JPH09314251A - Press die - Google Patents

Press die

Info

Publication number
JPH09314251A
JPH09314251A JP12804596A JP12804596A JPH09314251A JP H09314251 A JPH09314251 A JP H09314251A JP 12804596 A JP12804596 A JP 12804596A JP 12804596 A JP12804596 A JP 12804596A JP H09314251 A JPH09314251 A JP H09314251A
Authority
JP
Japan
Prior art keywords
die
punch
chromium
cemented carbide
concentration ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12804596A
Other languages
Japanese (ja)
Inventor
Yasuo Omori
靖雄 大森
Katsuya Sugano
勝弥 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Oki Electric Co Ltd
Original Assignee
Tohoku Oki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Oki Electric Co Ltd filed Critical Tohoku Oki Electric Co Ltd
Priority to JP12804596A priority Critical patent/JPH09314251A/en
Publication of JPH09314251A publication Critical patent/JPH09314251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a press die free from corrosion of the die caused by the working oil and capable of stable working for a long time by using the WC-Co corrosion resistant cemented carbide of the chromium concentration ratio in the prescribed range in a punch and a die of the press die. SOLUTION: In a press die, a work is inserted in a clearance (a) between a die plate 2 and a stopper plate 1, and an upper die is lowered until a blade tip of a punch 7 of the upper die passes a blade tip of the die plate 2 of a lower die to shear the work. The punch 7 and the die plate 2 of the press die to perform the plastic working including shearing, bending and drawing of the metal and the non-metal are formed of WC-Co corrosion resistant cemented carbide of 0.005-0.2 in chromium concentration ratio which is the mole ratio of chromium to the mole number of cobalt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 この発明は、塑性加工用プ
レス金型、特に同金型に用いられるパンチ,ダイの材質
を改良した金型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a press die for plastic working, in particular, a die having improved punch and die materials used in the die.

【0002】[0002]

【従来の技術】 従来、この種のプレス加工金型として
は、例えば、新プレス加工データブック編集委員会編
「新プレス加工データブック」(1993−5−25)
日刊工業新聞社P84に開示されたものがある。図1は
その要部断面図を示すもので、1はストッパープレー
ト、2はダイプレート、3はダイホルダー、4はダイポ
スト、5はガイドブッシュ、6はパンチホルダー、7は
パンチ、8はパンチプレート、9はバッキングプレート
であって、1,2,3,4を組み合わせたものを下型と
いい、5,6,7,8,9を組み合わせたものを上型と
いう。
2. Description of the Related Art Conventionally, as a press working die of this type, for example, "New Press Working Data Book" (1993-5-25) edited by New Press Working Data Book Editing Committee.
There is one disclosed in Nikkan Kogyo Shimbun P84. FIG. 1 is a cross-sectional view of the main part thereof, in which 1 is a stopper plate, 2 is a die plate, 3 is a die holder, 4 is a die post, 5 is a guide bush, 6 is a punch holder, 7 is a punch, and 8 is a punch plate. , 9 are backing plates, a combination of 1, 2, 3, 4 is called a lower mold, and a combination of 5, 6, 7, 8, 9 is called an upper mold.

