JPH0931451A - Thermal storage medium and its dispersion - Google Patents
Thermal storage medium and its dispersionInfo
- Publication number
- JPH0931451A JPH0931451A JP7179934A JP17993495A JPH0931451A JP H0931451 A JPH0931451 A JP H0931451A JP 7179934 A JP7179934 A JP 7179934A JP 17993495 A JP17993495 A JP 17993495A JP H0931451 A JPH0931451 A JP H0931451A
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- organic compound
- storage material
- phase change
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Micro-Capsules (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本願は、物質を冷やしたり、
暖めたりするために用いられる蓄熱材、こういった蓄熱
材を水等の分散媒中に分散させてなる蓄熱材分散液に関
するものである。このような蓄熱材は容器等に封入して
保温剤として利用できる。また、こういった蓄熱材を分
散媒中に分散保持した蓄熱材分散液も、容器等に封入し
て保温剤として利用できるとともに、空調システム用の
冷熱搬送媒体等としても利用できる。TECHNICAL FIELD The present invention is directed to cooling a substance,
The present invention relates to a heat storage material used for warming or the like, and a heat storage material dispersion liquid obtained by dispersing the heat storage material in a dispersion medium such as water. Such a heat storage material can be used as a heat retaining agent by enclosing it in a container or the like. Further, the heat storage material dispersion liquid in which such heat storage material is dispersed and held in a dispersion medium can be used as a heat retaining agent by being enclosed in a container or the like, and can also be used as a cold heat transfer medium for an air conditioning system.
【0002】[0002]
【従来の技術】従来から、潜熱を利用した蓄熱材とし
て、脂肪族炭化水素、芳香族炭化水素、脂肪酸、エステ
ル化合物等の有機化合物を利用する技術が知られてい
る。また、これら有機化合物蓄熱材の熱交換率を高める
ため、上記蓄熱材を微小カプセルに封入し、熱伝導性の
良い液体中に入れて用いる方法や、乳化剤を用い有機化
合物蓄熱材と水の水中油滴型エマルジョンを調整して使
用する方法が提案されている。この様にすると、有機化
合物蓄熱材の固化時においても、熱搬送媒体となる蓄熱
材分散液の流動性を保持させて蓄熱材の潜熱を負荷側に
効率よく供給することができる(例えば、特開昭56−
110869、特開昭55−40524、特開昭63−
217196、特開平5−163486、特開平6−9
950)。ここで、後者のエマルジョン形態のものは、
以下の実施例に示すように、カプセルに封入される場合
に比べ、調整が非常に簡単であり、コストの大幅な増大
もない等のメリットを有しているため、提案されている
使用応用例も多い。2. Description of the Related Art Conventionally, as a heat storage material utilizing latent heat, there has been known a technology of utilizing an organic compound such as an aliphatic hydrocarbon, an aromatic hydrocarbon, a fatty acid or an ester compound. In addition, in order to increase the heat exchange rate of these organic compound heat storage materials, a method of encapsulating the heat storage material in a microcapsule and putting it in a liquid with good thermal conductivity, or using an emulsifier in the water of the organic compound heat storage material and water A method of preparing and using an oil drop emulsion has been proposed. With this configuration, even when the organic compound heat storage material is solidified, the fluidity of the heat storage material dispersion liquid serving as the heat transfer medium can be maintained and the latent heat of the heat storage material can be efficiently supplied to the load side (for example, Kaisho 56-
110869, JP-A-55-40524, JP-A-63-
217196, JP-A-5-163486, JP-A-6-9
950). Here, the latter emulsion type is
As shown in the following examples, compared to the case of encapsulation, the adjustment is very simple, and there is a merit that there is no significant increase in cost. There are also many.
【0003】[0003]
【発明が解決しようとする課題】相変化を伴う有機化合
物を内包する水中油滴型エマルジョンを調整し、蓄熱操
作を試みたところ、次のような問題が生じることが判っ
た。つまり、相変化を伴う有機化合物を内包するエマル
ジョンは、加熱/冷却を施すことにより、吸熱/放熱を
それぞれ繰り返されて各用途に使用されるが、その際、
エマルジョンに内包された相変化を伴う有機化合物の融
点と凝固点が異なる現象、即ち、著しい過冷却現象が生
じることが判明した。このような過冷却現象が発生する
と、例えば、このエマルジョンを冷熱搬送媒体として使
用する場合に、分散物(本願でいう蓄熱材)の凝固が所
定の温度域で完全に起こらず、相転移に多大なエネルギ
ーを必要とし、例えば冷房装置の動作効率が低下しやす
い等の問題を発生することとなる。一方、蓄熱材を水等
の分散媒内に分散する手法として、マイクロカプセルを
使用することが知られている。この形態の技術にあって
は、特開平5−237368に示されるように、マイク
ロカプセル内に内包される化合物ととともに、高融点化
合物(カルボン酸類、アルコール類、アマイド類)をカ
プセル内に内包する。しかしながら、この技術において
も、明細書に記載の表1に示すように過冷却現象が発生
している。この原因は、マイクロカプセル内に内包され
る化合物と、高融点化合物との間で、その融点差が比較
的大きく、物質的に直接的な繋がりが無いために、なお
過冷却現象が解消し難いためと推測される。従って、本
発明の目的は、相変化を伴う有機化合物を内包した蓄熱
材或いは蓄熱材分散液において、過冷却現象を防止し、
加熱と冷却を施した場合の融点と凝固点の差が極めて小
さい蓄熱材、あるいはこれを含む蓄熱材分散液を提供す
ることにある。When an oil-in-water type emulsion containing an organic compound accompanied by a phase change was prepared and a heat storage operation was attempted, it was found that the following problems occur. In other words, an emulsion containing an organic compound accompanied by a phase change is used for each purpose by repeating heat absorption / heat dissipation by heating / cooling.
