JPH09315260A - Self-diagnostic method of collision judging device - Google Patents

Self-diagnostic method of collision judging device

Info

Publication number
JPH09315260A
JPH09315260A JP8138752A JP13875296A JPH09315260A JP H09315260 A JPH09315260 A JP H09315260A JP 8138752 A JP8138752 A JP 8138752A JP 13875296 A JP13875296 A JP 13875296A JP H09315260 A JPH09315260 A JP H09315260A
Authority
JP
Japan
Prior art keywords
value
circuit
threshold
output
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8138752A
Other languages
Japanese (ja)
Inventor
Tomomi Saito
知巳 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP8138752A priority Critical patent/JPH09315260A/en
Publication of JPH09315260A publication Critical patent/JPH09315260A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To diagnose the presence of something abnormal with a turnover strain preventing low-pass wave filter circuit connected to an acceleration sensor in use of the collision judgment algorithm of an collision judging device to a virtual collision signal. SOLUTION: Output of an acceleration sensor 2 is made into analog-to-digital conversion via a turnover strain preventing low-pass waver filter circuit 3a, and an operated value generated on the basis of accelerating data subjected to this AD conversion is applied to an collision judging device giving an collision judgment after judging its threshold, issuing a diagnostic command, and thereby the output of the acceleration sensor 2 is imaginarily changed suddenly, and the said operated value threshold-judged at the fixed point of time, thereby diagnosing the low-pass wave filter circuit 3a. A self-disnostic circuit 22 concerned to this diagnosis judges whether four values of absolute value DE, short interval integral value BV, short interval integral value/differential value DB and long-interval integral value CV is in the specified threshold range held between both upper and lower threshold values or not, and in the case where even one value comes off the threshold range, it is so judged that there is something abnormal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加速度センサに接
続した折り返し歪み防止用の低域濾波回路の異常の有無
を、仮想衝突信号に対する衝突判定装置の衝突判定アル
ゴリズムを利用して診断するようにした衝突判定装置の
自己診断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention makes it possible to diagnose whether or not there is an abnormality in a low pass filter circuit for preventing aliasing distortion connected to an acceleration sensor by using a collision determination algorithm of a collision determination device for a virtual collision signal. The present invention relates to a self-diagnosis method for a collision determination device.

【0002】[0002]

【従来の技術】図4に示す衝突判定装置1は、衝突が発
生したときに車載エアバッグを展開させるための装置で
ある。この衝突判定装置は、加速度センサ2のパルス信
号出力により得られる加速度信号Gを、折り返し歪み除
去用の低域濾波回路3aとディジタル信号処理用の高域
濾波器3bとを縦列接続した帯域濾波器3により帯域濾
波し、AD変換してディジタル信号処理部1a内に取り
込み、ディジタル信号処理部1a内で絶対値判定と短区
間積分判定と短区間積分値微分判定と長区間積分判定の
4種類の判定を総合して衝突判定を下す。衝突判定と同
時にエアバッグに対し展開信号が出力され、起爆素子の
通電とともにエアバッグが展開する。
2. Description of the Related Art A collision determination device 1 shown in FIG. 4 is a device for deploying an in-vehicle airbag when a collision occurs. This collision determination device is a bandpass filter in which an acceleration signal G obtained by the pulse signal output of the acceleration sensor 2 is cascade-connected with a low-pass filter circuit 3a for removing aliasing distortion and a high-pass filter 3b for digital signal processing. Band-pass filtering by 3 and AD-converting it into the digital signal processing unit 1a, and in the digital signal processing unit 1a, there are four types of absolute value determination, short interval integration determination, short interval integration value differential determination, and long interval integration determination. Make a collision judgment by combining the judgments. A deployment signal is output to the airbag simultaneously with the collision determination, and the airbag deploys as the detonator element is energized.

【0003】加速度センサ2としては、ピエゾ抵抗変化
を利用する応力歪みゲージを車両の進行方向に受圧面を
向けて半導体基板上に組み込んだものが用いられるが、
ピエゾ抵抗変化を検出する半導体加速度センサに限ら
ず、圧電素子を用いたもの或いは純粋機械式に弾発ばね
を用いるものなども使用できる。加速度センサ2が出力
するパルス出力信号Gは、離散値データに変換する前に
アナログ回路構成の低域濾波回路3aにおいて、折り返
し歪みの影響を排除すべく高周波成分を除去され、続く
ディジタル信号処理部1a内のディジタル回路構成の高
域濾波回路3bと短区間積分器4と長区間積分器5に対
し、AD変換入力ポート経由で送り込まれる。本例の場
合、AD変換入力ポートにはAD変換機能が付属してお
り、従って加速度センサ2により検出されて帯域制限さ
れた加速度信号は、AD変換入力ポートを通過するさい
にディジタルの加速度データに変換される。また、折り
返し歪み防止用の低域濾波回路3aは、加速度信号に含
まれる70ないし260Hzを越える高周波成分例えば
70Hzを越える高周波成分を除去する濾波特性を有し
ており、次段の高域濾波回路3bは、低域濾波回路3a
の出力に含まれる20ないし170Hz以下の低周波成
分例えば20Hz以下の低周波成分を除去する濾波特性
を有する。
As the acceleration sensor 2, there is used one in which a stress-strain gauge utilizing a piezo resistance change is incorporated on a semiconductor substrate with its pressure receiving surface facing the traveling direction of the vehicle.
Not only the semiconductor acceleration sensor that detects a change in piezoresistance but also a piezoelectric acceleration sensor or a pure mechanical elastic spring can be used. The pulse output signal G output from the acceleration sensor 2 has its high-frequency component removed in order to eliminate the influence of aliasing distortion in the low-pass filter circuit 3a having an analog circuit configuration before being converted into discrete-value data, and the subsequent digital signal processing unit. It is sent to the high-pass filter circuit 3b, the short-range integrator 4, and the long-range integrator 5 of the digital circuit configuration in 1a via the AD conversion input port. In the case of this example, the AD conversion input port is provided with an AD conversion function, and therefore the acceleration signal detected by the acceleration sensor 2 and band-limited is converted into digital acceleration data when passing through the AD conversion input port. To be converted. Further, the low-pass filtering circuit 3a for preventing aliasing distortion has a filtering characteristic of removing high-frequency components exceeding 70 to 260 Hz contained in the acceleration signal, for example, high-frequency components exceeding 70 Hz, and the high-pass filtering circuit of the next stage. 3b is a low-pass filtering circuit 3a
Has a filtering characteristic for removing low-frequency components of 20 to 170 Hz or less included in the output of, for example, low-frequency components of 20 Hz or less.