【0003】 次に、この金型の動作について説明す
る。まず、ダイプレート2とストッパープレート1との
空隙aに図示しない被加工材を通し、上型のパンチ7の
刃先が下型のダイプレート2の刃先を越えるまで上型が
降下することにより、被加工材はせん断加工される。次
に、上型は上昇過程に入るが、パンチ7の側面は被加工
材のせん断面に圧接された状態となっているので被加工
材はストッパープレート1に支持されパンチ7の側面と
被加工材のせん断面との間で摩擦を生じながらパンチ7
は被加工材から抜かれる。このとき、一般的にはダイプ
レート2の刃先の摩耗、及びパンチ7刃先の摩耗を軽減
するために被加工材の上面に図示せぬ加工油を滴下させ
て、潤滑作用によって各々の刃先の摩耗の軽減が図られ
ているが、このような金型においては、ダイプレート2
の刃先及びパンチ7の刃先に摩耗が生ずるのは周知の通
りであり、この摩耗によって被加工物にはバリ(カエ
リ)が生ずるなどの不具合が生ずることも周知である。
前記摩耗の形態にはアブレシブ摩耗、凝着摩耗、疲労摩
耗等があることは、片岡征二著「プレス作業の潤滑技
術」(昭63−7−20)海文堂P8−15及び日本塑
性加工学会編「せん断加工」(1992−7−10)コ
ロナ社P40等に開示されている。
Next, the operation of this mold will be described. First, a workpiece (not shown) is passed through the space a between the die plate 2 and the stopper plate 1, and the upper die is lowered until the blade edge of the upper die punch 7 exceeds the blade edge of the lower die plate 2 and The processed material is sheared. Next, although the upper die enters the ascending process, since the side surface of the punch 7 is pressed against the shear surface of the work piece, the work piece is supported by the stopper plate 1 and the side surface of the punch 7 and the work piece. Punch 7 while causing friction with the shear surface of the material
Is removed from the work piece. At this time, generally, in order to reduce the wear of the cutting edge of the die plate 2 and the wear of the cutting edge of the punch 7, processing oil (not shown) is dropped on the upper surface of the work material, and the wear of each cutting edge is increased by the lubricating action. However, in such a mold, the die plate 2
It is well known that wear is caused on the cutting edge of the punch 7 and the cutting edge of the punch 7, and it is also well known that this wear causes a defect such as burrs on the workpiece.
The fact that the forms of wear include abrasive wear, adhesive wear, fatigue wear, etc. is based on the fact that Seiji Kataoka, "Lubrication Technology for Press Work" (sho 63-7-20), Kaibundo P8-15 and the Japan Society for Plastic Processing. "Shearing" (1992-7-10) is disclosed in Corona P40 and the like.

【0004】 また、これらの摩耗を軽減させ、耐摩耗
性を向上させる方法として、アブレシブ摩耗に対して
は、パンチ,ダイに超硬合金〔超硬合金とは極めて硬い
炭化タングステン(WC)の粒子をバインダーとしての
コバルト(Co)で保持したものである〕を採用し、ま
た、凝着摩耗に対しては加工油に極圧添加剤として塩素
系化合物、硫黄系化合物、リン系化合物などを添加し
て、加工時に発生する加工熱によって前記化合物を分解
し、パンチ、ダイの金属と反応させ、パンチ,ダイの表
面に機械的強度の弱い化成被膜を形成させることによ
り、凝着物を容易に脱落させ凝着摩耗を軽減又は防止す
る方法が開示されている。
Further, as a method for reducing these abrasions and improving the abrasion resistance, a cemented carbide is used for punches and dies against abrasive abrasion [particles of tungsten carbide (WC) which is extremely hard with cemented carbide]. Is retained by cobalt (Co) as a binder], and chlorine-based compounds, sulfur-based compounds, phosphorus-based compounds, etc. are added as extreme pressure additives to the processing oil for cohesive wear. Then, the compound is decomposed by the processing heat generated at the time of processing and reacts with the metal of the punch and die to form a chemical conversion film with weak mechanical strength on the surface of the punch and die. A method of reducing or preventing adhesive wear is disclosed.

【0005】 さらに、腐食摩耗については、前記極圧
添加剤が加工熱により分解したときには、腐食を引き起
こす成分〔例えば、塩素(Cl)〕を含んでおり、これ
が超硬合金(WC−Co)のバインダーであるコバルト
(Co)を選択的に溶解するため炭化タングステン(W
C)の粒子の保持力が弱くなり炭化タングステン(W
C)の粒子が脱落し超硬合金の腐食摩耗となる。このた
め、前記極圧添加剤を大量に添加したり、反応性を高く
しすぎないようにすることが必要であることが開示され
ている。
Further, regarding corrosive wear, the extreme pressure additive contains a component [eg, chlorine (Cl)] that causes corrosion when decomposed by processing heat, which is the content of cemented carbide (WC-Co). To selectively dissolve cobalt (Co), which is a binder, tungsten carbide (W
The holding power of the particles of C) becomes weak, and tungsten carbide (W
The particles of C) fall off and cause corrosion wear of the cemented carbide. Therefore, it is disclosed that it is necessary to add a large amount of the extreme pressure additive or to prevent the reactivity from becoming too high.