It was found that a phenomenon in which the melting point and the freezing point of the organic compound involved in the phase change contained in the emulsion are different, that is, a remarkable supercooling phenomenon occurs. When such a supercooling phenomenon occurs, for example, when the emulsion is used as a cold heat transfer medium, the solidification of the dispersion (the heat storage material in the present application) does not completely occur in a predetermined temperature range, and a large amount of phase transition occurs. Energy is required, which causes a problem that, for example, the operation efficiency of the cooling device is likely to decrease. On the other hand, it is known to use microcapsules as a method of dispersing a heat storage material in a dispersion medium such as water. In the technique of this form, as shown in JP-A-5-237368, a high melting point compound (carboxylic acid, alcohol, amide) is included in a capsule together with a compound included in a microcapsule. . However, even in this technique, the supercooling phenomenon occurs as shown in Table 1 in the specification. The cause is that the difference in melting point between the compound encapsulated in the microcapsule and the high melting point compound is relatively large, and there is no direct physical connection, so it is still difficult to eliminate the supercooling phenomenon. It is supposed to be because. Therefore, an object of the present invention is to prevent a supercooling phenomenon in a heat storage material or a heat storage material dispersion liquid containing an organic compound accompanied by a phase change,
It is to provide a heat storage material having a very small difference between the melting point and the freezing point when heated and cooled, or a heat storage material dispersion liquid containing the heat storage material.
【0004】[0004]
【課題を解決するための手段】この目的を達成するため
の本発明による請求項1に係わる相変化を伴う有機化合
物を含んでなる蓄熱材の第1の特徴構成は、前記有機化
合物のアミン誘導体、アルコール誘導体またはカルボン
酸誘導体から選択される一種以上からなる核発生剤を前
記有機化合物とともに備えたことにある。さらに、前記
第1の特徴構成を備えた蓄熱材において、前記有機化合
物が脂肪族炭化水素であることが好ましい。これが、請
求項2に係わる本願発明の第2の特徴構成である。さら
に、上記第1もしくは第2の特徴構成を備えたものにお
いて、前記有機化合物に対する前記核発生剤の割合が、
30〜0.5重量%であることが好ましい。これが、請
求項3に係わる本願発明の第3の特徴構成である。さら
に上記の目的を達成するための請求項4に係わる蓄熱材
分散液の特徴構成は、これが、相変化を伴う有機化合物
と、前記有機化合物のアミン誘導体、アルコール誘導体
またはカルボン酸誘導体から選択される一種以上からな
る核発生剤とを、共に、乳化剤により分散媒中にエマル
ジョンとして分散してなることにある。さらに、上記の
目的を達成するための請求項5に係わる蓄熱材分散液の
特徴構成は、相変化を伴う有機化合物と、前記有機化合
物のアミン誘導体、アルコール誘導体またはカルボン酸
誘導体から選択される一種以上からなる核発生剤とを、
共に、マイクロカプセル中に内包し、前記マイクロカプ
セルを分散媒中に分散してなることにある。〔作用〕一
般的に、相変化材の過冷却現象を防止するために、核発
生剤の添加が行われる。最も、効果のある核発生剤は言
うまでもなく相変化材そのものの結晶である。しかし、
例えば、エマルジョン形態のものでは相変化材は完全に
融解するので、相変化材の一部をいかなる温度状態にお
いても結晶のまま保持させなければ過冷却現象は防止で
きず、そのような技術は不可能と考えられる。そのた
め、本願においては、相変化材と結晶構造の良く似た、
他の核発生剤を添加する。このとき、核発生剤は相変化
材より高い融点を有し、固化が早い段階から起こること
が望ましい。本願第1の特徴構成の蓄熱材においては、
相変化材が有機化合物で、この相変化材のアミン誘導
体、アルコール誘導体またはカルボン酸誘導体の一種以
上が、所謂、核発生剤となっている。ここで、核発生剤
は、相変化材より早い段階で固化を始めることとなる
が、この核発生剤は相変化材である有機化合物と近い結
晶構造を有しているため、核発生剤の結晶が形成された
段階で、これを核として相変化材の相変化を促進する。
即ち、誘導体であるため、基本的な結晶構造は非常に近
似しており、結果的に、これを核として相変化材の固化
が非常にスムーズに進行する。結果、後述する表1に示
すように、過冷却現象を効果的に防止できる。さらに本
願第2の特徴構成の蓄熱材にあっては、冷熱搬送媒体と
しての実用性に富む脂肪族炭化水素を主な蓄熱材として
使用することにより、比較的入手しやすい材料を使用し
て、比較的高い蓄熱効果を発揮しながら、融点と凝固点
の差を実質上無いに等しい1℃以下まで低下することが
できる。さらに、本願第3の特徴構成の蓄熱材にあって
は、相変化材に対する核発生剤の量を適切に選択するこ
とにより、その過冷却現象を抑えることができる。ここ
で、核発生剤の添加量が30重量%より多いと過冷却防
止効果はあるが、逆に単位質量あたりの蓄熱材の量が少
なくなり、その結果蓄熱量が減少してしまうため、蓄熱
効率が低下してしまい、核発生剤の添加量が0.5重量
%より少ないと、過冷却防止効果を期待し難い。請求項
4に係わる蓄熱材分散液にあっては、上記のような相変
化材と核発生剤とを組み合わせたものを、分散媒中に分
散させることとなるが、この分散の手法として、乳化剤
によるエマルジョン手法を採用することにより、調整が
非常に簡単であり、コストの増大なく、良好な特性の蓄
熱材分散液を得ることができる。ここで、この蓄熱材分
散液にあっても、先に説明した過冷却の防止効果を、相
変化材と核発生剤との本願独特の組み合わせにより得ら
れる。請求項5に係わる蓄熱材分散液にあっては、上記
のような相変化材と核発生剤とを組み合わせたものを、
分散媒中に分散させることとなるが、この分散の手法と
して、マイクロカプセル手法を採用することにより、耐
熱性や外部からの圧力や応力等に対して耐久性の高い蓄
熱材分散液を得ることができる。ここで、この蓄熱材分
散液にあっても、先に説明した過冷却の防止効果を、相
変化材と核発生剤との本願独特の組み合わせにより得ら
れる。To achieve this object, a first characteristic constitution of a heat storage material comprising an organic compound with a phase change according to claim 1 according to the present invention is the amine derivative of the organic compound. A nucleating agent consisting of one or more selected from alcohol derivatives or carboxylic acid derivatives is provided together with the organic compound. Further, in the heat storage material having the first characteristic configuration, it is preferable that the organic compound is an aliphatic hydrocarbon. This is the second characteristic configuration of the present invention according to claim 2. Furthermore, in the thing provided with the said 1st or 2nd characteristic structure, the ratio of the said nucleating agent with respect to the said organic compound is