【0004】帯域濾波器3により抽出された加速データ
G(k)は、絶対値回路6に送り込まれ、ここで加速度
信号の正負に関係のない絶対値|G(k)|に変換さ
れ、続く比較器7において一定の基準値Erを基準にし
きい値判別された後、波形整形器8に送り込まれる。波
形整形器8は、しきい値Erを越える衝撃力が比較器7
の出力として得られたときに、比較器7の出力を一定時
間だけ時間軸方向に伸長し、少なくとも一定時間は持続
する波形に整形する。本例に示した波形整形器8は、比
較器7の出力の立ち上りでトリガされて30ms持続す
るワンショットパルスを生成するワンショット回路8a
と、このワンショット回路8aの出力ワンショットパル
スと比較器7の原出力との論理和をとるオアゲート回路
8bとから構成される。このため、絶対値回路6の出力
が危険値を越える急激な衝撃力の変化を示したときは、
波形整形器8の出力が衝突認定の可能性が大であること
を、30msの期間に亙って明示し続けることになる。
The acceleration data G (k) extracted by the bandpass filter 3 is sent to an absolute value circuit 6 where it is converted into an absolute value │G (k) │ which is independent of the positive / negative of the acceleration signal and continues. After the threshold value is discriminated by the comparator 7 with reference to a constant reference value Er, it is sent to the waveform shaper 8. In the waveform shaper 8, the impact force that exceeds the threshold Er is detected by the comparator 7.
When it is obtained as the output of, the output of the comparator 7 is expanded in the time axis direction for a fixed time and shaped into a waveform that lasts at least a fixed time. The waveform shaper 8 shown in this example is a one-shot circuit 8a that is triggered by the rising edge of the output of the comparator 7 to generate a one-shot pulse that lasts 30 ms.
And an OR gate circuit 8b which takes the logical sum of the output one-shot pulse of the one-shot circuit 8a and the original output of the comparator 7. Therefore, when the output of the absolute value circuit 6 shows a sudden change in impact force exceeding the dangerous value,
The fact that the output of the waveform shaper 8 has a high possibility of collision detection will continue to be clearly shown over the period of 30 ms.

【0005】一方、短区間と長区間の各区間積分器4,
5により行われる区間積分は、AD変換入力ポートを通
過するさいに離散値化された加速度データG(k)を、
短区間積分器4が10ないし14ms例えば14msの
積分区間で、また長区間積分器5が例えば90msの積
分区間でそれぞれ区間積分することにより行われる。長
区間積分出力は、続く比較器9において一定の基準値E
rlを基準にしきい値判別され、一定の基準値Erlを
越える長区間積分値が得られる場合に、判定回路10内
の3入力1出力型のオアゲート回路11に対しハイレベ
ルの信号を供給する。なお、判定回路10は、オアゲー
ト回路11の外に2個のアンドゲート回路12,13を
内蔵しており、アンドゲート回路12,13の出力と上
記比較器9の出力がオアゲート回路11に供給される。
On the other hand, the short-term and long-term interval integrators 4,
In the interval integration performed by 5, the acceleration data G (k), which has been digitized when passing through the AD conversion input port,
The short interval integrator 4 performs interval integration for 10 to 14 ms, for example, 14 ms, and the long interval integrator 5 performs integration for 90 ms, for example. The long-interval integrated output is supplied to the subsequent comparator 9 with a constant reference value E.
When a threshold value is discriminated based on rl and a long-interval integrated value exceeding a constant reference value Erl is obtained, a high-level signal is supplied to the 3-input 1-output type OR gate circuit 11 in the decision circuit 10. The determination circuit 10 includes two AND gate circuits 12 and 13 in addition to the OR gate circuit 11, and the outputs of the AND gate circuits 12 and 13 and the output of the comparator 9 are supplied to the OR gate circuit 11. It

【0006】短区間積分器4の出力は、一対の比較器1
4,15と微分器16とに供給される。比較器14,1
5は、短区間積分出力をそれぞれ一定の基準値VrS
1,VrS2を基準にしきい値判別する。微分器16
は、短区間積分出力をシンプソンの公式に従ったアルゴ
リズムを用いて時間微分し、得られた時間微分値を比較
器17に供給する。ちなみに、シンプソンの公式によれ
ば、時間微分値は短区間積分出力の現在値V(k)とそ
の3サンプル前までのデータV(k−1),V(k−
2),V(k−3)とを用い、 {(V(k)+3V(k−1)−3V(k−2)−V
(k−3)}/6 なる演算により導出される。比較器17は、短区間積分
出力の時間微分値を一定の基準値αrを基準にしきい値
判別し、しきい値判別出力をアンドゲート回路13に供
給して比較器15の出力の論理積演算に供する。
The output of the short interval integrator 4 is the output of the pair of comparators 1.
4, 15 and the differentiator 16. Comparator 14, 1
5 is a reference value VrS which is a constant reference value for each of the short-term integrated outputs.
The threshold value is discriminated based on 1 and VrS2. Differentiator 16
Uses the algorithm according to Simpson's formula to time-differentiate the short-term integrated output, and supplies the obtained time differential value to the comparator 17. Incidentally, according to Simpson's formula, the time differential value is the current value V (k) of the short-term integral output and the data V (k-1), V (k-
2) and V (k-3), {(V (k) + 3V (k-1) -3V (k-2) -V
(K-3)} / 6. The comparator 17 performs a threshold value determination on the time differential value of the short-term integrated output with reference to a constant reference value αr and supplies the threshold value determination output to the AND gate circuit 13 to perform a logical product operation of the outputs of the comparators 15. To serve.