【0006】 さらに、疲労摩耗については、パンチ,
ダイの材料となる金属の疲労強度が高いことや、材料内
部に応力集中源となる欠陥(例えば気孔)を含まないよ
うにするため、H.I.P処理(HOT ISOSTA
TIC PRESS)などを施すことが開示されてい
る。しかし、凝着摩耗を軽減する目的で加工油に添加さ
れる極圧添加剤は、他方では腐食摩耗を促進させるとい
う背反する性質を持っていることも周知である。
Further, regarding fatigue wear, a punch,
In order to prevent the metal, which is the material of the die, from having high fatigue strength and to prevent defects (for example, pores) that are sources of stress concentration inside the material, H. I. P processing (HOT ISOSTA
TIC PRESS) and the like are disclosed. However, it is also well known that extreme pressure additives added to processing oils for the purpose of reducing cohesive wear, on the other hand, have the contradictory property of promoting corrosive wear.

【0007】[0007]

【発明が解決しようとする課題】 しかしながら、この
ような超硬合金によるパンチ,ダイにおいても、加工油
中に含まれる微量の極圧添加剤によって、パンチ,ダイ
の切刃部に著しい腐食摩耗を生じ、その結果として、被
加工物にバリが生じて長時間安定に加工出来ないという
問題があった。
However, even in such punches and dies made of cemented carbide, a very small amount of the extreme pressure additive contained in the working oil causes remarkable corrosive wear to the cutting edges of the punches and dies. As a result, there is a problem in that burrs are generated on the workpiece and stable processing cannot be performed for a long time.

【0008】 本発明の目的は、前記超硬合金のパン
チ,ダイの腐食摩耗を防止し長期間にわたって、安定に
加工可能なプレス金型を提供することにある。
An object of the present invention is to provide a press die that can prevent corrosive wear of the punch and die of the cemented carbide and can be stably processed for a long period of time.

【0009】[0009]

【課題を解決するための手段】 本発明は、前記問題点
を解決するために、パンチ,ダイの超硬合金を、コバル
トのモル数に対するクロムのモル数の比(以下クロム濃
度比という)が0.005〜0.2のWC−Co系耐食
性超硬合金で形成したものである。上記クロム濃度比
は、超硬合金のコバルト成分をm重量%、クロム成分が
n重量%、コバルトの原子量がM、クロムの原子量がN
とすると、以下の通りである。まず、W(g)の超硬合
金中のコバルト重量は、 したがって、このときのコバルトのモル数は で示される。同様にして、クロムのモル数は となる。クロム濃度比は上記のように、コバルトのモル
数に対するクロムのモル数の比であるから、上記
(2)、(3)式より で示される。(以下の説明において同じ)
Means for Solving the Problems In order to solve the above problems, the present invention provides a cemented carbide for punches and dies in which the ratio of the number of moles of chromium to the number of moles of cobalt (hereinafter referred to as the chromium concentration ratio) is It is formed of 0.005-0.2 WC-Co based corrosion resistant cemented carbide. The chromium concentration ratio is such that the cobalt component of the cemented carbide is m% by weight, the chromium component is n% by weight, the atomic weight of cobalt is M, and the atomic weight of chromium is N.
Then, it is as follows. First, the weight of cobalt in the cemented carbide of W (g) is Therefore, the number of moles of cobalt at this time is Indicated by Similarly, the number of moles of chromium is Becomes As described above, the chromium concentration ratio is the ratio of the number of moles of chromium to the number of moles of cobalt. Therefore, from the above equations (2) and (3), Indicated by (Same in the following description)

【0010】 本発明においては、クロム濃度比が0.
005〜0.2のWC−Co系耐食性超硬合金を使用し
たので、その機械的強度を著しく低下させることなく加
工油による金型の腐食を防止することができる。
In the present invention, the chromium concentration ratio is less than 0.
Since the WC-Co type corrosion resistant cemented carbide of 005 to 0.2 was used, it is possible to prevent the die from being corroded by the working oil without significantly lowering its mechanical strength.

