JPH09314638A - Manufacture of synthetic resin tube for lining existing tube - Google Patents

Manufacture of synthetic resin tube for lining existing tube

Info

Publication number
JPH09314638A
JPH09314638A JP8134609A JP13460996A JPH09314638A JP H09314638 A JPH09314638 A JP H09314638A JP 8134609 A JP8134609 A JP 8134609A JP 13460996 A JP13460996 A JP 13460996A JP H09314638 A JPH09314638 A JP H09314638A
Authority
JP
Japan
Prior art keywords
pipe
synthetic resin
resin
round die
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8134609A
Other languages
Japanese (ja)
Inventor
Makoto Ijuin
誠 伊集院
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsutsunaka Plastic Industry Co Ltd
Original Assignee
Tsutsunaka Plastic Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsutsunaka Plastic Industry Co Ltd filed Critical Tsutsunaka Plastic Industry Co Ltd
Priority to JP8134609A priority Critical patent/JPH09314638A/en
Publication of JPH09314638A publication Critical patent/JPH09314638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the fusing strength of a re-fused surface so as not to develop cracks due to the expansion at softening under heat by a method wherein a resin material is once divided into branch flows and then met again so as to be integrally fused together by providing a large number of resin branch flow holes in the annular resin flow passage of a circular die. SOLUTION: A fused synthetic resin material passes through resin branch flow holes 5 inclining axially by a predetermined angle in a circular die, resulting in applying a part of the back pressure being applied to the axial direction of the circular die in an extruder to a re-fused surface 7 locating just after the passing of the resin material through the holes as a partial pressure so as to be turned into a synthetic resin tube 6 for lining an existing tube having the strength equivalent to that of the other part by improving the fusing strength of the resin material and making the fusing integration more stronger. In addition, in the re-fused surface 7, which is obtained through the division into the branch flows by a large number of the resin branch flow holes and then the strong re-fusion of the branch flows, a large number of cell-like walls 8 under densely aggregated state are formed. Further, by being connected cell-like walls 8 adjacent to each other with each other, the walls formed in zigzags to the direction of the thickness of the wall, resulting in remarkably increasing the proof capability to external stress.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、既設管ライニング
用合成樹脂管の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method of manufacturing a synthetic resin pipe for an existing pipe lining.

【0002】[0002]

【従来の技術】近年、電力配線、通信配線等のケ−ブル
類の敷設用管路を構成する地下あるいは建造物躯体内に
埋設された既設管に対し、補修、補強等のためにその内
面に合成樹脂管を挿入し内張り状態に設置するライニン
グ工法が開発されており、例えば特開平1−29582
8号公報に示されるように、既設管の内径よりも外径の
小さい熱可塑性合成樹脂管を加熱状態にして挿入したの
ち、その樹脂管内に加圧蒸気を導入して内圧を加えるこ
とによって樹脂管を半径方向に膨脹させ、既設管に密着
させ、冷却固化させるものである。
2. Description of the Related Art In recent years, for repairing or reinforcing an existing pipe buried underground or in the structure of a building, which constitutes a conduit for laying cables such as power wiring and communication wiring, the inner surface of the pipe is repaired and reinforced. A lining construction method has been developed in which a synthetic resin pipe is inserted into and installed in a lined state. For example, Japanese Patent Laid-Open No. 1-298582.
As disclosed in Japanese Patent Publication No. 8, a thermoplastic synthetic resin pipe having an outer diameter smaller than the inner diameter of an existing pipe is inserted in a heated state, and then pressurized steam is introduced into the resin pipe to apply an internal pressure to the resin. The pipe is expanded in the radial direction, brought into close contact with the existing pipe, and then cooled and solidified.

【0003】そして、上記のようなライニング工法に利
用されるライニング用合成樹脂管は、もっぱら押出成形
法により製造されており、例えばポリ塩化ビニル樹脂等
の合成樹脂を押出機内で加熱混練したのち押出機の先端
に設置した丸型ダイスを用いて連続したパイプ状に成形
するところのいわゆる合成樹脂製パイプの押出成形法が
一般的に利用されている。
The synthetic resin pipe for lining used in the lining method as described above is manufactured by an extrusion molding method. For example, a synthetic resin such as polyvinyl chloride resin is heated and kneaded in an extruder and then extruded. A so-called synthetic resin extrusion molding method is generally used in which a continuous die is formed by using a round die installed at the tip of a machine.

【0004】ところが、このような従来の製造方法によ
る既設管のライニング用合成樹脂管は、ライニングの
際、管内部に導入される加圧蒸気によって加熱軟化され
膨脹を受けるときに、既設管内面に接触する部分や、ド
レンの溜まり部分の温度が低下し、その他の部分との温
度差が生じて不均一に膨脹することとなり、管壁にいわ
ゆるバーストと称する亀裂が発生するという問題があっ
た。このような亀裂は、多くの場合、その製造時に丸型
ダイスのスパイダーによって分流された合成樹脂が、再
び集合されて融着した面に沿って発生するものである。
However, the synthetic resin pipe for lining an existing pipe manufactured by such a conventional manufacturing method has a structure in which an inner surface of the existing pipe is heated and softened by the pressurized steam introduced into the pipe during lining. There is a problem that the temperature of the contact portion and the drain accumulation portion is lowered, and a temperature difference from the other portions is generated, resulting in non-uniform expansion, and cracks called so-called bursts occur on the pipe wall. In many cases, such cracks are generated along the surface where the synthetic resin diverted by the spider of the round die at the time of its production is reassembled and fused.