It is preferably 30 to 0.5% by weight. This is the third characteristic configuration of the present invention according to claim 3. Further, the characteristic constitution of the heat storage material dispersion according to claim 4 for achieving the above object is that the heat storage material dispersion is selected from an organic compound accompanied by a phase change and an amine derivative, alcohol derivative or carboxylic acid derivative of the organic compound. A nucleating agent consisting of one or more kinds is dispersed together as an emulsion in a dispersion medium with an emulsifier. Furthermore, the characteristic constitution of the heat storage material dispersion liquid according to claim 5 for achieving the above-mentioned object is one type selected from an organic compound accompanied by a phase change and an amine derivative, alcohol derivative or carboxylic acid derivative of the organic compound. A nucleating agent consisting of the above,
Both are contained in microcapsules, and the microcapsules are dispersed in a dispersion medium. [Operation] Generally, a nucleating agent is added to prevent the supercooling phenomenon of the phase change material. Needless to say, the most effective nucleating agent is the crystal of the phase change material itself. But,
For example, in the emulsion form, since the phase change material is completely melted, the supercooling phenomenon cannot be prevented unless a part of the phase change material is kept as a crystal under any temperature condition, and such a technique is inadequate. It seems possible. Therefore, in the present application, the crystal structure is very similar to that of the phase change material,
Add another nucleating agent. At this time, it is desirable that the nucleating agent has a higher melting point than the phase change material and solidification occurs at an early stage. In the heat storage material having the first characteristic configuration of the present application,
The phase change material is an organic compound, and one or more of amine derivative, alcohol derivative or carboxylic acid derivative of the phase change material serves as a so-called nucleating agent. Here, the nucleating agent starts to solidify at an earlier stage than the phase change material, but since the nucleating agent has a crystal structure close to that of the organic compound which is the phase change material, When a crystal is formed, this serves as a nucleus to promote the phase change of the phase change material.
That is, since it is a derivative, the basic crystal structure is very similar, and as a result, solidification of the phase change material proceeds very smoothly with this as a nucleus. As a result, the supercooling phenomenon can be effectively prevented as shown in Table 1 described later. Furthermore, in the heat storage material of the second characteristic configuration of the present application, by using an aliphatic hydrocarbon, which is highly practical as a cold heat transfer medium, as the main heat storage material, a relatively easily available material is used, While exhibiting a relatively high heat storage effect, it is possible to reduce the difference between the melting point and the freezing point to 1 ° C. or less, which is substantially zero. Further, in the heat storage material having the third characteristic configuration of the present application, the supercooling phenomenon can be suppressed by appropriately selecting the amount of the nucleating agent with respect to the phase change material. Here, if the addition amount of the nucleating agent is more than 30% by weight, there is a supercooling prevention effect, but on the contrary, the amount of the heat storage material per unit mass decreases, and as a result, the heat storage amount decreases, so the heat storage amount decreases. If the amount of the nucleating agent added is less than 0.5% by weight, the efficiency decreases, and it is difficult to expect the effect of preventing supercooling. In the heat storage material dispersion according to claim 4, a combination of the phase change material and the nucleating agent as described above is dispersed in a dispersion medium. As a method of this dispersion, an emulsifier is used. By adopting the emulsion method according to, it is possible to obtain a heat storage material dispersion liquid having good characteristics, which is very easy to adjust and does not increase the cost. Here, even in this heat storage material dispersion liquid, the above-described effect of preventing supercooling can be obtained by the unique combination of the phase change material and the nucleating agent. In the heat storage material dispersion according to claim 5, a combination of the above phase change material and a nucleating agent is used.