【0011】[0011]

【発明の実施の形態】 以下本発明の実施の形態を試験
結果を参照して説明する。まず、加工油による炭化タン
グステン(WC)−コバルト(Co)系超硬合金の腐食
について調べた。超硬合金の腐食は、前記のように加工
油に添加されている極圧添加剤が加工熱によって分解す
ることによって生ずるものであるが、モデル実験は困難
であるため、実際に金型に組み込みデータを採集した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to test results. First, the corrosion of tungsten carbide (WC) -cobalt (Co) based cemented carbide by working oil was investigated. Corrosion of cemented carbide is caused by the decomposition of the extreme pressure additive added to the processing oil by the processing heat as described above, but since model experiments are difficult, it is actually incorporated in the mold. Data was collected.

【0012】 被加工物としては、SUS304 CP
板厚 t=1mmとし、パンチ,ダイの材料としては
炭化タングステン(WC)の平均粒径がφ=0.6μm
の超微粒子系超硬合金とし、コバルト(Co)は8重量
%、14重量%、17重量%とした。金型はφ=10m
mの丸孔の打抜加工とし、クリアランスは被加工物の板
厚の6%として、0.06mmとした。また、加工油は
鉱物油58重量%、油性剤25重量%、塩素系化合物1
0重量%、硫黄系化合物5重量%、防錆剤2重量%で、
粘度は105cst(40℃)で極く一般的な打抜加工
油を用いた。また、パンチ,ダイの切刃の摩耗と被加工
物に生ずるバリの大きさとの間には密接な関係があるこ
とは周知であるので、刃先の摩耗の代用特性として、バ
リ高さで評価することにした。なお、バリの高さは非接
触測定法として工具顕微鏡により測定した。また、バリ
の高さの許容値としては被加工物の板厚の5%として5
0μmをこの試験における寿命値と仮に決めた。ここ
で、プレスによる加工速さは60SPMとした。その試
験結果を図2に示す。
As a work piece, SUS304 CP
The plate thickness t = 1 mm, and the average grain size of tungsten carbide (WC) as a material for the punch and die is φ = 0.6 μm.
Of the ultrafine-particle type cemented carbide, cobalt (Co) was set to 8% by weight, 14% by weight, and 17% by weight. Mold is φ = 10m
A round hole of m was punched, and the clearance was 0.06 mm, which was 6% of the plate thickness of the workpiece. Further, the processing oil is 58% by weight of mineral oil, 25% by weight of oiliness agent, and chlorine compound 1.
0% by weight, 5% by weight of sulfur compounds, 2% by weight of rust inhibitor,
The viscosity was 105 cst (40 ° C.), and a very general punching oil was used. Further, it is well known that the wear of the cutting edges of punches and dies and the size of the burr generated on the workpiece have a close relationship, and therefore the burr height is evaluated as a substitute characteristic of the wear of the cutting edge. It was to be. The height of the burr was measured by a tool microscope as a non-contact measuring method. The allowable height of the burr is 5% of the plate thickness of the work piece, which is 5%.
0 μm was provisionally determined as the life value in this test. Here, the processing speed by pressing was 60 SPM. FIG. 2 shows the test results.

【0013】 図2において、横軸は前記条件における
打抜数を示し、縦軸はバリの高さ(単位:μm)を示
す。図中、△印は超硬合金中のコバルトを8重量%含有
させた場合を示し、○印は14重量%、□印は17重量
%を含有させた場合を示している。同図によれば、コバ
ルト含有量が少ない方が若干耐食性が良い様であるが、
大差がないことを示しており、WC−Co系超硬合金の
加工油に耐食性を向上させなければならないことがわか
った。そこで、発明者は、粉体粉末冶金協会編「粉体及
び粉末冶金」31[2]P56及び特公平5−2866
6に示されたWC−Co系超硬合金にクロム成分を添加
させる手段により、その耐食性を向上させることに着目
した。
In FIG. 2, the horizontal axis represents the number of punches under the above conditions, and the vertical axis represents the height of the burr (unit: μm). In the figure, the symbol Δ shows the case where cobalt in the cemented carbide was contained by 8% by weight, the symbol ◯ shows 14% by weight, and the symbol □ shows the case by which 17% by weight was contained. According to the figure, the smaller the cobalt content, the better the corrosion resistance.
This shows that there is no great difference, and it was found that the working oil of the WC-Co based cemented carbide must have improved corrosion resistance. Therefore, the inventor of the present invention is "Powder and Powder Metallurgy" 31 [2] P56 and Japanese Examined Patent Publication No. 5-2866 edited by Japan Society of Powder and Powder Metallurgy
Attention was paid to improving the corrosion resistance of the WC-Co based cemented carbide shown in No. 6 by adding a chromium component.