【0005】上記のような亀裂の原因となる部分は、典
型的な公知例として図4(イ)に示す丸型ダイス(21)
のスパイダー(22)によるいわば傷跡として、図4
(ロ)に示すように合成樹脂管(26)の実体内に再融着
面(27)が管軸方向に連続して現れる。そして、再融着
面(27)は、その他の部分よりも強度が劣るものとな
り、しかも管内表面から管外表面に向かって連続して現
れるから、合成樹脂管(26)に外部応力がかかると、こ
の部分で亀裂が起りやすくなる。とくに、ライニング用
合成樹脂管のように、合成樹脂管(26)が加熱軟化さ
れ、しかもこれを膨脹させる目的で管内圧が高められる
ときは、再融着面(27)の亀裂はより発生しやすい。
The above-mentioned crack-causing part is a circular die (21) shown in FIG. 4 (a) as a typical known example.
As a so-called scar by the Spider (22) of Fig.
As shown in (b), the re-fusion surface (27) continuously appears in the substance of the synthetic resin pipe (26) in the pipe axial direction. Then, the re-fusion surface (27) becomes inferior in strength to the other portions, and moreover, it continuously appears from the inner surface of the pipe to the outer surface of the pipe, so that external stress is applied to the synthetic resin pipe (26). , Cracks are likely to occur in this part. Especially when the synthetic resin pipe (26) is heated and softened and the internal pressure of the pipe is increased for the purpose of expanding the synthetic resin pipe (26) like the lining synthetic resin pipe, cracks on the re-fusion surface (27) are more likely to occur. Cheap.

【0006】この点を解決するために、同様に公知の丸
型ダイスとして、例えば図5(イ)に示す丸型ダイス
(31)のようにスパイダー(32)を渦巻きの腕のように
変形したもの、あるいは図6(イ)に示す丸型ダイス
(41)のようにスパイダー相当部分に断面円形の同心円
状に樹脂分流孔を内外2列以上配列した多孔板(42)を
用いるものが知られている。
In order to solve this point, similarly, as a well-known round die, for example, the spider (32) is deformed like a spiral arm like the round die (31) shown in FIG. A circular die (41) shown in FIG. 6 (a), which uses a perforated plate (42) in which two or more rows of inner and outer rows of resin distribution holes are arranged in concentric circles with a circular cross section in a portion corresponding to the spider, is known. ing.

【0007】図5(イ)に示す丸型ダイス(31)では、
図5(ロ)に示す状態の合成樹脂管(36)が得られ、そ
の再融着面(37)は管内表面から管外表面に連続しては
いるものの、その長さが管厚を大きく超え管周接線方向
に傾いた状態で現れるから、図4に示すものよりも外部
応力に対する耐力が増加するが、スパイダー(32)の付
け根の狭い隅部(P)における合成樹脂の流れ不足に起
因して、再融着面(37)によって隔てられた合成樹脂管
(36)の実体部分が、合成樹脂管(36)の内外表面付近
で肉薄となり、その結果外部応力の集中点となるので、
亀裂防止の十分な解決には至らない。
In the round die (31) shown in FIG. 5 (a),
Although the synthetic resin pipe (36) in the state shown in Fig. 5 (b) is obtained, and the re-fusion surface (37) is continuous from the pipe inner surface to the pipe outer surface, its length increases the pipe thickness. Since it appears in a state in which it is inclined in the tangential direction of the pipe circumference, the resistance to external stress increases more than that shown in Fig. 4, but due to insufficient flow of synthetic resin in the narrow corner (P) of the base of the spider (32). Then, the substantial part of the synthetic resin pipe (36) separated by the re-fusion surface (37) becomes thin near the inner and outer surfaces of the synthetic resin pipe (36), and as a result, it becomes a point of concentration of external stress.
Not enough solution for crack prevention.

【0008】また図6(イ)に示す丸型ダイス(41)で
は、図6(ロ)に示す状態の合成樹脂管(46)が得ら
れ、その再融着面(47)は、多数のセル状壁(48)が密
集した状態で、管内表面から管外表面に連続してはいる
ものの、厚さ方向にジグザグ状に現れるから、図4に示
すものよりも外部応力に対する耐力が増加すると期待さ
れるが、結果的には強度の劣る再融着面(47)が増加す
ることとなるので、これもまた全体としては十分な解決
をもたらさない。
Further, in the round die (41) shown in FIG. 6 (a), a synthetic resin pipe (46) in the state shown in FIG. 6 (b) is obtained, and its re-fusion surface (47) has a large number of parts. Although the cell walls (48) are densely packed and continuous from the inner surface of the tube to the outer surface of the tube, they appear in a zigzag shape in the thickness direction, so that the proof stress against external stress increases more than that shown in FIG. As expected, this also results in an increase in the number of poorly rebonded surfaces (47), which again does not provide a satisfactory overall solution.

【0009】本発明者らは、このような従来の状況を背
景にして研究を重ねた結果、既設管ライニング用合成樹
脂管の製造においては、従来のパイプ製造のように押出
機内で溶融状態とされた合成樹脂材料を、丸型ダイスの
軸方向に沿って一方向に加圧し、合成樹脂材料をスパイ
ダーで分流させて再び集合、融着させるようにしたので
は、融着一体化に要する加圧力が不足し十分に再融着せ
ず、かかる状態でいたずらに再融着面を増やしても、外
部応力による亀裂に対して耐力のある同種合成樹脂管は
得られないのであって、合成樹脂材料をスパイダーで分
流して再び集合させ再融着させるには、再融着面を増や
すと同時に融着一体化に要する融着面方向の加圧力を増
加させて融着強度を高める必要があることに着目し、こ
の発明を完成した。
The inventors of the present invention have conducted extensive research in the background of such conventional circumstances, and as a result, in the production of synthetic resin pipes for existing pipe linings, the molten state in the extruder is the same as in the conventional pipe production. The synthetic resin material thus prepared is pressed in one direction along the axial direction of the round die, and the synthetic resin material is diverted by a spider to be assembled and fused again. The pressure is not sufficient for re-fusion, and even if the re-fusion surface is increased unnecessarily in such a state, a synthetic resin pipe of the same kind with resistance to cracks due to external stress cannot be obtained. In order to split and reassemble by using a spider, it is necessary to increase the re-fusion surface and at the same time increase the pressure in the direction of the fusion surface required for fusion integration to increase the fusion strength. Focused on, and completed this invention