It will be dispersed in the dispersion medium, but by adopting the microcapsule method as this dispersion method, it is possible to obtain a heat storage material dispersion liquid having high heat resistance and durability against external pressure and stress. You can Here, even in this heat storage material dispersion liquid, the above-described effect of preventing supercooling can be obtained by the unique combination of the phase change material and the nucleating agent.
【0005】[0005]
【発明の実施の形態】以下に、発明の実施の形態を、蓄
熱材、この蓄熱材を分散媒中の分散して構成される蓄熱
材分散液の順に説明する。 1 蓄熱材 蓄熱材は、相変化を起こす相変化材としての有機化合物
と、核発生剤としての前記有機化合物のアミン誘導体、
アルコール誘導体またはカルボン酸誘導体から選択され
る一種以上とを共に含有してなっている。前記有機化合
物に対する前記核発生剤の割合は、30〜0.5重量%
(さらに好ましくは1〜0.5重量%)に設定されてい
る。 2 エマルジョン形態の蓄熱材分散液 蓄熱材分散液は、先に説明した蓄熱材を分散媒中に分散
させて得られるものであり、相変化を伴う有機化合物
と、前記有機化合物のアミン誘導体、アルコール誘導体
またはカルボン酸誘導体から選択される一種以上からな
る核発生剤とを、共に、乳化剤により分散媒中にエマル
ジョンとして分散して構成される。前記有機化合物に対
する前記核発生剤の割合は、30〜0.5重量%(さら
に好ましくは1〜0.5重量%)、に設定されている。
さらに、分散媒に対する前記有機化合物の割合は、50
〜5重量%(さらに好ましくは40〜10重量%)に設
定されている。ここで、蓄熱材分散液中の有機化合物の
割合は高い程潜熱量が増し好ましいが、良好な流動性を
維持するには、上記の割合が好ましい。この割合が50
重量%より高いと、流動性良く長期間安定した分散した
状態が得られない。一方5重量%以下であると、蓄熱効
果の乏しいものとなる。 3 マイクロカプセル形態の蓄熱材分散液 蓄熱材分散液は、先に説明した蓄熱材を分散媒中に分散
させて得られるものであり、相変化を伴う有機化合物
と、前記有機化合物のアミン誘導体、アルコール誘導体
またはカルボン酸誘導体から選択される一種以上からな
る核発生剤とを、共に、マイクロカプセル中に内包し、
前記マイクロカプセルを分散媒中に分散して構成され
る。ここで、前記有機化合物は脂肪族炭化水素である。
前記有機化合物に対する前記核発生剤の割合は、30〜
0.5重量%(さらに好ましくは1〜0.5重量%)に
設定されている。分散媒に対する前記有機化合物の割合
は、50〜5重量%(さらに好ましくは40〜10重量
%)に設定されている。ここで、この割合が50重量%
より高いと、流動性良く長期間安定した分散した状態が
得られない。一方重量5%以下であると、蓄熱効果の乏
しいものとなる。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in the order of a heat storage material and a heat storage material dispersion formed by dispersing the heat storage material in a dispersion medium. 1 Heat Storage Material A heat storage material is an organic compound as a phase change material that causes a phase change, and an amine derivative of the organic compound as a nucleating agent,
It also contains at least one selected from alcohol derivatives and carboxylic acid derivatives. The ratio of the nucleating agent to the organic compound is 30 to 0.5% by weight.
(More preferably 1 to 0.5% by weight). 2 Heat Storage Material Dispersion Liquid in Emulsion Form The heat storage material dispersion liquid is obtained by dispersing the heat storage material described above in a dispersion medium, and includes an organic compound accompanied by a phase change, an amine derivative of the organic compound, and an alcohol. And a nucleating agent composed of one or more kinds selected from derivatives or carboxylic acid derivatives, and both are dispersed as an emulsion in a dispersion medium by an emulsifier. The ratio of the nucleating agent to the organic compound is set to 30 to 0.5% by weight (more preferably 1 to 0.5% by weight).
Furthermore, the ratio of the organic compound to the dispersion medium is 50.
It is set to 5% by weight (more preferably 40 to 10% by weight). Here, the higher the proportion of the organic compound in the heat storage material dispersion liquid, the higher the latent heat amount, which is preferable, but the above proportion is preferable for maintaining good fluidity. This ratio is 50
If the content is higher than the weight%, the fluidity is not good and a stable dispersed state for a long time cannot be obtained. On the other hand, when it is 5% by weight or less, the heat storage effect becomes poor. 3 Heat Storage Material Dispersion Liquid in Microcapsule Form The heat storage material dispersion liquid is obtained by dispersing the heat storage material described above in a dispersion medium, and includes an organic compound accompanied by a phase change, an amine derivative of the organic compound, A nucleating agent consisting of one or more selected from alcohol derivatives or carboxylic acid derivatives, together, encapsulated in microcapsules,
The microcapsules are dispersed in a dispersion medium. Here, the organic compound is an aliphatic hydrocarbon.