【0007】ところで、上記従来の衝突判定装置は、A
D変換に伴う折り返し歪みを除去するための低域濾波回
路3aがアナログ回路構成であり、その構成要素である
抵抗やコンデンサのショート或いはオープンが発生した
場合に、エアバッグを展開させるべきでない軽い衝突や
或いは縁石乗り上げやポットホール走行時に暴発を招い
たり、或いはその逆にエアバッグを速やかに展開させる
べき事故にも拘わらず、展開トリガ信号が遅れることが
ある等の不具合を招く一因となっていた。このため、従
来は、低域濾波回路3aを構成する抵抗やコンデンサを
分割したり二重に設けたりした冗長な回路構成を採用
し、これにより暴発や不発さらには展開時間遅れ等の事
故の発生を未然に防止する構成としていた。例えば、図
5に例示した低域濾波回路3aでは、演算増幅器を用い
たアクティブ・ローパスフィルタを構成する上で、縦列
接続した一対の入力抵抗R1,R2を非反転入力端子に
接続するとともに、出力端子と反転入力端子を結ぶ帰還
路に帰還抵抗R3,R4を縦列接続し、さらに入力抵抗
R1とR2の接続点を帰還コンデンサC1を介して出力
端子に接続するとともに、非反転入力端子をコンデンサ
C2を介して接地した構成をとっていた。ただし、帰還
抵抗R3,R4の合算抵抗値は、入力抵抗R1,R2の
合算抵抗値に等しい値とされる。
By the way, the conventional collision determination device described above is
The low-pass filter circuit 3a for removing the aliasing distortion due to the D conversion has an analog circuit configuration, and when a short circuit or an open of a resistor or a capacitor which is a component of the low pass filter circuit 3a occurs, the airbag should not be deployed and a light collision. Or, it is a cause of causing troubles such as causing a burst when riding on a curb or traveling in a pothole, or vice versa, although the deployment trigger signal may be delayed despite the accident that the airbag should be deployed quickly. It was For this reason, conventionally, a redundant circuit configuration in which the resistors and capacitors forming the low-pass filtering circuit 3a are divided or doubled is adopted, which causes an accident such as a burst or a miss and a delay in the deployment time. Has been configured to prevent the above. For example, in the low-pass filtering circuit 3a illustrated in FIG. 5, in forming an active low-pass filter using an operational amplifier, a pair of cascade-connected input resistors R1 and R2 are connected to a non-inverting input terminal, and an output is provided. Feedback resistors R3 and R4 are connected in series in a feedback path connecting the terminal and the inverting input terminal, and the connection point of the input resistors R1 and R2 is connected to the output terminal via the feedback capacitor C1 and the non-inverting input terminal is connected to the capacitor C2. It was grounded via. However, the total resistance value of the feedback resistors R3 and R4 is equal to the total resistance value of the input resistors R1 and R2.

【0008】[0008]

【発明が解決しようとする課題】上記従来の衝突判定装
置の折り返し歪み防止用の低域濾波回路3aは、回路素
子が故障する事故発生確率から見て有利であるとして冗
長な回路構成をとるものであり、分割したり或いは二重
に設けた回路素子の両方が故障してしまえば、折り返し
歪みの除去はおろか衝突判定すら出来ない状態に陥って
しまう。このため、低域濾波回路3aを構成する回路素
子に異常がないことを出荷検査等において徹底してチェ
ックしておく必要がある。しかしながら、仮に徹底した
品質管理態勢を敷いたとしても、出荷後に生じた異常に
関しては、定期検査等において発見するしかなく、定期
検査にて発見できない異常が厄介な問題の種となる上、
定期検査の方法自体にも問題を抱えるものであった。
The low-pass filtering circuit 3a for preventing the aliasing distortion of the above-described conventional collision determination device has a redundant circuit configuration because it is advantageous in view of the probability of occurrence of an accident in which a circuit element fails. Therefore, if both of the divided or double-provided circuit elements fail, the return distortion cannot be removed, or even the collision cannot be determined. For this reason, it is necessary to thoroughly check that there is no abnormality in the circuit elements forming the low-pass filtering circuit 3a in shipping inspection or the like. However, even if a thorough quality control system is put in place, anomalies that occur after shipping can only be found in regular inspections, and abnormalities that cannot be found in regular inspections are a serious problem.
There were also problems with the method of regular inspection itself.

【0009】例えば、図5に示した低域濾波回路3aに
おいて、入力抵抗R1がショートした場合、低域濾波回
路3aのステップ応答波形は、図6に一点鎖線で示した
ように、立ち上がり時定数が短縮されたことを受けて相
当早期に立ち上がることになる。従って、このステップ
応答波形を分析することで低域濾波回路3aの回路素子
の異常を検知することは可能である。しかしながら、帰
還コンデンサC1のオープン事故が発生した場合、低域
濾波回路3aのステップ応答波形は、図7に一点鎖線で
示したように、立ち上がり傾斜は非常に急峻になるもの
の、立ち上がり点が後方にずれるため、立ち上がり曲線
自体は許容範囲内に含まれてしまい、低域濾波回路3a
のステップ応答波形を観察しただけでは、帰還コンデン
サC1の異常が発見できないといった問題があった。
For example, in the low-pass filtering circuit 3a shown in FIG. 5, when the input resistor R1 is short-circuited, the step response waveform of the low-pass filtering circuit 3a has a rising time constant as shown by the chain line in FIG. As a result of the shortened period, it will start up fairly early. Therefore, it is possible to detect the abnormality of the circuit element of the low pass filter circuit 3a by analyzing the step response waveform. However, when an open accident of the feedback capacitor C1 occurs, the step response waveform of the low-pass filtering circuit 3a has a very steep rising slope, as shown by the alternate long and short dash line in FIG. Because of the deviation, the rising curve itself is included in the allowable range, and the low-pass filtering circuit 3a
There is a problem that the abnormality of the feedback capacitor C1 cannot be found only by observing the step response waveform of.