【0010】[0010]

【発明が解決しようとする課題】すなわち、本発明は、
上記のような背景のもとに、既設管ライニング用合成樹
脂管を押出機により丸型ダイスを用いて製造するとき
に、合成樹脂材料が丸型ダイス内で分流され再び集合さ
れて融着一体化してできる再融着面の融着強度を高めた
ものにして、ライニングの際の加熱軟化による膨脹時に
亀裂をおこさない、耐破壊強度に優れた既設管ライニン
グ用合成樹脂管を得るための製造方法を提供することを
目的とする。
That is, the present invention provides:
Against the above background, when manufacturing a synthetic resin pipe for an existing pipe lining by using an extruder with a round die, the synthetic resin material is diverted in the round die and reassembled to be fused together. Manufacture to obtain a synthetic resin pipe for an existing pipe lining that has excellent fracture strength and does not crack when expanded due to heat softening during lining by increasing the fusion strength of the re-fusion surface The purpose is to provide a method.

【0011】[0011]

【課題を解決するための手段】上記の目的のもとに、本
発明は、合成樹脂材料を、押出機により丸型ダイスを用
いてパイプ状に押出し成形する既設管ライニング用合成
樹脂管の製造方法において、前記丸形ダイスの環状樹脂
流路内に、前記丸型ダイスの軸方向に対し所定角度の軸
方向を有する断面円形の多数の樹脂分流孔を、内外少な
くとも2列以上であって、各隣接する列間においては相
互に千鳥配置に設けた環状多孔部材を配置したものと
し、上記樹脂分流孔を通じて合成樹脂材料を一旦分流さ
せたのち、ダイス出口に至るまでの間で再び集合させて
融着一体化させることによりパイプ状に押出し成形する
ことを特徴とする既設管ライニング用合成樹脂管の製造
方法を要旨とする。
Based on the above-mentioned object, the present invention is to manufacture a synthetic resin pipe for an existing pipe lining, in which a synthetic resin material is extruded into a pipe shape by using an extruder with a round die. In the method, in the annular resin flow path of the round die, a large number of resin shunt holes having a circular cross section having an axial direction of a predetermined angle with respect to the axial direction of the round die are at least two rows inside and outside, Between adjacent rows, it is assumed that annular porous members provided in a zigzag arrangement are mutually arranged, the synthetic resin material is once diverted through the resin diverting hole, and then reassembled until reaching the die outlet. A gist of the present invention is a method for manufacturing a synthetic resin pipe for an existing pipe lining, which is characterized by extruding into a pipe shape by fusing and unifying.

【0012】本発明において、前記環状多孔部材の内外
少なくとも2列以上に設けられた樹脂分流孔は、通常、
内側列よりも外側列において大きい径とするものとす
る。
In the present invention, the resin distribution holes provided in at least two rows inside and outside the annular porous member are usually
The outer row has a larger diameter than the inner row.

【0013】また、本発明においては、前記環状多孔部
材が、丸型ダイスの軸方向に対し20〜60度の範囲内
であって、奇数列目と偶数列目とが互いに同方向に所定
角度の軸方向を有する樹脂分流孔を設けられたものとす
ることができる。
Further, in the present invention, the annular porous member is within a range of 20 to 60 degrees with respect to the axial direction of the round die, and the odd-numbered rows and the even-numbered rows are in the same direction at a predetermined angle. The resin distribution hole having the axial direction may be provided.

【0014】さらに、本発明においては、前記環状多孔
部材が、丸型ダイスの軸方向に対し20〜60度の範囲
内であって、奇数列目と偶数列目とが互いに異なる角度
の軸方向を有する樹脂分流孔を設けられたものとするこ
とができる。
Further, in the present invention, the annular porous member is in the range of 20 to 60 degrees with respect to the axial direction of the round die, and the odd-numbered rows and the even-numbered rows have different axial directions. It is possible to provide a resin diversion hole having

【0015】以下、本発明を実施態様を示す図面にした
がって説明する。
The present invention will be described below with reference to the drawings showing the embodiments.

【0016】すなわち、本発明の既設管ライニング用合
成樹脂管の製造方法は、図1に示すように、押出機
(E)により合成樹脂材料(M)を加熱溶融して混練
し、丸型ダイス(1)を用いて連続的にパイプ状(k)
に押出成形する方法を採用する。
That is, as shown in FIG. 1, a method for manufacturing a synthetic resin pipe for an existing pipe lining of the present invention is such that a synthetic resin material (M) is heated and melted by an extruder (E) to be kneaded, and then a round die is used. Pipe shape (k) continuously using (1)
The method of extrusion molding is adopted.