The ratio of the nucleating agent to the organic compound is 30 to
It is set to 0.5% by weight (more preferably 1 to 0.5% by weight). The ratio of the organic compound to the dispersion medium is set to 50 to 5% by weight (more preferably 40 to 10% by weight). Here, this ratio is 50% by weight
If it is higher, it is impossible to obtain a stable dispersed state for a long time with good fluidity. On the other hand, when the weight is 5% or less, the heat storage effect becomes poor.
【0006】以上説明したように、本願においては、相
変化材と核発生剤とが一定の関係とされ、さらにはこれ
らを含む蓄熱材が分散媒中に分散されて構成されるが、
具体的には以下のような物質で構成されることとなる。 イ 相変化材としては、融点あるいは凝固点を有する有
機化合物であれば使用可能であるが、脂肪族炭化水素、
芳香族炭化水素、脂肪酸、エステル化合物等が好まし
い。さらに、ペンタデカン、テトラデカン、エイコサ
ン、ドコサン等の炭素数が10以上の直鎖の脂肪族炭化
水素化合物が好ましい有機化合物となる。これらの炭素
数が10以上の脂肪族炭化水素化合物は、炭素数の増加
とともに、融点が上昇するため、目的に応じた融点を有
する化合物を選択したり、また2種以上を混合すること
も可能である。 ロ 相変化材にペンタデカンを使用する場合にはペンタ
デシルアミン、ペンタデシルアルコールまたはペンタデ
カン酸の一種以上を核発生剤として添加する。 ハ 相変化材にテトラデカンを使用する場合にはテトラ
デシルアミン、テトラデシルアルコールまたはテトラデ
カン酸の一種以上を核発生剤として添加する。 ニ 分散媒としては、蓄熱材分散液が使用される温度域
が0℃以上ならば水および防腐剤や防錆材等が添加され
た水が採用され、0℃以下の場合はエチレングリコール
水溶液、シリコン液やアルコール水溶液などの不凍液が
採用される。 ホ 乳化剤としては、ポリオキシエチレナルキルアルコ
ール系界面活性剤であるエマルゲン709(K社製乳化
剤)等が好ましいが、任意のエマルジョン化手法が使用
できる。 へ マイクロカプセル構成材としては、メタクリル酸メ
チルと重合開始剤との組み合わせを使用することが好ま
しいが、この場合もまた、任意のマイクロカプセル化手
法を使用できる。マイクロカプセル化手法としては、コ
アセルベーション法、界面重合法、in−situ法、
酵母菌を用いた手法等を用いることが可能である。As described above, in the present application, the phase change material and the nucleating agent have a fixed relationship, and the heat storage material containing them is dispersed in the dispersion medium.
Specifically, it is composed of the following substances. As the phase change material, any organic compound having a melting point or a freezing point can be used, but an aliphatic hydrocarbon,
Aromatic hydrocarbons, fatty acids, ester compounds and the like are preferable. Furthermore, linear aliphatic hydrocarbon compounds having 10 or more carbon atoms such as pentadecane, tetradecane, eicosane, and docosane are preferable organic compounds. Since the melting point of these aliphatic hydrocarbon compounds having 10 or more carbon atoms increases as the number of carbon atoms increases, it is possible to select a compound having a melting point according to the purpose or to mix two or more kinds. Is. (2) When pentadecane is used as the phase change material, one or more of pentadecylamine, pentadecyl alcohol or pentadecanoic acid is added as a nucleating agent. (C) When tetradecane is used as the phase change material, one or more of tetradecylamine, tetradecyl alcohol or tetradecanoic acid is added as a nucleating agent. D As the dispersion medium, water and water to which a preservative, an anticorrosive or the like is added are adopted when the temperature range in which the heat storage material dispersion is used is 0 ° C or higher, and an ethylene glycol aqueous solution is used when the temperature is 0 ° C or lower, Antifreeze such as silicone liquid or alcohol solution is adopted. As the emulsifier, Emulgen 709 (Emulsifier manufactured by K Co.), which is a polyoxyethylene alcohol alcohol-based surfactant, or the like is preferable, but any emulsification method can be used. As a microcapsule constituent, it is preferable to use a combination of methyl methacrylate and a polymerization initiator, but also in this case, any microencapsulation technique can be used. As a microencapsulation method, a coacervation method, an interfacial polymerization method, an in-situ method,
It is possible to use a method using yeast.
【0007】[0007]
【実施例】本願の実施例として、以下に示す実施例1〜
5に示すもの、比較例として比較例1〜3を調製した。
ここで、実施例1〜4はエマルジョン形態のものであ
り、実施例5、比較例3はマイクロカプセル形態のもの
である。EXAMPLES Examples 1 to 1 shown below are examples of the present application.
5 and comparative examples 1 to 3 were prepared as comparative examples.
Here, Examples 1 to 4 are in the emulsion form, and Example 5 and Comparative Example 3 are in the microcapsule form.