【0010】本発明は、上記課題を解決したものであ
り、加速度センサに接続した折り返し歪み防止用の低域
濾波回路の異常の有無を、仮想衝突信号に対する衝突判
定装置の衝突判定アルゴリズムを利用して診断すること
を目的とするものである。
The present invention has been made to solve the above-mentioned problems and uses the collision determination algorithm of a collision determination device for a virtual collision signal to determine whether or not there is an abnormality in a low-pass filtering circuit connected to an acceleration sensor for preventing aliasing distortion. The purpose is to diagnose.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、加速度センサの出力を折り返し歪み除去
用の低域濾波回路を介してAD変換し、AD変換された
加速度データに基づいて生成した演算値を閾値判別して
衝突判定を下す衝突判定装置に適用され、診断指令を発
して前記加速度センサの出力を仮想的に突変させ、前記
演算値を所定時点で閾値判別して前記低域濾波回路を診
断することを特徴とするものである。
In order to achieve the above object, the present invention AD-converts the output of an acceleration sensor through a low-pass filtering circuit for eliminating aliasing distortion, and based on the AD-converted acceleration data. The generated calculated value is applied to a collision determination device that determines a threshold value to make a collision determination, issues a diagnostic command to virtually suddenly change the output of the acceleration sensor, and the calculated value is determined to be a threshold value at a predetermined time to determine the collision. It is characterized by diagnosing a low-pass filtering circuit.

【0012】また、本発明は、前記衝突判定装置が、前
記加速度データの絶対値を算出する絶対値回路と、前記
加速度データを現在値まで比較的短い区間に亙って積分
し、短区間積分値を算出する短区間積分器と、前記短区
間積分値を時間微分して短区間積分値微分値を算出する
短区間積分値微分器と、前記加速度を現在値まで比較的
長い区間に亙って積分し、長区間積分値を算出する長区
間積分器とを具備し、前記診断は、前記絶対値と短区間
積分値と短区間積分値微分値と長区間積分値の4値がそ
れぞれ上限閾値と下限閾値に挟まれた所定の閾値範囲に
あるかを判定し、1値でも前記閾値範囲を外れる場合に
異常有りと判定することを特徴とするものである。
Further, according to the present invention, the collision determining device integrates the absolute value circuit for calculating the absolute value of the acceleration data and the acceleration data over a relatively short interval up to the current value, and integrates the short interval. A short interval integrator for calculating a value, a short interval integrated value differentiator for differentiating the short interval integrated value with time to calculate a short interval integrated value differential value, and the acceleration over a relatively long interval up to the current value. And a long-range integrator for calculating a long-range integrated value, and the diagnosis has four upper limits of the absolute value, the short-range integrated value, the short-range integrated value, and the long-range integrated value. It is characterized in that it is determined whether or not it is within a predetermined threshold range sandwiched between a threshold and a lower limit threshold, and if even one value is outside the threshold range, it is determined that there is an abnormality.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態につい
て、図1,2を参照して説明する。図1は、本発明の自
己診断方法を適用した衝突判定装置の一実施形態を示す
回路構成図、図2は、図1に示した自己診断回路による
自己診断動作を説明するためのフローチャート、図3
は、自己診断時に観察される図1に示した回路各部の信
号波形図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a circuit configuration diagram showing an embodiment of a collision determination device to which the self-diagnosis method of the present invention is applied, and FIG. 2 is a flowchart for explaining a self-diagnosis operation by the self-diagnosis circuit shown in FIG. Three
FIG. 2 is a signal waveform diagram of each part of the circuit shown in FIG. 1 observed during self-diagnosis.

【0014】図1に示す衝突判定装置21は、従来の衝
突判定装置1のディジタル信号処理部1a内に自己診断
回路22を設け、イグニッションキーを操作するつど低
域濾波回路3aに対する自己診断が行われるよう構成し
たものである。この自己診断回路22は、イグニッショ
ンキーの操作に伴うバッテリ電源の投入を受けて自己診
断を開始し、加速度センサ2に対し診断指令としてパル
ス電圧を印加し、仮想的に例えば25G程度の加速度信
号を発生させ、加速度センサ2の出力の突変に対するデ
ィジタル信号処理部1a内各部の演算値の応答を所定時
点で閾値判別し、低域濾波回路3aを診断するものであ
る。具体的には、自己診断回路22には、診断指令を発
した後所定時間τが経過した時点で絶対値回路6と短区
間積分器4と微分器16と長区間積分器5の各出力が供
給され、絶対値DEと短区間積分値BVと短区間積分値
微分値DBと長区間積分値CVの4値がそれぞれ上限閾
値と下限閾値に挟まれた所定の閾値範囲にあるかを判定
し、1値でも閾値範囲を外れる場合に異常有りと判定す
る。
In the collision determination device 21 shown in FIG. 1, a self-diagnosis circuit 22 is provided in the digital signal processing section 1a of the conventional collision determination device 1 so that the low-pass filtering circuit 3a can be self-diagnosed each time the ignition key is operated. It is configured to be opened. The self-diagnosis circuit 22 starts self-diagnosis in response to the battery power being turned on in response to the operation of the ignition key, applies a pulse voltage as a diagnosis command to the acceleration sensor 2, and virtually outputs an acceleration signal of about 25 G, for example. The low-pass filtering circuit 3a is diagnosed by generating a threshold value of the response of the calculated value of each part in the digital signal processing section 1a to the sudden change of the output of the acceleration sensor 2 at a predetermined time point. Specifically, the self-diagnosis circuit 22 outputs the outputs of the absolute value circuit 6, the short interval integrator 4, the differentiator 16, and the long interval integrator 5 when a predetermined time τ has elapsed after issuing the diagnosis command. It is determined whether or not the four values of the absolute value DE, the short-term integrated value BV, the short-term integrated value differential value DB, and the long-term integrated value CV that are supplied are within predetermined threshold ranges sandwiched by the upper threshold and the lower threshold, respectively. If even one value is outside the threshold range, it is determined that there is an abnormality.

【0015】まず、図2のステップ(101)におい
て、自己診断回路22は、加速度センサ2の自己診断入
力部に対し診断指令として図3(A)に示したパルス電
圧を印加する。続く判断ステップ(102)において、
加速度センサ2から図3(B)に示す自己診断信号が出
力されたかどうかを判定する。加速度センサ2が応答し
ない場合は、ステップ(106)において、異常有りの
判定を下す。加速度センサ2から自己診断信号が出力さ
れると、次に判断ステップ(103)において、低域濾
波回路23aの濾波出力の波形の乱れの有無或いは濾波
出力自体の有無が判断される。この場合も、濾波出力波
形が乱れていたり、濾波出力自体が存在しない場合は、
ステップ(106)に移行して異常発生を報知する。
First, in step (101) of FIG. 2, the self-diagnosis circuit 22 applies the pulse voltage shown in FIG. 3A as a diagnosis command to the self-diagnosis input section of the acceleration sensor 2. In the following decision step (102),
It is determined whether or not the acceleration sensor 2 outputs the self-diagnosis signal shown in FIG. If the acceleration sensor 2 does not respond, it is determined in step (106) that there is an abnormality. When the self-diagnosis signal is output from the acceleration sensor 2, it is then determined in the determination step (103) whether the waveform of the filtered output of the low-pass filtering circuit 23a is disturbed or the filtered output itself is present. Also in this case, if the filtered output waveform is disturbed or the filtered output itself does not exist,
The process proceeds to step (106) to notify the occurrence of abnormality.

【0016】一方、低域濾波回路3aから図3(C)に
示す乱れのない濾波出力が得られた場合は、判断ステッ
プ(104)において、診断指令を発してから一定時間
τが経過した時点で、絶対値判定と短区間積分判定と短
区間積分値微分判定と長区間積分判定の4種類の判定を
行う。これら4種類の判定を行うタイミングを規定する
時間τは、低域濾波回路3aの遮断周波数によっても異
なるが、図3(C)に示した低域濾波回路3aの濾波出
力が整定するのに要する時間の1/2或いはそれに近い
時間に経験値に基づいて設定される。ここで、DEは絶
対値出力を、BVは短区間積分出力を、DBは短区間積
分値微分出力を、CVは長区間積分出力を指すが、これ
ら4個の演算値DE,BV,DB,CVの閾値範囲は、
図3(D)〜(G)に示したように、各演算値に添え字
Lを付した閾値下限と各演算値に添え字Hを付した閾値
上限とに挟まれた範囲として規定してある。
On the other hand, when the unfiltered filtered output shown in FIG. 3 (C) is obtained from the low-pass filtering circuit 3a, at the decision step (104), when a certain time τ has elapsed since the diagnostic command was issued. Then, four kinds of judgments, absolute value judgment, short section integration judgment, short section integration value differential judgment and long section integration judgment, are performed. The time τ that defines the timing for making these four types of determinations depends on the cutoff frequency of the low-pass filtering circuit 3a, but is required for the filtered output of the low-pass filtering circuit 3a shown in FIG. 3C to settle. It is set to half the time or a time close to it based on the experience value. Here, DE is an absolute value output, BV is a short interval integrated output, DB is a short interval integrated value differential output, and CV is a long interval integrated output. These four calculated values DE, BV, DB, The threshold range of CV is
As shown in FIGS. 3D to 3G, it is defined as a range sandwiched between the lower limit of the threshold value with the suffix L attached to each calculated value and the upper limit of the threshold value with the suffix H attached to each calculated value. is there.

【0017】従って、判断ステップ104において、D
EL<DE<DEH,BVL<BV<BVH,DBL<
DB<DBH,CVL<CV<CVHであることが確認
された場合は、低域濾波回路3aに異常のないことが判
り、ステップ(105)において異常無しと結論付けら
れる。また、判断ステップ(104)において、絶対値
出力DEか短区間積分出力BVか短区間積分値微分出力
DBか長区間積分出力CVのいずれか一つが所定の閾値
範囲を逸脱する場合は、低域濾波回路3aを構成する回
路素子のいずれかに異常が認められるため、ステップ
(106)へ移行し、警報ランプ等を点灯して異常を報
知する。また、衝突判定装置自体は、異常が解消される
まで衝突判定を中止する。
Therefore, in decision step 104, D
EL <DE <DEH, BVL <BV <BVH, DBL <
When it is confirmed that DB <DBH and CVL <CV <CVH, it is found that the low-pass filtering circuit 3a has no abnormality, and it is concluded that there is no abnormality in step (105). Further, in the judgment step (104), if any one of the absolute value output DE, the short interval integrated output BV, the short interval integrated value differential output DB and the long interval integrated output CV deviates from the predetermined threshold range, the low range Since an abnormality is found in any of the circuit elements forming the filtering circuit 3a, the process proceeds to step (106), and an alarm lamp or the like is turned on to notify the abnormality. Further, the collision determination device itself suspends the collision determination until the abnormality is resolved.

【0018】なお、図5に例示した回路構成の低域濾波
回路3aにおいて、帰還コンデンサC1がオープン事故
を起こした場合、低域濾波回路3aの濾波出力を観察し
ただけでは異常を発見できないと述べたが、本実施例の
事故診断法によれば、この種のオープン事故が発生した
ときに、微分器16の出力すなわち短区間積分値微分出
力DBの値が閾値範囲を逸脱するため、直ちに異常を発
見することができる。また、低域濾波回路3aの入力抵
抗R1がショートした場合は、短区間積分値BVが最初
に閾値範囲を逸脱するため、直ちに異常を発見すること
ができる。
In the low-pass filtering circuit 3a having the circuit configuration shown in FIG. 5, when the feedback capacitor C1 causes an open accident, it is not possible to detect an abnormality simply by observing the filtered output of the low-pass filtering circuit 3a. However, according to the accident diagnosis method of the present embodiment, when an open accident of this kind occurs, the output of the differentiator 16, that is, the value of the short-range integrated value differential output DB deviates from the threshold range, so that the abnormality immediately occurs. Can be found. Further, when the input resistance R1 of the low-pass filtering circuit 3a is short-circuited, the short-range integrated value BV first deviates from the threshold range, so that an abnormality can be immediately detected.

【0019】このように、上記自己診断方法によれば、
加速度センサ2の出力を折り返し歪み除去用の低域濾波
回路3aを介してAD変換し、AD変換された加速度デ
ータに基づいて生成した演算値を閾値判別して衝突判定
を下す衝突判定装置に適用され、診断指令を発して加速
度センサ3aの出力を仮想的に突変させ、前記演算値を
所定時点で閾値判別して低域濾波回路を診断するように
したから、低域濾波回路3aのステップ応答波形を観察
しただけでは発見することのできない回路素子の異常
を、衝突判定に用いるアルゴリズムを利用して間接的に
判定することができ、しかも衝突判定のアルゴリズムの
大半が利用できるため、車両のイグニッションキーを操
作した時点で診断指令を発しさえすれば、簡単かつ確実
に低域濾波回路3aの自己診断が可能である。
Thus, according to the above self-diagnosis method,
The output of the acceleration sensor 2 is AD-converted through the low-pass filtering circuit 3a for removing aliasing distortion, and applied to a collision determination device that makes a threshold determination by performing a threshold determination on a calculation value generated based on the AD-converted acceleration data. Then, a diagnosis command is issued to virtually change the output of the acceleration sensor 3a, and the calculated value is discriminated by a threshold value at a predetermined time to diagnose the low-pass filtering circuit. Abnormalities of circuit elements that cannot be found only by observing the response waveform can be indirectly determined using the algorithm used for collision determination, and most of the collision determination algorithms can be used. The self-diagnosis of the low-pass filtering circuit 3a can be performed simply and reliably by issuing a diagnostic command at the time of operating the ignition key.

【0020】また、自己診断回路22が、絶対値DEと
短区間積分値BVと短区間積分値微分値DBと長区間積
分値CVの4値がそれぞれ上限閾値と下限閾値に挟まれ
た所定の閾値範囲にあるかを判定し、1値でも前記閾値
範囲を外れる場合に異常有りと判定するようにしたか
ら、自己診断を4種類の演算値に基づいて多角的に行う
ことができ、低域濾波回路3aのステップ応答波形には
現れにくい回路素子の異常を、加速度データの区間積分
値やその時間微分値を観察して的確に発見することがで
きる。
Further, the self-diagnosis circuit 22 has a predetermined value in which the four values of the absolute value DE, the short interval integrated value BV, the short interval integrated value differential value DB, and the long interval integrated value CV are sandwiched between the upper limit threshold and the lower limit threshold, respectively. Since it is determined whether or not it is within the threshold range, and if even one value is out of the threshold range, it is determined that there is an abnormality, self-diagnosis can be performed in multiple directions based on four types of calculated values, and low range Abnormalities of circuit elements that are unlikely to appear in the step response waveform of the filtering circuit 3a can be accurately detected by observing the interval integral value of acceleration data and its time differential value.

【0021】なお、上記実施形態では、自己診断回路2
2内で絶対値判定と短区間積分判定と短区間積分値微分
判定と長区間積分判定の4種類の判定を行う構成とした
が、衝突判定用としてディジタル信号処理部1a内に既
に備わっている比較器7,14,17,9を利用し、こ
れらの比較基準であるEr,Vrs1,αr,Erl等
を自己診断用に適宜切り替え設定し、比較器7,14,
17,9の出力を監視して異常判定を下すようにするこ
ともできる。
In the above embodiment, the self-diagnosis circuit 2
Although two types of judgments, absolute value judgment, short-term integral judgment, short-term integral value differential judgment and long-term integral judgment, are made within 2, the digital signal processing unit 1a is already provided for collision judgment. The comparators 7, 14, 17, 9 are used, and Er, Vrs1, αr, Erl, etc., which are comparison criteria thereof, are appropriately switched and set for self-diagnosis, and the comparators 7, 14,
It is also possible to monitor the outputs of 17, 9 and make an abnormality determination.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
加速度センサの出力を折り返し歪み除去用の低域濾波回
路を介してAD変換し、AD変換された加速度データに
基づいて生成した演算値を閾値判別して衝突判定を下す
衝突判定装置に適用され、診断指令を発して前記加速度
センサの出力を仮想的に突変させ、前記演算値を所定時
点で閾値判別して低域濾波回路を診断するようにしたか
ら、低域濾波回路のステップ応答波形を観察しただけで
は発見することのできない回路素子の異常を、衝突判定
に用いるアルゴリズムを利用して間接的に判定すること
ができ、しかも衝突判定のアルゴリズムの大半が利用で
きるため、車両のイグニッションキーを操作した時点で
診断指令を発しさえすれば、簡単かつ確実に低域濾波回
路の自己診断が可能である等の優れた効果を奏する。
As described above, according to the present invention,
The output of the acceleration sensor is AD-converted through a low-pass filtering circuit for aliasing distortion removal, and is applied to a collision determination device that makes a threshold determination by performing a threshold determination on a calculation value generated based on the AD-converted acceleration data, Since the diagnosis command is issued to virtually suddenly change the output of the acceleration sensor, and the calculated value is discriminated by a threshold value at a predetermined time to diagnose the low-pass filtering circuit, the step response waveform of the low-pass filtering circuit is calculated. Abnormalities of circuit elements that cannot be detected only by observing can be indirectly determined using the algorithm used for collision determination, and most of the collision determination algorithms can be used. As long as the diagnostic command is issued at the time of operation, there is an excellent effect that the low-pass filtering circuit can be self-diagnosed easily and surely.

【0023】また、衝突判定装置が、前記加速度データ
の絶対値を算出する絶対値回路と、前記加速度データを
現在値まで比較的短い区間に亙って積分し、短区間積分
値を算出する短区間積分器と、前記短区間積分値を時間
微分して短区間積分値微分値を算出する短区間積分値微
分器と、前記加速度を現在値まで比較的長い区間に亙っ
て積分し、長区間積分値を算出する長区間積分器とを具
備し、前記診断は、前記絶対値と短区間積分値と短区間
積分値微分値と長区間積分値の4値がそれぞれ上限閾値
と下限閾値に挟まれた所定の閾値範囲にあるかを判定
し、1値でも前記閾値範囲を外れる場合に異常有りと判
定するようにしたから、自己診断を4種類の演算値に基
づいて多角的に行うことができ、低域濾波回路のステッ
プ応答波形には現れにくい回路素子の異常を、加速度デ
ータの区間積分値やその時間微分値を観察して的確に発
見することができる等の効果を奏する。
Further, the collision determination device integrates an absolute value circuit for calculating an absolute value of the acceleration data and a short value for integrating the acceleration data to a current value over a relatively short interval to calculate a short interval integrated value. An interval integrator, a short interval integral value differentiator that differentiates the short interval integral value with time to calculate a short interval integral value differential value, and the acceleration is integrated over a relatively long interval up to the current value. A long interval integrator for calculating an interval integrated value is provided, and in the diagnosis, four values of the absolute value, the short interval integrated value, the short interval integrated value differential value, and the long interval integrated value are set as an upper threshold value and a lower threshold value, respectively. Since it is determined whether or not it is within a predetermined threshold value range sandwiched, and if even one value is outside the threshold value range, it is determined that there is an abnormality. Therefore, self-diagnosis is multilaterally performed based on four types of calculated values. And appears in the step response waveform of the low pass filter. The abnormality of the pile circuit elements, an effect such as can be accurately found by observing the interval integral value and its time differential value of the acceleration data.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の自己診断方法を適用した衝突判定装置
の一実施形態を示す回路構成図である。
FIG. 1 is a circuit configuration diagram showing an embodiment of a collision determination device to which a self-diagnosis method of the present invention is applied.

【図2】図1に示した自己診断回路による自己診断動作
を説明するためのフローチャートである。
FIG. 2 is a flowchart for explaining a self-diagnosis operation by the self-diagnosis circuit shown in FIG.

【図3】自己診断時に観察される図1に示した回路各部
の信号波形図である。
FIG. 3 is a signal waveform diagram of each part of the circuit shown in FIG. 1 observed during self-diagnosis.

【図4】従来の衝突判定装置の一例を示す回路構成図で
ある。
FIG. 4 is a circuit configuration diagram showing an example of a conventional collision determination device.

【図5】図4に示した折り返し歪み除去用低域濾波回路
の一例を示す回路図である。
5 is a circuit diagram showing an example of a low-pass filter circuit for removing aliasing distortion shown in FIG.

【図6】図4に示した入力抵抗がショートしたときの低
域濾波回路のステップ応答波形を示す図である。
6 is a diagram showing a step response waveform of the low pass filter circuit when the input resistance shown in FIG. 4 is short-circuited.

【図7】図4に示した帰還コンデンサがオープンである
ときの低域濾波回路のステップ応答波形を示す図であ
る。
FIG. 7 is a diagram showing a step response waveform of the low pass filter circuit when the feedback capacitor shown in FIG. 4 is open.

【符号の説明】[Explanation of symbols]

1a ディジタル信号処理部 2 加速度センサ 3 帯域濾波器 3a 低域濾波回路 3b 高域濾波回路 4 短区間積分器 5 長区間積分器 6 絶対値回路 10 判定回路 16 微分器 21 衝突判定装置 22 自己診断回路 1a Digital signal processing unit 2 Acceleration sensor 3 Bandpass filter 3a Low-pass filtering circuit 3b High-pass filtering circuit 4 Short-range integrator 5 Long-range integrator 6 Absolute value circuit 10 Judgment circuit 16 Differentiator 21 Collision judgment device 22 Self-diagnosis circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加速度センサの出力を折り返し歪み除去
用の低域濾波回路を介してAD変換し、AD変換された
加速度データに基づいて生成した演算値を閾値判別して
衝突判定を下す衝突判定装置に適用され、診断指令を発
して前記加速度センサの出力を仮想的に突変させ、前記
演算値を所定時点で閾値判別して前記低域濾波回路を診
断することを特徴とする衝突判定装置の自己診断方法。
1. A collision determination in which an output of an acceleration sensor is AD-converted through a low-pass filtering circuit for removing aliasing distortion, and a calculation value generated based on the AD-converted acceleration data is subjected to threshold value determination to make a collision determination. A collision determination device, which is applied to a device, issues a diagnostic command to virtually suddenly change the output of the acceleration sensor, and determines the threshold value of the calculated value at a predetermined time to diagnose the low-pass filtering circuit. Self-diagnosis method.
【請求項2】 前記衝突判定装置は、前記加速度データ
の絶対値を算出する絶対値回路と、前記加速度データを
現在値まで比較的短い区間に亙って積分し、短区間積分
値を算出する短区間積分器と、前記短区間積分値を時間
微分して短区間積分値微分値を算出する短区間積分値微
分器と、前記加速度を現在値まで比較的長い区間に亙っ
て積分し、長区間積分値を算出する長区間積分器とを具
備し、前記診断は、前記絶対値と短区間積分値と短区間
積分値微分値と長区間積分値の4値がそれぞれ上限閾値
と下限閾値に挟まれた所定の閾値範囲にあるかを判定
し、1値でも前記閾値範囲を外れる場合に異常有りと判
定することを特徴とする請求項1記載の衝突判定装置の
自己診断方法。
2. The collision determination device calculates an absolute value circuit for calculating an absolute value of the acceleration data, and integrates the acceleration data up to a current value over a relatively short interval to calculate a short interval integrated value. A short interval integrator, a short interval integrated value differentiator for calculating a short interval integrated value differential value by differentiating the short interval integrated value with time, and integrating the acceleration over a relatively long interval up to the current value, A long-range integrator for calculating a long-range integrated value is provided, and in the diagnosis, four values of the absolute value, the short-range integrated value, the short-range integrated value differential value, and the long-range integrated value are an upper threshold value and a lower threshold value, respectively. 2. The self-diagnosis method for a collision determination device according to claim 1, wherein it is determined whether or not it is within a predetermined threshold range sandwiched between the two, and if even one value is outside the threshold range, it is determined that there is an abnormality.
JP8138752A 1996-05-31 1996-05-31 Self-diagnostic method of collision judging device Pending JPH09315260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8138752A JPH09315260A (en) 1996-05-31 1996-05-31 Self-diagnostic method of collision judging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8138752A JPH09315260A (en) 1996-05-31 1996-05-31 Self-diagnostic method of collision judging device

Publications (1)

Publication Number Publication Date
JPH09315260A true JPH09315260A (en) 1997-12-09

Family

ID=15229360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8138752A Pending JPH09315260A (en) 1996-05-31 1996-05-31 Self-diagnostic method of collision judging device

Country Status (1)

Country Link
JP (1) JPH09315260A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213961A (en) * 2001-01-15 2002-07-31 Murata Mfg Co Ltd Vibration gyro and self-diagnozing method for vibration gyro
JP2002228451A (en) * 2001-01-29 2002-08-14 Murata Mfg Co Ltd Oscillatory gyro and self-diagnostic method therefor
KR101019289B1 (en) * 2008-09-02 2011-03-07 콘티넨탈 오토모티브 시스템 주식회사 Airbag Control Unit and Airbag Control Unit's Diagnosis Method
CN110582734A (en) * 2017-04-25 2019-12-17 西门子股份公司 Method and device for automatically generating a control program for a production machine or machine tool determined solely for diagnostic purposes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213961A (en) * 2001-01-15 2002-07-31 Murata Mfg Co Ltd Vibration gyro and self-diagnozing method for vibration gyro
JP2002228451A (en) * 2001-01-29 2002-08-14 Murata Mfg Co Ltd Oscillatory gyro and self-diagnostic method therefor
KR101019289B1 (en) * 2008-09-02 2011-03-07 콘티넨탈 오토모티브 시스템 주식회사 Airbag Control Unit and Airbag Control Unit's Diagnosis Method
CN110582734A (en) * 2017-04-25 2019-12-17 西门子股份公司 Method and device for automatically generating a control program for a production machine or machine tool determined solely for diagnostic purposes
CN110582734B (en) * 2017-04-25 2022-11-01 西门子股份公司 Method and device for automatically generating a control program for a production machine or machine tool determined solely for diagnostic purposes

Similar Documents

Publication Publication Date Title
US5109341A (en) Method and apparatus for sensing a vehicle crash in the frequency domain
US5034891A (en) Method and apparatus for sensing a vehicle crash with frequency domain boost
JP4028768B2 (en) Method for detecting improper mounting of an acceleration sensor on a vehicle
KR100663794B1 (en) Method and apparatus for determining symmetric and asymmetric crash events with improved misuse margins
JP2744170B2 (en) Modifiable airbag ignition circuit
JPH03208749A (en) Activation device for passenger restricting device which activates car passenger restricting device in response to vehicle jerk and device activation method
US8751113B2 (en) Method and apparatus for detecting pedestrian vehicle impact
JP2008506579A (en) Method and apparatus for controlling an actuatable restraint device using a crash zone sensor for safety functions
US10234478B2 (en) Method for detecting a malfunction of a sensor of a vehicle safety device
JPH0320674A (en) Crew-member safety device
JPH03197256A (en) Device for actuating passive safety apparatus for passenger of car
JPH0559376B2 (en)
US5185701A (en) Method for determining frequency components in a vehicle crash
US5440913A (en) Electronic device for safeguarding occupants of a vehicle and method for testing the same
US20040232673A1 (en) Variable time venting algorithm
JPH05170045A (en) Starting device for vehicule occupant protecting device
JP5073740B2 (en) Crew protection device and pedestrian protection device
JP2001526400A (en) Method and apparatus for monitoring the functionality of a crash sensor
JP7045476B2 (en) Vehicle sensor devices and how to monitor sensors
JPH09315260A (en) Self-diagnostic method of collision judging device
JPH07225244A (en) Detector for fault of acceleration sensor
US7305863B2 (en) Impact sensor and method for testing the same
JPH1183891A (en) Impact detection device
JP3119001B2 (en) Acceleration measuring method and acceleration measuring device
JP3965513B2 (en) Collision determination device for airbag system