【0014】 図3は、クロム(Cr)添加WC−Co
系超硬合金を用いてパンチ,ダイを形成して、前記条件
において、被加工材を打抜加工したときの加工物のバリ
の高さが50μmとなるまでのクロム濃度比と打抜数と
の関係を示したものである。同図において、横軸はクロ
ム濃度比であり、縦軸は打抜数を示している。また、図
中の△印,○印及び□印はそれぞれ超硬合金中にコバル
トを8重量%,14重量%及び17重量%を含有させた
場合を示している。同図の結果によれば、クロム濃度比
が0.005を越えるとその濃度の増加にしたがい摩耗
量の減少即ち打抜数の増加が顕著となることがわかっ
た。即ち、プレス加工油に対する耐食性を向上させるに
は、前記クロム濃度比を0.005以上にすればよいこ
とになる。
FIG. 3 shows WC-Co containing chromium (Cr).
A punch and a die were formed using a system cemented carbide, and under the above conditions, the chromium concentration ratio and the number of punches until the burr height of the work piece when the work piece was punched was 50 μm. It shows the relationship of. In the figure, the horizontal axis represents the chromium concentration ratio and the vertical axis represents the number of blanks. Further, the symbols Δ, ○ and □ in the figure show the cases where cobalt is contained in the cemented carbide at 8% by weight, 14% by weight and 17% by weight, respectively. According to the results shown in the figure, when the chromium concentration ratio exceeds 0.005, the wear amount decreases, that is, the number of punches increases, as the concentration increases. That is, in order to improve the corrosion resistance to the press working oil, the chromium concentration ratio should be 0.005 or more.

【0015】 次に、金型とりわけパンチ,ダイにとっ
て重要な特性である機械的強度について説明する。通
常、超硬合金にあっては、機械的強度は抗折力で表わさ
れる。図4は上記クロム濃度比と抗折力比との関係を示
しており、同図において、横軸はクロム濃度比で、縦軸
は抗折力比を示しており、抗折力比は、クロムを添加し
たときの抗折力の値を、クロムを添加しないときの抗折
力の値で割ったものであり、この比が1に近いものほど
クロム添加によって抗折力の低下が少ないことを意味し
ている。同図によれば、クロムの濃度比が略0.15に
達するまで抗折力の低下が非常に少ないこと、そして、
クロム濃度比0.2においても、なお好適な値を保ち、
それ以上の濃度の増加にしたがって抗折力の減少が著し
くなることがわかった。即ち、上記抗折力比の一定水準
値を保ち得るためには上記クロム濃度比の上限を0.2
とすることが必要である。具体的には、超硬合金の抗折
力比が0.6(クロム濃度比0.2)であっても十分な
機械的強度を維持し得るように設計されたプレス金型で
は、何等支障を招くことなく長時間にわたり、安定にプ
レス加工が行なえ耐食性に関しても著しく好適であっ
た。
Next, the mechanical strength, which is an important characteristic for a die, particularly a punch and a die, will be described. Usually, in cemented carbide, mechanical strength is expressed by transverse rupture strength. FIG. 4 shows the relationship between the chromium concentration ratio and the transverse rupture strength ratio. In the figure, the horizontal axis shows the chrome concentration ratio and the vertical axis shows the transverse rupture strength ratio. The value of transverse rupture strength when chromium is added is divided by the value of transverse rupture strength when chromium is not added. The closer the ratio is to 1, the less decrease in transverse rupture strength due to addition of chromium. Means According to the figure, the decrease in transverse rupture strength is very small until the chromium concentration ratio reaches approximately 0.15, and
Even at a chromium concentration ratio of 0.2, it still maintains a suitable value,
It was found that the transverse rupture strength decreased remarkably as the concentration increased further. That is, in order to maintain a constant level value of the transverse rupture strength ratio, the upper limit of the chromium concentration ratio is set to 0.2.
It is necessary to Specifically, even if the transverse rupture strength ratio of cemented carbide is 0.6 (chromium concentration ratio 0.2), there is no problem with a press die designed to maintain sufficient mechanical strength. It was possible to perform stable press working over a long period of time without causing corrosion, and it was remarkably suitable for corrosion resistance.

