type of solute in aqueous solution: FeCl 3 · 6H 2 O, saturated aqueous spray time: 30sec 20~60l the working gas flow rate under the above conditions / min
Varied between. (2) Results As shown in FIG. 6 which is an external photograph, the flow rate of the working gas is 2
A good film could be formed in the range of 0 to 60 l / min. It was also confirmed that the surface roughness tends to become slightly rough as the flow rate of the working gas increases. The aqueous solution 10 was atomized and supplied to the plasma jet J.

【0015】実施例3 (1)溶射条件 アーク電流 :80A ノズル端面とワーク表面との距離:100mm 作動ガスの種類および流量 :Arガス,30l/min 水溶液の供給量 :2.0ml/min 溶射時間 :30sec 上記の条件のもとで、溶質の種類をCuCl2・2H2
と、Cu(NO33・3H2Oおよび(CH3COO)2
Cu・H2Oとして実験した。なお、いずれも飽和水溶
液とし、霧状にしてプラズマジェットJに供給した。 (2)結果 外観写真である図7に示すように、上記いずれの水溶液
であっても皮膜を形成できることを確認した。
Example 3 (1) Spraying conditions Arc current: 80 A Distance between nozzle end face and work surface: 100 mm Type and flow rate of working gas: Ar gas, 30 l / min Amount of aqueous solution supplied: 2.0 ml / min Spraying time : 30sec Under the above conditions, change the solute type to CuCl 2 · 2H 2 O
And Cu (NO 3 ) 3 .3H 2 O and (CH 3 COO) 2
The experiment was conducted using Cu.H 2 O. In addition, all were made into a saturated aqueous solution, atomized, and supplied to the plasma jet J. (2) Results As shown in FIG. 7, which is a photograph of the appearance, it was confirmed that any of the above aqueous solutions could form a film.

【0016】なお、上記3つの実施例では、溶質を飽和
させた飽和水溶液を使用したが、不飽和水溶液でもよ
い。また、水溶液の供給装置を特別に設けず、容器9か
ら重力を利用して落下させてもよい。さらに、溶質とし
て、鉄と銅の化合物について説明したが、用途に応じて
他の金属化合物を使用できることはいうまでもない。ま
た、本実施例ではシールドガスと作動ガスの両者をAr
ガスとする構成にしたが、シールドガスと作動ガスは別
の種類としても良い。また、実用上差し支えのないとき
は、シールドガスを用いなくても良い。
In the above three examples, the saturated aqueous solution in which the solute is saturated was used, but an unsaturated aqueous solution may be used. Alternatively, the aqueous solution may be dropped from the container 9 by using gravity without providing a special supply device. Further, the compound of iron and copper has been described as the solute, but it goes without saying that other metal compounds can be used depending on the application. In this embodiment, both the shield gas and the working gas are Ar.
Although the gas is used as the gas, the shield gas and the working gas may be different types. Moreover, when there is no practical problem, the shield gas may not be used.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
金属化合物を溶解させた水溶液を皮膜形成材料としてプ
ラズマジェット中に供給し、プラズマジェット中で新た
に金属化合物を生成させる。この結果、生成した金属化
合物の粒度は従来使用されていた粉末に比べ極めて小さ
いから、表面が滑らかで1μm以下〜10μmの薄い皮
膜を形成できるという効果がある。また、皮膜形成材料
の供給が容易になるという効果がある。さらに、水溶液
を作る際、金属化合物の形状は塊状で良く、粉末にする
必要および粒度を揃える必要もないから材料費を安価に
できるという効果もある。また、水溶液中の水分の蒸発
に伴う気化熱によりプラズマを緊縮させ、プラズマジェ
ットの高温化を計れるという作用もあり、皮膜の緻密化
および密着性の向上が計れるという効果もある。
As described above, according to the present invention,
An aqueous solution in which a metal compound is dissolved is supplied as a film forming material into a plasma jet to newly generate a metal compound in the plasma jet. As a result, the particle size of the produced metal compound is extremely smaller than that of the conventionally used powder, so that there is an effect that a smooth surface can be formed and a thin film of 1 μm or less to 10 μm can be formed. Further, there is an effect that the supply of the film forming material becomes easy. Further, when the aqueous solution is prepared, the shape of the metal compound may be a lump, and it is not necessary to make it into a powder or to make the particle sizes uniform, so that the material cost can be reduced. In addition, the heat of vaporization accompanying the evaporation of water in the aqueous solution causes the plasma to be tightened, and the temperature of the plasma jet can be increased, which also has the effect of making the film more compact and improving the adhesion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す全体構成図。FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

【図2】プラズマガン2の要部断面図。FIG. 2 is a sectional view of a main part of a plasma gun 2.

【図3】動作原理を示す説明図。FIG. 3 is an explanatory diagram showing an operation principle.

【図4】水溶液を霧状にして供給する場合の構成図。FIG. 4 is a configuration diagram when an aqueous solution is atomized and supplied.

【図5】皮膜の外観を示す写真。FIG. 5 is a photograph showing the appearance of the film.

【図6】皮膜の外観を示す写真。FIG. 6 is a photograph showing the appearance of the film.

【図7】皮膜の外観を示す写真。FIG. 7 is a photograph showing the appearance of the film.