【0017】上記丸型ダイス(1)は、図2に示すよう
に外型(3)及び内型(4)で囲まれて形成される環状
樹脂流路(f)内に、環状多孔部材(2)を配置したも
のとする。そして、環状多孔部材(2)は、通常、その
周縁部が外型(3a)(3b)により挟持され、また中
心部が内型(4a)(4b)により挟持されて、それ自
体は環状樹脂流路(f)内に樹脂分流路を形成するとと
もに、内型(4)を支持するいわゆる多孔板スパイダー
の役目をする。
The circular die (1) has an annular porous member (f) in an annular resin flow channel (f) formed by being surrounded by an outer die (3) and an inner die (4) as shown in FIG. 2) is arranged. The annular porous member (2) is usually sandwiched by the outer molds (3a), (3b) at its peripheral edge and by the inner molds (4a), (4b) at its central portion, and the annular porous member (2) itself is a cyclic resin. The resin distribution channel is formed in the channel (f), and it also functions as a so-called perforated plate spider that supports the inner mold (4).

【0018】環状多孔部材(2)の前記樹脂分流路を形
成する部分には、図3(イ)に示すように断面円形の多
数の樹脂分流孔(5)が内外少なくとも2列以上設けら
れており、各隣接する列間においては各樹脂分流孔
(5)が相互に千鳥配置に設けられている。そして、こ
の樹脂分流孔(5)は、図3(ロ)で例示する第1列
(L1 )のA−A線断面において、その軸方向(x−
x)が丸型ダイス(1)の軸方向(d−d)とは異なる
ように形成され、環状樹脂流路の接線方向へ所定角度
(α)を有するように形成されている。
As shown in FIG. 3 (a), a large number of resin distribution holes (5) having a circular cross section are provided in at least two rows inside and outside of the annular porous member (2) where the resin distribution channels are formed. The resin flow-dividing holes (5) are provided in a zigzag arrangement with respect to each other between adjacent rows. And this resin flow-dividing hole (5) is the axial direction (x-) in the AA line cross section of the 1st row (L 1 ) illustrated in FIG. 3B.
x) is formed so as to be different from the axial direction (d-d) of the round die (1) and has a predetermined angle (α) in the tangential direction of the annular resin flow path.

【0019】さらに、前記樹脂分流孔(5)の態様は、
各列(L1 )〜(L3 )が図3(ロ)に示すように、全
て同方向の所定角度(α)を有するものであるほか、所
定角度(α)を有する奇数列目と偶数列目のものが互い
に正負異方向のもの、また奇数列目と偶数列目のものが
互いに異なる所定角度のもの、あるいはこれらのいずれ
かとの組み合わせによる態様のものとすることができ
る。
Further, the embodiment of the resin distribution hole (5) is as follows.
As shown in FIG. 3B, all the columns (L 1 ) to (L 3 ) have a predetermined angle (α) in the same direction, and odd-numbered columns and even numbers having the predetermined angle (α). The columns may have different positive and negative directions, the odd columns and the even columns may have mutually different predetermined angles, or a combination thereof may be adopted.

【0020】前記樹脂分流孔(5)の所定角度は、前記
丸型ダイス(1)の軸方向に対し、環状樹脂流路の接線
方向へ20〜60度の範囲内とする。この所定角度
(α)が20度未満では、溶融状態の合成樹脂材料
(M)を分流させ再び集合、融着させるときに、融着強
度を高めるために要する再融着面(7)への加圧力が不
足して十分な融着一体化がなされず、また60度を超え
ると合成樹脂材料(M)に流動抵抗が高まり、押出操作
が困難となる。したがって、所定角度は好ましくは30
〜45度とする。
The predetermined angle of the resin diversion hole (5) is within the range of 20 to 60 degrees in the tangential direction of the annular resin flow path with respect to the axial direction of the round die (1). When the predetermined angle (α) is less than 20 degrees, when the synthetic resin material (M) in a molten state is split, reassembled and fused, the re-fusion surface (7) required to increase the fusion strength is required. When the pressure is insufficient, sufficient fusion and integration cannot be achieved, and when it exceeds 60 degrees, the synthetic resin material (M) has an increased flow resistance, and the extrusion operation becomes difficult. Therefore, the predetermined angle is preferably 30
~ 45 degrees.

【0021】本発明によれば、溶融した合成樹脂材料
(M)は、丸型ダイス(1)内の所定角度の軸方向をも
つ樹脂分流孔(5)を通過することによって、丸型ダイ
ス(1)の軸方向にかかる押出機内の背圧の一部が分圧
として通過直後の再融着面(7)に作用することとな
り、融着強度を高め融着一体化がより強固となって、そ
の他の部分に匹敵する強度をもつ既設管ライニング用合
成樹脂管(6)となる。しかも、図3(ハ)のように、
多数の樹脂分流孔(5)により分流され強固に再融着さ
れて得られる再融着面(7)は、多数のセル状壁(8)
が密集した状態に形成され、隣接するセル状壁(8)が
互いに連結して厚さ方向にジグザグ状に現れるものとな
るから、外部応力に対する耐力が著しく増加する。した
がって、本発明によって得られる既設管ライニング用合
成樹脂管(6)は、ライニング施工時における加熱軟
化、膨脹時に、外部応力による亀裂に対して高い耐力を
有するものとなる。なお、本発明は、加熱、膨脹を伴っ
た加工を受けることとなる既設管ライニング用合成樹脂
管のみならず、通常に常温使用される最終の合成樹脂製
パイプ製品にも適用可能であることはいうまでもない。
According to the present invention, the molten synthetic resin material (M) passes through the resin diversion hole (5) having an axial direction of a predetermined angle in the round die (1), so that the round die ( A part of the back pressure in the extruder applied in the axial direction of 1) acts as a partial pressure on the re-fusion surface (7) immediately after passing, so that the fusion strength is increased and the fusion integration becomes stronger. The synthetic resin pipe (6) for the existing pipe lining has a strength comparable to the other parts. Moreover, as shown in FIG.
The re-fusion surface (7) obtained by dividing and re-sealing firmly by a large number of resin distribution holes (5) has a large number of cellular walls (8).
Are formed in a dense state, and adjacent cell-shaped walls (8) are connected to each other to appear in a zigzag shape in the thickness direction, so that the proof stress against external stress is significantly increased. Therefore, the existing synthetic resin pipe for pipe lining (6) obtained according to the present invention has a high proof stress against cracks due to external stress at the time of heat softening and expansion during lining construction. The present invention can be applied not only to a synthetic resin pipe for an existing pipe lining to be subjected to processing accompanied by heating and expansion, but also to a final synthetic resin pipe product that is normally used at room temperature. Needless to say.

【0022】[0022]

【実施例】以下、本発明の実施例を比較例とともに、図
面にしたがって説明する。
Embodiments of the present invention will now be described with reference to the drawings along with comparative examples.

【0023】まず、既設管ライニング用合成樹脂管の製
造装置として、図1に示すように、押出機(E)に丸型
ダイス(1)を装着した押出成形装置を用意した。
First, as an apparatus for producing a synthetic resin pipe for an existing pipe lining, as shown in FIG. 1, an extrusion molding apparatus in which a round die (1) was attached to an extruder (E) was prepared.

【0024】押出機(E)は、スクリュー口径55m
m、L/D=18の異方向二軸押出機を用い、丸型ダイ
ス(1)としては、図2に示すもので環状多孔部材
(2)が図3(イ)に示す態様の樹脂分流孔(5)を有
するものを用いた。
The extruder (E) has a screw diameter of 55 m.
m, L / D = 18 different-direction twin-screw extruder is used, and the circular die (1) is the one shown in FIG. 2 and the annular porous member (2) is the resin shunt of the embodiment shown in FIG. 3 (a). The one having holes (5) was used.

【0025】ここで、環状多孔部材(2)は、厚さ50
mmとし、丸型ダイス(1)の軸線上を中心とする、外
径170mm、内径125mmの環状樹脂流路(f)内
に樹脂分流孔(5)が位置するように配置したものとし
た。さらに、樹脂分流孔(5)は内外3列に配置し、そ
の口径を最外列から8mm、7.5mm、7mmとして
所定角度を45度の方向に設けたものとした。なお、樹
脂分流孔(5)の環状樹脂流路(f)に対する開口率は
50%とした。
Here, the annular porous member (2) has a thickness of 50.
mm, and the resin diversion hole (5) was located in the annular resin flow path (f) having an outer diameter of 170 mm and an inner diameter of 125 mm centered on the axis of the round die (1). Furthermore, the resin distribution holes (5) were arranged in three rows inside and outside, and the diameters were set to 8 mm, 7.5 mm, and 7 mm from the outermost row, and the predetermined angle was provided in the direction of 45 degrees. The opening ratio of the resin distribution hole (5) to the annular resin flow channel (f) was set to 50%.

【0026】ついで、合成樹脂材料として、ポリ塩化ビ
ニル樹脂100重量部、オクチル錫メルカプト1.5重
量部、アクリル系加工助剤1重量部、滑剤1.5重量
部、酸化チタン0.3重量部を用意し、これらを混合し
たのち前記押出成形装置に投入し、加熱混練して、口径
150mm、厚さ3mmのパイプに成形した。
Next, as a synthetic resin material, 100 parts by weight of polyvinyl chloride resin, 1.5 parts by weight of octyltin mercapto, 1 part by weight of acrylic processing aid, 1.5 parts by weight of lubricant, 0.3 parts by weight of titanium oxide. Was prepared, and after mixing these, the mixture was put into the extrusion molding device, kneaded by heating, and molded into a pipe having a diameter of 150 mm and a thickness of 3 mm.

【0027】上記で得られたパイプから長さ2mの試料
を採取し、耐圧力について2種類の試験を行った。な
お、試験方法は下記のとおりである。
A sample having a length of 2 m was sampled from the pipe obtained as described above, and two kinds of tests were carried out for pressure resistance. The test method is as follows.

【0028】−試験方法− 試験1:図7に示す試験装置を用い、試料(T)の両端
を、加圧水導入管(51)を設けたキャップ(C1)と排
水管(52)を設けたキャップ(C2)とで密封し、加圧
水導入管(51)に接続された水圧ポンプ(m)から、温
度20℃の水を試料(T)内に送り込み、試料(T)内
部の水圧の上昇速度を毎分1kgf/cm2 、最大水圧
を20kgf/cm2 以内に設定して圧力を加え、試料
(T)の破断時の水圧を測定した。
-Test Method-Test 1: Using the test apparatus shown in FIG. 7, a cap (C1) provided with a pressurized water introduction pipe (51) and a cap provided with a drain pipe (52) were provided at both ends of the sample (T). The water at a temperature of 20 ° C. is fed into the sample (T) from the water pressure pump (m) which is sealed with (C2) and is connected to the pressurized water introducing pipe (51), and the rising speed of the water pressure inside the sample (T) is increased. The water pressure at the time of breaking of the sample (T) was measured by setting the pressure at 1 kgf / cm 2 per minute and setting the maximum water pressure within 20 kgf / cm 2 .

【0029】試験2:図7に示す試験装置において、試
料(T)の外側に、内径225mmの鉄管をキャップ
(C1)(C2)で取り付け(図示省略)、この状態
で、0.1kgf/cm2 の加圧水蒸気を20分間導入
し、その後1分間当たり0.1kgf/cm2 の割合で
加圧水蒸気を昇圧し、0.5kgf/cm2 で保持し、
試料(T)を加熱軟化状態で膨脹させ、試料(T)が鉄
管に圧着するのを確認した時点から1時間以内の亀裂の
発生状態を観察した。なお、試験2における試料(T)
の膨脹倍率は径方向に1.5倍である。
Test 2: In the test apparatus shown in FIG. 7, an iron pipe with an inner diameter of 225 mm was attached to the outside of the sample (T) with caps (C1) and (C2) (not shown), and in this state, 0.1 kgf / cm The pressurized steam of 2 was introduced for 20 minutes, and then the pressurized steam was pressurized at a rate of 0.1 kgf / cm 2 per minute and kept at 0.5 kgf / cm 2 .
The sample (T) was expanded in a heat-softened state, and the state of crack generation was observed within 1 hour from the time when it was confirmed that the sample (T) was pressure bonded to the iron pipe. The sample (T) in Test 2
The expansion ratio is 1.5 times in the radial direction.

【0030】実施例で得られたパイプの試験結果は、試
験1では、水圧が最大20kgf/cm2 となるまで破
断することはなく、また試験2では、破裂やいかなる亀
裂も生じなかった。
According to the test results of the pipes obtained in the examples, in Test 1, there was no fracture until the water pressure reached a maximum of 20 kgf / cm 2, and in Test 2, neither rupture nor any cracks occurred.

【0031】比較例1 製造に用いる丸型ダイスのスパイダーが、図4(イ)に
示すスパイダー(22)のような形態からなる以外は、実
施例と全く同様の製造方法により、同様の外形のパイプ
を得た。
COMPARATIVE EXAMPLE 1 Except that the spider (22) shown in FIG. 4 (a) has the same shape as the spider (22) shown in FIG. Got a pipe.

【0032】上記で得られたパイプから試料を採取し、
実施例と同様にして耐圧力試験を行った。その結果、試
験1では、試料は水圧が16kgf/cm2 で破断し
た。また試験2では、鉄管への試料圧着後35分で、亀
裂が長さ方向に細長く、試料内面から試料表面に貫通し
た状態で発生した。
Taking a sample from the pipe obtained above,
A pressure resistance test was conducted in the same manner as in the example. As a result, in Test 1, the sample broke at a water pressure of 16 kgf / cm 2 . Further, in Test 2, 35 minutes after the sample was pressure-bonded to the iron pipe, cracks elongated in the length direction and occurred in a state of penetrating from the sample inner surface to the sample surface.

【0033】比較例2 製造に用いる丸型ダイスが、図6(イ)に示す丸型ダイ
ス(41)のような形態からなり、樹脂分流孔の軸方向が
丸型ダイスの軸方向に一致する以外は、実施例と全く同
様の製造方法により、同様の外形のパイプを得た。
Comparative Example 2 A round die used for manufacturing has a shape as shown in FIG. 6 (a), and the resin diversion hole has an axial direction coinciding with the axial direction of the round die. Except for the above, a pipe having the same outer shape was obtained by the same manufacturing method as that of the example.

【0034】上記で得られたパイプから試料を採取し、
実施例と同様にして耐圧力試験を行った。その結果、試
験1では、試料は水圧が18.5kgf/cm2 で破断
した。また試験2では、鉄管への試料圧着後45分で、
亀裂が無数に発生し、その一つが試料表面に貫通した状
態で発生した。
Taking a sample from the pipe obtained above,
A pressure resistance test was conducted in the same manner as in the example. As a result, in Test 1, the sample broke at a water pressure of 18.5 kgf / cm 2 . In test 2, 45 minutes after the sample was pressed onto the iron pipe,
Countless cracks were generated, and one of them cracked on the sample surface.

【0035】比較例3 実施例で用いた丸型ダイスの樹脂分流孔の軸方向が、丸
型ダイスの軸方向に対して70度である以外は、実施例
と全く同様の製造方法により、パイプの成形を試みた。
しかし、丸型ダイスの樹脂分流孔の入口付近に合成樹脂
が滞留し、熱分解を起こして、パイプを成形することが
できなかった。
Comparative Example 3 A pipe was manufactured in exactly the same manner as in the example except that the resin diversion holes of the round die used in the example had an axial direction of 70 degrees with respect to the axial direction of the round die. I tried to mold.
However, the synthetic resin stayed in the vicinity of the inlet of the resin diversion hole of the round die and caused thermal decomposition, so that the pipe could not be molded.

【0036】[0036]

【発明の効果】以上のように、本発明によれば、従来の
合成樹脂製パイプの製造方法において用いられる丸型ダ
イスの環状樹脂流路内に、丸型ダイスの軸方向に対し環
状樹脂流路の接線方向へ所定角度の軸方向を有する断面
円形の多数の樹脂分流孔を、内外少なくとも2列以上で
あって、各隣接する列間においては相互に千鳥配置に設
けた環状多孔部材を配置した丸型ダイスを用いるもので
あるから、樹脂分流孔を通過した直後の再融着面の融着
一体化が強固となり、加えて多数の樹脂分流孔により分
流され強固に再融着された再融着面が、多数のセル状壁
が密集した状態に形成されて、隣接するセル状壁が互い
に連結して厚さ方向にジグザグ状に現れるから、外部応
力に対する耐力が著しく増加し、耐破壊強度の高い合成
樹脂製パイプを製造することができるという効果があ
る。したがって、本発明によって得られる既設管ライニ
ング用合成樹脂管は、ライニング施工時における加熱軟
化、膨脹時に、外部応力による亀裂に対して高い耐力を
有するものとなるという効果を奏する。
As described above, according to the present invention, in the annular resin flow path of the round die used in the conventional method for producing a synthetic resin pipe, the annular resin flow is made in the axial direction of the round die. Arrangement of a plurality of resin shunt holes having a circular cross section having an axial direction of a predetermined angle in the tangential direction of the passage in at least two rows inside and outside, and in a zigzag arrangement between adjacent rows. Since the round die is used, the fusion and integration of the re-fusion surface immediately after passing through the resin distribution hole becomes strong, and in addition, the re-fusion which is divided by a large number of resin distribution holes and re-bonded firmly The fusion surface is formed in a state in which a large number of cellular walls are densely packed, and adjacent cellular walls are connected to each other and appear in a zigzag shape in the thickness direction. Made of strong synthetic resin pipe There is an effect that can be. Therefore, the existing synthetic resin pipe for a pipe lining obtained by the present invention has an effect that it has a high proof stress against cracks due to external stress at the time of softening and expanding during lining.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において採用される、既設管ライニング
用合成樹脂管を製造するための製造装置を示す概略図で
ある。
FIG. 1 is a schematic view showing a manufacturing apparatus for manufacturing a synthetic resin pipe for an existing pipe lining, which is adopted in the present invention.