【0008】以下、各例の詳細について説明する。 1 エマルジョン形態のもの 〔実施例1〕ペンタデカン40gにペンタデシルアミン
を0.4g添加する(ペンタデシルアミン/ペンタデカ
ン=1重量%)これを1重量%のエマルゲン709(K
社製乳化剤)水溶液160ccに加え、バイオミキサー
を用い、8000rpmで5分間攪拌することにより、
蓄熱材エマルジョンを得た。 〔実施例2〕ペンタデカン40gにペンタデシルアルコ
ールを0.4g添加する(ペンタデシルアミン/ペンタ
デカン=1重量%)。これを1重量%のエマルゲン70
9(K社製乳化剤)水溶液160ccに加え、バイオミ
キサーを用い、8000rpmで5分間攪拌することに
より、蓄熱材エマルジョンを得た。 〔実施例3〕ペンタデカン40gにペンタデカン酸を
0.4g添加する(ペンタデシルアミン/ペンタデカン
=1重量%)。これを1重量%のエマルゲン709(K
社製乳化剤)水溶液160ccに加え、バイオミキサー
を用い、8000rpmで5分間攪拌することにより、
蓄熱材エマルジョンを得た。 〔実施例4〕テトラデカン40gにテトラデシルアミン
を0.4g添加する(テトラデシルアミン/テトラデカ
ン=1重量%)。これを1重量%のエマルゲン709
(K社製乳化剤)水溶液160ccに加え、バイオミキ
サーを用い、8000rpmで5分間攪拌することによ
り、蓄熱材エマルジョンを得た。 〔比較例1〕実施例1でペンタデシルアミンを添加せ
ず、ペンタデカンのみで同様に蓄熱材エマルジョンを調
製した。 〔比較例2〕実施例4でテトラデシルアミンを添加せ
ず、テトラデカンのみで同様に蓄熱材エマルジョンを調
製した。表1に上記実施例1〜4および比較例1、2で
得られたエマルジョンの過冷却の程度を示差走査熱量計
(S製作所製、DSC−50)による測定で得られた融
点と凝固点の差(ΔT)で示す。ΔTの値が小さいほど
過冷却の程度も小さい。The details of each example will be described below. 1 Emulsion form [Example 1] 0.4 g of pentadecylamine was added to 40 g of pentadecane (pentadecylamine / pentadecane = 1% by weight), and 1% by weight of Emulgen 709 (K
(Emulsifier manufactured by K.K.) was added to 160 cc of aqueous solution and stirred at 8000 rpm for 5 minutes using a biomixer,
A heat storage material emulsion was obtained. Example 2 0.4 g of pentadecyl alcohol is added to 40 g of pentadecane (pentadecylamine / pentadecane = 1% by weight). 1% by weight of Emulgen 70
A heat storage material emulsion was obtained by adding 160 cc of 9 (K Company's emulsifier) aqueous solution and stirring the mixture at 8000 rpm for 5 minutes using a biomixer. Example 3 0.4 g of pentadecanoic acid is added to 40 g of pentadecane (pentadecylamine / pentadecane = 1% by weight). Add 1 wt% of Emulgen 709 (K
(Emulsifier manufactured by K.K.) was added to 160 cc of aqueous solution and stirred at 8000 rpm for 5 minutes using a biomixer,
A heat storage material emulsion was obtained. Example 4 0.4 g of tetradecylamine is added to 40 g of tetradecane (tetradecylamine / tetradecane = 1% by weight). 1% by weight of Emulgen 709
(Emulsifier manufactured by K Co.) An aqueous heat storage material emulsion was obtained by adding 160 cc of the aqueous solution and stirring at 8000 rpm for 5 minutes using a biomixer. Comparative Example 1 A heat storage material emulsion was prepared in the same manner as in Example 1, except that pentadecylamine was not added and only pentadecane was used. [Comparative Example 2] A heat storage material emulsion was prepared in the same manner as in Example 4 except that tetradecylamine was not added and only tetradecane was used. Table 1 shows the degree of supercooling of the emulsions obtained in Examples 1 to 4 and Comparative Examples 1 and 2 described above by a differential scanning calorimeter (manufactured by S Seisakusho, DSC-50), and the difference between the melting point and the freezing point. It is shown by (ΔT). The smaller the value of ΔT, the smaller the degree of supercooling.
【0009】[0009]
【表1】 相変化材 核発生剤 ΔT(℃) 実施例1 ペンタデカン ペンタデシルアミン 0.5 実施例2 ペンタデカン ペンタデシルアルコール 0.8 実施例3 ペンタデカン ペンタデカン酸 0.8 実施例4 テトラデカン テトラデシルアミン 0.8 比較例1 ペンタデカン なし 13.2 比較例2 テトラデカン なし 10.5Table 1 Phase change material Nucleating agent ΔT (° C) Example 1 pentadecane pentadecylamine 0.5 Example 2 pentadecane pentadecyl alcohol 0.8 Example 3 pentadecane pentadecanoic acid 0.8 Example 4 tetradecane tetradecylamine 0.8 Comparative Example 1 No Pentadecane 13.2 Comparative Example 2 No Tetradecane 10.5
【0010】結果、温度差がほぼ0℃となり、過冷却現
象をほぼ完全に抑制する効果が確認できた。As a result, the temperature difference was almost 0 ° C., and the effect of almost completely suppressing the supercooling phenomenon was confirmed.