【符号の説明】[Explanation of symbols]

9 容器 10 水溶液 27 タングステン電極 28 ノズル電極 40 ノズル 43 入口 53 噴霧器 J プラズマジェット 9 Container 10 Aqueous Solution 27 Tungsten Electrode 28 Nozzle Electrode 40 Nozzle 43 Inlet 53 Nebulizer J Plasma Jet

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年12月7日[Submission date] December 7, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す全体構成図。FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

【図2】プラズマガン2の要部断面図。FIG. 2 is a sectional view of a main part of a plasma gun 2.

【図3】動作原理を示す説明図。FIG. 3 is an explanatory diagram showing an operation principle.

【図4】水溶液を霧状にして供給する場合の構成図。FIG. 4 is a configuration diagram when an aqueous solution is atomized and supplied.

【図5】皮膜の外観を示す顕微鏡写真。FIG. 5 is a micrograph showing the appearance of the film.

【図6】皮膜の外観を示す顕微鏡写真。FIG. 6 is a micrograph showing the appearance of a film.

【図7】皮膜の外観を示す顕微鏡写真。FIG. 7 is a micrograph showing the appearance of a film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】タングステン電極とノズル電極との間に発
生させたアークによって作動ガスをプラズマ化し、ノズ
ル電極の先端から噴出するプラズマジェット中に皮膜形
成材料を供給し、上記皮膜形成材料をプラズマジェット
中で溶融させつつ飛行させワークに衝突・積層させるこ
とによりワークの表面に皮膜を形成する皮膜形成方法に
おいて、金属化合物を溶解させた水溶液を皮膜形成材料
とすることを特徴とする皮膜形成方法。
1. A working gas is turned into plasma by an arc generated between a tungsten electrode and a nozzle electrode, and the film-forming material is supplied into a plasma jet ejected from the tip of the nozzle electrode. In a film forming method for forming a film on the surface of a work by causing the film to melt and fly while colliding and stacking on the work, an aqueous solution in which a metal compound is dissolved is used as a film forming material.
【請求項2】金属化合物を溶解させた水溶液を霧状にし
てプラズマジェット中に供給することを特徴とする請求
項1に記載の皮膜形成方法。
2. The film forming method according to claim 1, wherein an aqueous solution in which the metal compound is dissolved is atomized and supplied into the plasma jet.
JP7201849A 1995-07-17 1995-07-17 Film formation Pending JPH0931621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7201849A JPH0931621A (en) 1995-07-17 1995-07-17 Film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7201849A JPH0931621A (en) 1995-07-17 1995-07-17 Film formation

Publications (1)

Publication Number Publication Date
JPH0931621A true JPH0931621A (en) 1997-02-04

Family

ID=16447912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7201849A Pending JPH0931621A (en) 1995-07-17 1995-07-17 Film formation

Country Status (1)

Country Link
JP (1) JPH0931621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010078636A (en) * 2000-02-09 2001-08-21 김징완 Plasma arc torch
JP2008055414A (en) * 2006-08-30 2008-03-13 Sulzer Metco Ag Plasma spraying device and method for introducing liquid precursor in plasma gas stream

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010078636A (en) * 2000-02-09 2001-08-21 김징완 Plasma arc torch
JP2008055414A (en) * 2006-08-30 2008-03-13 Sulzer Metco Ag Plasma spraying device and method for introducing liquid precursor in plasma gas stream

Similar Documents

Publication Publication Date Title
US3064114A (en) Apparatus and process for spraying molten metal
US4232056A (en) Thermospray method for production of aluminum porous boiling surfaces
EP0546121B1 (en) High velocity electric-arc spray apparatus and method of forming materials
CA2034459C (en) Low frequency radio frequency plasma spray deposition
US20010041227A1 (en) Powder injection for plasma thermal spraying
JPH03226554A (en) Metal coating of supporting body by electric arc spray and metal coated supporting body
EP0282310A2 (en) High power extended arc plasma spray method and apparatus
US6431464B2 (en) Thermal spraying method and apparatus
JP2006130503A (en) Apparatus for plasma spray coating
US3304402A (en) Plasma flame powder spray gun
JPH07107876B2 (en) Plasma generator and plasma generating method
JPH02247370A (en) Apparatus and method for laser plasma-coating in molten state
JPH10280120A (en) Thermal spraying of metallic coating by using flux cored wire
JPH07113123B2 (en) Molten metal spraying method and apparatus
JPH0931621A (en) Film formation
JPH0368469A (en) Method and device for plasma wire spraying
US20120251885A1 (en) High power, wide-temperature range electrode materials, electrodes, related devices and methods of manufacture
GB1003118A (en) Method of fusing atomizing and spraying a refractory oxide
JP2002220601A (en) Production method for low oxygen spherical metal powder using dc thermal plasma processing
JP2010537058A (en) Corrosion resistance treatment method for parts by depositing a layer of zirconium and / or zirconium alloy
JP4769932B2 (en) Substrate with minute dots
Steffens et al. Recent developments in single-wire vacuum arc spraying
JP4423393B2 (en) Microplasma deposition method and apparatus
US6680085B2 (en) Method and device for thermal spraying for the coating of surfaces
JP2016540123A (en) Method for forming a sprayed cylinder sliding surface of a crankcase of an internal combustion engine and such a crankcase

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001226