【0016】 以上の各結果から、超硬合金の抗折力を
著しく劣化させず、しかもその耐食性を向上させるに
は、クロムをクロム濃度比で0.005〜0.2添加す
ればよい。
From the above results, in order not to significantly deteriorate the transverse rupture strength of the cemented carbide and to improve its corrosion resistance, chromium may be added in a chromium concentration ratio of 0.005 to 0.2.

【0017】 次に、上記クロム(Cr)の代りに炭化
クロム(Cr3C2)を添加して、同様にクロム成分(C
r)濃度比に換算したものを図5,図6に示す。図5,
図6の結果を見ると、炭化クロム(Cr3C2)を添加し
た場合も、抗折力及耐食性ともにクロムと同様の傾向を
示し、結局、クロム成分(Cr)濃度比で0.005〜
0.2添加すれば良いことになる。
Next, chromium carbide (Cr3C2) is added in place of the above chromium (Cr), and chromium component (C
r) The values converted into the concentration ratio are shown in FIGS. Figure 5,
The results shown in FIG. 6 show that even when chromium carbide (Cr3C2) is added, both the transverse rupture strength and the corrosion resistance show the same tendency as chromium, and as a result, the chromium component (Cr) concentration ratio is 0.005 to 0.005.
It is sufficient to add 0.2.

【0018】[0018]

【発明の効果】 以上詳細に説明したように、本発明の
プレス金型によれば、パンチ,ダイをクロム濃度比0.
005〜0.2のWC−Co系耐食性超硬合金を用いて
形成したことにより、十分な機械的強度と耐食性を有す
るので、長期間にわたり安定に加工することが可能にな
った。
As described in detail above, according to the press die of the present invention, the punch and the die have a chromium concentration ratio of 0.
By using the WC-Co type corrosion resistant cemented carbide of 005 to 0.2, since it has sufficient mechanical strength and corrosion resistance, it becomes possible to perform stable processing for a long period of time.

【0019】 なお、打ち抜き型はもちろん、曲げ型、
絞り型、ヘッダーダイス、冷間鍛造型、転造ダイズなど
極圧添加剤を含む加工油を使用する場合、同様の効果が
得られることはいうまでもない。
In addition to the punching die, the bending die,
It goes without saying that similar effects can be obtained when using a processing oil containing an extreme pressure additive such as a drawing die, a header die, a cold forging die, and rolling soybean.

【図面の簡単な説明】[Brief description of drawings]

【図1】 プレス金型の要部断面図である。FIG. 1 is a sectional view of a main part of a press die.

【図2】 本発明による打抜数とバリ高さの関係を示す
図である。
FIG. 2 is a diagram showing the relationship between the number of punches and the burr height according to the present invention.

【図3】 本発明によるクロム濃度比と打抜数との関係
を示す図である。
FIG. 3 is a diagram showing the relationship between the chromium concentration ratio and the number of blanks according to the present invention.

【図4】 本発明によるクロム濃度比と抗折力比の関係
を示す図である。
FIG. 4 is a diagram showing a relationship between a chromium concentration ratio and a transverse rupture strength ratio according to the present invention.

【図5】 本発明による炭化クロムを用いたときのクロ
ム濃度比と打抜数との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the chromium concentration ratio and the number of blanks when the chromium carbide according to the present invention is used.

【図6】 本発明による炭化クロムを用いたときのクロ
ム濃度比と抗折力比の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the chromium concentration ratio and the transverse rupture strength ratio when the chromium carbide according to the present invention is used.