【0011】2 マイクロカプセル形態のもの 〔実施例5〕ペンタデカン20gにペンタデシルアミン
を0.2g加え、40℃で10分間過熱してペンタデシ
ルアミンをペンタデカンに溶解させる。これにメタクリ
ル酸メチル4gと重合開始剤であるV65(和光純薬社
製)を0.12g添加する。この混合液を1重量%ポリ
ビリニアルコル(重合度500)水溶液150ミリリッ
トルの入ったビーカーに加え、ホモジナイザーで800
0rpm、5分間攪拌する。その後、70℃のオイルバ
ス中で5時間、200rpmの速度で磁気攪拌させ、メ
タクリル酸メチルを重合させる。こうしてペンタデシル
アミン含有ペンタデカンがポリメタクリル酸メチルの膜
で覆われたマイクロカプセル(粒径3〜15μm)が調
製された。これを示差走査熱量計の測定に呈したとこ
ろ、ΔT=0.5℃であった。 〔比較例3〕ペンタデカンにペンタデシルアミンを加え
ない以外は同じ条件でペンタデカン包含ポリメタクリル
酸メチル膜マイクロカプセルを調製した。これを示差走
査熱量計の測定に呈したところΔT=12.2℃であっ
た。結果、マイクロカプセル形態のものにおいても、同
様に、過冷却現象の発生を良好に抑えることができた。2 Microcapsules [Example 5] To 20 g of pentadecane, 0.2 g of pentadecylamine was added, and heated at 40 ° C for 10 minutes to dissolve pentadecylamine in pentadecane. To this, 4 g of methyl methacrylate and 0.12 g of V65 (manufactured by Wako Pure Chemical Industries, Ltd.), which is a polymerization initiator, are added. This mixture was added to a beaker containing 150 ml of a 1% by weight aqueous solution of polyvinyl alcohol (polymerization degree: 500), and the mixture was mixed with a homogenizer to give 800
Stir at 0 rpm for 5 minutes. Then, magnetic stirring is carried out at a speed of 200 rpm for 5 hours in an oil bath at 70 ° C. to polymerize methyl methacrylate. Thus, microcapsules (particle size: 3 to 15 μm) in which pentadecylamine-containing pentadecane was covered with a film of polymethylmethacrylate were prepared. When this was subjected to measurement with a differential scanning calorimeter, ΔT = 0.5 ° C. Comparative Example 3 Pentadecane-containing poly (methyl methacrylate) film microcapsules were prepared under the same conditions except that pentadecylamine was not added to pentadecane. When this was subjected to measurement with a differential scanning calorimeter, ΔT = 12.2 ° C. was obtained. As a result, even in the microcapsule form, the occurrence of the supercooling phenomenon could be suppressed well.
【0012】[0012]
【発明の効果】以上説明したように、相変化を伴う有機
化合物とともに、その相変化を伴う有機化合物のアミン
誘導体、アルコール誘導体またはカルボン酸誘導体を添
加することにより、過冷却現象を防止し、加熱と冷却を
施した場合の融点と凝固点の差が極めて小さい蓄熱材、
蓄熱材分散液を得ることができた。As described above, by adding an amine compound, an alcohol derivative or a carboxylic acid derivative of an organic compound which causes a phase change together with an organic compound which causes a phase change, a supercooling phenomenon is prevented and heating is performed. And a heat storage material with a very small difference between the melting point and the freezing point when subjected to cooling,
A heat storage material dispersion could be obtained.
【0013】[0013]
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中平 貴年 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takatoshi Nakahira 4-1-2 Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd.
Claims (5)
熱材であって、前記有機化合物のアミン誘導体、アルコ
ール誘導体またはカルボン酸誘導体から選択される一種
以上の核発生剤を前記有機化合物とともに含んでなる蓄
熱材。1. A heat storage material comprising an organic compound accompanied by a phase change, comprising one or more nucleating agents selected from amine derivatives, alcohol derivatives or carboxylic acid derivatives of the organic compound together with the organic compound. A heat storage material consisting of.
請求項1記載の蓄熱材。2. The heat storage material according to claim 1, wherein the organic compound is an aliphatic hydrocarbon.
割合が、30〜0.5重量%である請求項1又は請求項
2記載の蓄熱材。3. The heat storage material according to claim 1, wherein the ratio of the nucleating agent to the organic compound is 30 to 0.5% by weight.
合物のアミン誘導体、アルコール誘導体またはカルボン
酸誘導体から選択される一種以上からなる核発生剤と
を、共に、乳化剤により分散媒中にエマルジョンとして
分散してなる蓄熱材分散液。4. An organic compound accompanied by a phase change and a nucleating agent consisting of one or more selected from amine derivative, alcohol derivative or carboxylic acid derivative of the organic compound together as an emulsion in a dispersion medium by an emulsifier. Dispersed heat storage material dispersion.