【図2】本発明で使用される丸型ダイスを示す断面図で
ある。
FIG. 2 is a cross-sectional view showing a round die used in the present invention.

【図3】図2で示される環状多孔部材を示す図面であ
り、図3(イ)は丸型ダイスの軸方向平面図、図3
(ロ)は樹脂分流孔の態様を示すA−A線断面図、図3
(ハ)は既設管ライニング用合成樹脂管の断面拡大部分
図である。
3 is a drawing showing the annular porous member shown in FIG. 2, and FIG. 3 (a) is an axial plan view of a round die, FIG.
(B) is a cross-sectional view taken along the line AA showing the aspect of the resin distribution holes, FIG.
(C) is an enlarged partial cross-sectional view of an existing synthetic resin pipe for pipe lining.

【図4】従来の、パイプの製造に用いられる丸型ダイス
とこの丸型ダイスで製造される合成樹脂パイプを示す断
面図であり、図4(イ)は丸型ダイスを示す断面図、図
4(ロ)は合成樹脂パイプの断面拡大部分図である。
FIG. 4 is a cross-sectional view showing a conventional round die used for producing a pipe and a synthetic resin pipe produced by this round die, and FIG. 4 (a) is a cross-sectional view showing the round die. 4 (b) is an enlarged partial view of a cross section of the synthetic resin pipe.

【図5】従来の、パイプの製造に用いられる、他の丸型
ダイスとこの丸型ダイスで製造される合成樹脂パイプを
示す断面図であり、図5(イ)は丸型ダイスを示す断面
図、図5(ロ)は合成樹脂パイプの断面拡大部分図であ
る。
FIG. 5 is a cross-sectional view showing another conventional round die used for manufacturing a pipe and a synthetic resin pipe produced by this round die, and FIG. 5 (A) is a cross section showing the round die. FIG. 5 (B) is an enlarged partial view of the cross section of the synthetic resin pipe.

【図6】従来の、パイプの製造に用いられる、さらに他
の丸型ダイスとこの丸型ダイスで製造される合成樹脂パ
イプを示す断面図であり、図6(イ)は丸型ダイスを示
す断面図、図6(ロ)は合成樹脂パイプの断面拡大部分
図である。
FIG. 6 is a cross-sectional view showing another conventional round die used for producing a pipe and a synthetic resin pipe produced by this round die, and FIG. 6 (a) shows the round die. A sectional view and FIG. 6B are enlarged sectional views of the synthetic resin pipe.

【図7】実施例及び比較例で得られた試料の、耐圧力試
験に用いられる試験装置を示す概略図である。
FIG. 7 is a schematic view showing a test apparatus used for a pressure resistance test of the samples obtained in the examples and the comparative examples.

【符号の説明】[Explanation of symbols]

1…丸型ダイス 2…環状多孔部材 3…外型 4…内型 5…樹脂分流孔 6…既設管ライニング用合成樹脂管 7…再融着面 8…セル状壁 E…押出機 M…合成樹脂材料 f…環状樹脂流路 DESCRIPTION OF SYMBOLS 1 ... Round die 2 ... Annular porous member 3 ... Outer die 4 ... Inner die 5 ... Resin diversion hole 6 ... Existing pipe lining synthetic resin pipe 7 ... Re-fusion surface 8 ... Cellular wall E ... Extruder M ... Synthesis Resin material f ... Annular resin flow path

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】合成樹脂材料を、押出機により丸型ダイス
を用いてパイプ状に押出し成形する既設管ライニング用
合成樹脂管の製造方法において、前記丸形ダイスの環状
樹脂流路内に、前記丸型ダイスの軸方向に対し環状樹脂
流路の接線方向へ所定角度の軸方向を有する断面円形の
多数の樹脂分流孔を、内外少なくとも2列以上であっ
て、各隣接する列間においては相互に千鳥配置に設けた
環状多孔部材を配置したものとし、上記樹脂分流孔を通
じて合成樹脂材料を一旦分流させたのち、ダイス出口に
至るまでの間で再び集合させて融着一体化させることに
よりパイプ状に押出し成形することを特徴とする既設管
ライニング用合成樹脂管の製造方法。
1. A method for manufacturing a synthetic resin pipe for an existing pipe lining, comprising extruding a synthetic resin material into a pipe shape by using an extruder with a round die, wherein the annular resin flow path of the round die is provided with A large number of resin shunt holes with a circular cross section having an axial direction at a predetermined angle in the tangential direction of the annular resin flow path with respect to the axial direction of the round die are provided in at least two rows inside and outside, and between adjacent rows. It is assumed that the annular porous members provided in a zigzag arrangement are arranged in the pipe, the synthetic resin material is once diverted through the resin diverting hole, and then the dies are reassembled and fused and integrated by the time it reaches the die outlet to form a pipe. A method for producing a synthetic resin pipe for an existing pipe lining, which comprises extruding into a tubular shape.
【請求項2】環状多孔部材が、丸型ダイスの軸方向に対
し20〜60度の範囲内であって、奇数列目と偶数列目
とが互いに同方向に所定角度の軸方向を有する樹脂分流
孔を設けられたものとする請求項1に記載の既設管ライ
ニング用合成樹脂管の製造方法。
2. A resin in which an annular porous member is within a range of 20 to 60 degrees with respect to an axial direction of a round die, and odd-numbered rows and even-numbered rows have axial directions of a predetermined angle in the same direction. The method for producing a synthetic resin pipe for an existing pipe lining according to claim 1, wherein a diversion hole is provided.
【請求項3】環状多孔部材が、丸型ダイスの軸方向に対
し20〜60度の範囲内であって、奇数列目と偶数列目
とが互いに正負異方向に所定角度の軸方向を有する樹脂
分流孔を設けられたものとする請求項1に記載の既設管
ライニング用合成樹脂管の製造方法。
3. The annular porous member is within a range of 20 to 60 degrees with respect to the axial direction of the round die, and the odd-numbered rows and the even-numbered rows have axial directions of predetermined angles in different positive and negative directions. The method for producing a synthetic resin pipe for an existing pipe lining according to claim 1, wherein a resin diversion hole is provided.
【請求項4】環状多孔部材が、丸型ダイスの軸方向に対
し20〜60度の範囲内であって、奇数列目と偶数列目
とが互いに異なる角度の軸方向を有する樹脂分流孔を設
けられたものとする請求項2または3に記載の既丸型ダ
イスの軸方向に対し既設管ライニング用合成樹脂管の製
造方法。
4. An annular porous member is provided with a resin distribution hole having an axial direction in which the odd-numbered rows and the even-numbered rows have different axial directions within a range of 20 to 60 degrees with respect to the axial direction of the round die. The method for producing a synthetic resin pipe for an existing pipe lining in the axial direction of the existing round die according to claim 2 or 3, which is provided.
JP8134609A 1996-05-29 1996-05-29 Manufacture of synthetic resin tube for lining existing tube Pending JPH09314638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8134609A JPH09314638A (en) 1996-05-29 1996-05-29 Manufacture of synthetic resin tube for lining existing tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8134609A JPH09314638A (en) 1996-05-29 1996-05-29 Manufacture of synthetic resin tube for lining existing tube

Publications (1)

Publication Number Publication Date
JPH09314638A true JPH09314638A (en) 1997-12-09

Family

ID=15132408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8134609A Pending JPH09314638A (en) 1996-05-29 1996-05-29 Manufacture of synthetic resin tube for lining existing tube

Country Status (1)

Country Link
JP (1) JPH09314638A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113997551A (en) * 2021-09-27 2022-02-01 渤海英科(河北)科技有限公司 High strength PVC blow molding die head
CN114633454A (en) * 2022-03-26 2022-06-17 江苏君华特种工程塑料制品有限公司 Extrusion machine head for PEEK pipe production and PEEK pipe production process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113997551A (en) * 2021-09-27 2022-02-01 渤海英科(河北)科技有限公司 High strength PVC blow molding die head
CN114633454A (en) * 2022-03-26 2022-06-17 江苏君华特种工程塑料制品有限公司 Extrusion machine head for PEEK pipe production and PEEK pipe production process

Similar Documents

Publication Publication Date Title
DK155983B (en) PROCEDURE FOR DESIGNING PIPES OF FORM
CN1135787A (en) Cooled gate valve disk
US4236953A (en) Process for producing thermoplastic multi-walled pipes
JPH09314638A (en) Manufacture of synthetic resin tube for lining existing tube
CN112984258A (en) Electric hot melting pipe fitting and manufacturing process
CN114633454A (en) Extrusion machine head for PEEK pipe production and PEEK pipe production process
EP1220723B1 (en) Continuous extrusion apparatus
US5195675A (en) Method for producing a composite pipe
CN101791645A (en) Stepwise arch rib forming process of large-span spacing steel pipe arch
US4846658A (en) Extrusion die
CN102333640A (en) Method for connection, and connection of a capillary tube to a main tube
CN100498036C (en) Steel band reinforced polyethylene spiral ripple pipe and its connection fitting and connection method
CN1074710C (en) Method and apparatus for producing a plastic pipe and a plastic pipe
JP3480715B2 (en) Method for producing resin tube by blow molding and extrusion die used therefor
KR102074514B1 (en) Y tube for heat exchanger and manufacturing method thereof
CN214668456U (en) Multi-channel mixed coal rock mass seepage test device
ITMI992685A1 (en) PROCEDURE FOR THE CREATION OF A DISTRIBUTED TUBE DEVICE TO REALIZE A DISTRIBUTED TUBE AND TUBE
JP5170753B2 (en) Manufacturing method of micro chemical plant
CN216896330U (en) Expandable and compatible plastic electric melting pipe fitting
JPS62218122A (en) Mold for molding thermoplastic resin pipe
CN211398838U (en) Steel skeleton pipe fitting
CN215258474U (en) Electric melting saddle type pipe fitting for gas pipeline
CN202660823U (en) Capillary pipe network
JPS612523A (en) Continuous manufacture of heat-shrinkable tube and apparatus therefor
JPH0780933A (en) Production of flanged resin lining steel pipe