【符号の説明】[Explanation of symbols]

1 ストッパープレート 2 ダイプレート 3 ダイホルダー 6 パンチホルダー 7 パンチ 8 パンチプレート 9 バッキングプレート 1 Stopper plate 2 Die plate 3 Die holder 6 Punch holder 7 Punch 8 Punch plate 9 Backing plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 パンチ,ダイを有し、金属,非金属の抜
き,曲げ,絞りなどの塑性加工を行なうプレス金型にお
いて、上記パンチ,ダイをコバルトのモル数に対するク
ロムのモル数の比であるクロム濃度比が0.005〜
0.2のWC−Co系耐食性超硬合金により形成したこ
とを特徴とするプレス金型。
1. A press die having a punch and a die for performing plastic working such as metal, non-metal punching, bending, and drawing, wherein the punch and die have a ratio of the number of moles of chromium to the number of moles of cobalt. A certain chromium concentration ratio is 0.005
A press die formed of 0.2 WC-Co type corrosion resistant cemented carbide.
JP12804596A 1996-05-23 1996-05-23 Press die Pending JPH09314251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12804596A JPH09314251A (en) 1996-05-23 1996-05-23 Press die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12804596A JPH09314251A (en) 1996-05-23 1996-05-23 Press die

Publications (1)

Publication Number Publication Date
JPH09314251A true JPH09314251A (en) 1997-12-09

Family

ID=14975153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12804596A Pending JPH09314251A (en) 1996-05-23 1996-05-23 Press die

Country Status (1)

Country Link
JP (1) JPH09314251A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133489A (en) * 2006-11-27 2008-06-12 Kyocera Corp Hard metal and manufacturing method therefor
JP2009180415A (en) * 2008-01-30 2009-08-13 Mitsubishi Electric Corp Outdoor unit of refrigerating air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133489A (en) * 2006-11-27 2008-06-12 Kyocera Corp Hard metal and manufacturing method therefor
JP2009180415A (en) * 2008-01-30 2009-08-13 Mitsubishi Electric Corp Outdoor unit of refrigerating air conditioner

Similar Documents

Publication Publication Date Title
Mills Machinability of engineering materials
Imran et al. Comparison of tool wear mechanisms and surface integrity for dry and wet micro-drilling of nickel-base superalloys
Larsen-Basse Effect of composition, microstructure, and service conditions on the wear of cemented carbides
Lahres et al. Applicability of different hard coatings in dry milling aluminium alloys
Hoier et al. Microstructural variations in 316L austenitic stainless steel and their influence on tool wear in machining
CN102187005A (en) Molybdenum-contained alloy powders used to produce sintered hard metals based on tungsten carbide
Gillespie Burrs produced by drilling
Kurniawan et al. Machinability of modified Inconel 713C using a WC TiAlN-coated tool
Kiliçay et al. Investigation of the solid lubrication effect of commercial boron-based compounds in end milling
Wang et al. WC/Co tool wear in dry turning of commercially pure aluminium
Abraham et al. Dry sheet metal forming of aluminum by smooth DLC coatings–a capable approach for an efficient production process with reduced environmental impact
Astakhov Tribology of metal cutting
JPH09314251A (en) Press die
CN108436607A (en) A kind of processing method of bulk metal ceramics milling cutter
Semih et al. Investigation of microstructure, machinability, and mechanical properties of new-generation hybrid lead-free brass alloys
Mahamani et al. Determination of optimum parameters for multi-performance characteristic in turning of Al 6061-6% ZrB2 in-situ Metal Matrix Composite using grey relational analysis
Sougavabar et al. Experimental characterization of tool wear morphology in milling of Al520-MMC reinforced with SiC particles and additive elements Bi and Sn
Rakić et al. The influence of the metal working fluids on machine tool failures
Rakić et al. Tribological aspects of the choice of metalworking fluid in cutting processes
Gillström et al. Wear of die after drawing of pickled or reverse bent wire rod
Sandberg Advanced low-friction tool steel for metal processing: properties and industrial experiences
Lin et al. Effect of h-BN on the turning performance of high-strength vermicular graphite cast iron
Schmid et al. Fundamentals of tribology in metal forming
Vadnere et al. A review on effects of process parameters in milling challenging materials under nanofluid-based MQL conditions
US20060231167A1 (en) Durable, wear-resistant punches and dies