合物のアミン誘導体、アルコール誘導体またはカルボン
酸誘導体から選択される一種以上からなる核発生剤と
を、共に、マイクロカプセル中に内包し、前記マイクロ
カプセルを分散媒中に分散してなる蓄熱材分散液。5. An organic compound accompanied by a phase change and a nucleating agent consisting of one or more amine derivative, alcohol derivative or carboxylic acid derivative of the organic compound are both encapsulated in a microcapsule, A heat storage material dispersion liquid obtained by dispersing microcapsules in a dispersion medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17993495A JP3739114B2 (en) | 1995-07-17 | 1995-07-17 | Thermal storage material and thermal storage material dispersion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17993495A JP3739114B2 (en) | 1995-07-17 | 1995-07-17 | Thermal storage material and thermal storage material dispersion |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0931451A true JPH0931451A (en) | 1997-02-04 |
JP3739114B2 JP3739114B2 (en) | 2006-01-25 |
Family
ID=16074497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17993495A Expired - Lifetime JP3739114B2 (en) | 1995-07-17 | 1995-07-17 | Thermal storage material and thermal storage material dispersion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3739114B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020056785A (en) * | 2000-12-29 | 2002-07-10 | 이원목 | Microcapsule containing phase change material and article having enhanced thermal storage properties by comprising the same |
KR20030045508A (en) * | 2001-12-04 | 2003-06-11 | 목영주 | a non-woven fabric including phase change materials and the manufacturing method thereof |
KR100886820B1 (en) * | 2006-12-07 | 2009-03-04 | 한국식품연구원 | Manufacturing method of phase change material |
WO2014092093A1 (en) * | 2012-12-11 | 2014-06-19 | 株式会社カネカ | Heat storage material composition, heat storage material and transport container |
WO2014151947A1 (en) * | 2013-03-15 | 2014-09-25 | Entropy Solutions Inc. | Methods for organic nucleating agents |
WO2015170779A1 (en) * | 2014-05-09 | 2015-11-12 | Jx日鉱日石エネルギー株式会社 | Production method for n-paraffin latent heat storage material composition, and microcapsule heat storage material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102443380B (en) * | 2011-09-20 | 2013-07-31 | 中国科学院广州能源研究所 | High temperature phase transition cool storage agent |
-
1995
- 1995-07-17 JP JP17993495A patent/JP3739114B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020056785A (en) * | 2000-12-29 | 2002-07-10 | 이원목 | Microcapsule containing phase change material and article having enhanced thermal storage properties by comprising the same |
KR20030045508A (en) * | 2001-12-04 | 2003-06-11 | 목영주 | a non-woven fabric including phase change materials and the manufacturing method thereof |
KR100886820B1 (en) * | 2006-12-07 | 2009-03-04 | 한국식품연구원 | Manufacturing method of phase change material |
WO2014092093A1 (en) * | 2012-12-11 | 2014-06-19 | 株式会社カネカ | Heat storage material composition, heat storage material and transport container |
JPWO2014092093A1 (en) * | 2012-12-11 | 2017-01-12 | 株式会社カネカ | Thermal storage material composition, thermal storage material and transport container |
US10662358B2 (en) | 2012-12-11 | 2020-05-26 | Kaneka Corporation | Heat storage material composition, heat storage material and transport container |
WO2014151947A1 (en) * | 2013-03-15 | 2014-09-25 | Entropy Solutions Inc. | Methods for organic nucleating agents |
WO2015170779A1 (en) * | 2014-05-09 | 2015-11-12 | Jx日鉱日石エネルギー株式会社 | Production method for n-paraffin latent heat storage material composition, and microcapsule heat storage material |
KR20170008211A (en) | 2014-05-09 | 2017-01-23 | 제이엑스 에네루기 가부시키가이샤 | Production method for n-paraffin latent heat storage material composition, and microcapsule heat storage material |
JPWO2015170779A1 (en) * | 2014-05-09 | 2017-04-27 | Jxエネルギー株式会社 | Method for producing n-paraffin-based latent heat storage material composition and microcapsule heat storage material |
Also Published As
Publication number | Publication date |
---|---|
JP3739114B2 (en) | 2006-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3751028B2 (en) | Microcapsules for heat storage materials | |
Al-Shannaq et al. | Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials | |
Lu et al. | Experimental study of the thermal characteristics of phase change slurries for active cooling | |
JP2006016573A (en) | Microcapsule and heat transfer fluid | |
JP2006523744A (en) | Use of microcapsule aqueous dispersion as heat transfer liquid | |
JPH0931451A (en) | Thermal storage medium and its dispersion | |
CN102719227A (en) | Preparation method for high stable phase transition emulsion | |
WO2001086666A1 (en) | A magnetorheological fluid and process for preparing the same | |
JP5200473B2 (en) | Manufacturing method of absorption / radiation capsule | |
JP2009287025A (en) | Paraffin/water-emulsion as refrigerant and heat-storage medium, and method for producing the same | |
JP2007031597A (en) | Heat-absorbing/heat-releasing capsule, method for producing the same, heat-absorbing/heat-releasing capsule dispersion and method for producing the same | |
JP2002526624A5 (en) | ||
JP2004143229A (en) | Latent heat-storing agent composition | |
JP2000336350A (en) | Heat-storing material | |
JPH08259932A (en) | Heat-storing material microcapsule | |
JP2003261866A (en) | Heat accumulation material | |
JPH10251627A (en) | Composite particle, its production and heat transfer medium | |
JPH11152466A (en) | Heat storage microcapsule | |
JP2014091759A (en) | Latent heat storage material and method for producing the same | |
US5525250A (en) | Thermal energy storage composition to provide heating and cooling capabilities | |
JP2010024403A (en) | Dispersion liquid of microcapsulated water-soluble phase transition material in chlorofluorocarbon solvent, cooling liquid and heat transfer medium | |
Schaink | The solid–liquid phase diagram of binary mixtures dissolved in an inert oil: application to ternary blends that can form organogels | |
Nasir et al. | The impact of different antifreeze agents on the thermal properties of ethylene vinyl acetate emulsion | |
JP3059558B2 (en) | Microcapsule dispersion for heat storage material | |
JPH0525471A (en) | Heat storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051020 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051101 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |