JPH09313486A - Ultrasonic biological measuring device - Google Patents

Ultrasonic biological measuring device

Info

Publication number
JPH09313486A
JPH09313486A JP17537396A JP17537396A JPH09313486A JP H09313486 A JPH09313486 A JP H09313486A JP 17537396 A JP17537396 A JP 17537396A JP 17537396 A JP17537396 A JP 17537396A JP H09313486 A JPH09313486 A JP H09313486A
Authority
JP
Japan
Prior art keywords
heart wall
velocity
heart
ultrasonic
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17537396A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanai
浩 金井
Noritoshi Nakabachi
憲賢 中鉢
Yoshio Koiwa
喜郎 小岩
Motonao Tanaka
元直 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17537396A priority Critical patent/JPH09313486A/en
Publication of JPH09313486A publication Critical patent/JPH09313486A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To display an image to indicate the spatial distribution of the slack/ contract characteristics of a myocardial fiber of a heart wall and the temporal change of the characteristics by evaluating the characteristics non-invasively for each local area. SOLUTION: From the reflected waves of ultrasonic pulses transmitted to a heart wall, the displacement motion waveform and velocity waveform are measured for each of a plurality of points apart in a minute distance within the heart wall, and the parallel displacement motion of the heart wall is canceled from the difference in the displacement motion waveform and also difference in the velocity waveform between the two points. The thickness of each local myocardium and the velocity of thickness change are determined, and the elongation and contraction components of the myocardium are colored in blue and red, respectively, and the spatial distribution of the slack/contract characteristics and the temporal change of the myocardial fiber are indicated by color images by overlapping the M-mode image on the B-mode image.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、心筋局所の弛緩収縮特
性評価診断装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diagnostic apparatus for evaluating local relaxation contraction characteristics of myocardium.

【0002】[0002]

【従来の技術】従来、超音波診断装置における画像表示
方法としては、Mモード表示、Bモード表示、カラード
プラ表示、組織ドプラ表示がある。
2. Description of the Related Art Conventionally, as an image display method in an ultrasonic diagnostic apparatus, there are M mode display, B mode display, color Doppler display and tissue Doppler display.

【0003】Mモード表示は、超音波プローブから生体
内へ繰り返し伝搬させた超音波パルスが、生体内の音響
インピーダンスの差のあるところで反射して再び超音波
プローブに戻ってきた波形を、受信器で輝度変調し(反
射波の振幅を明るさの変化に変換し)、反射波が戻って
来るまでの時間(各反射点の深さ)をブラウン管の縦軸
に、送信パルスの繰り返し時間をブラウン管の横軸にと
って画像表示したものである。動いているエコー源から
の反射エコーは、その深さが時間的に変化するため、動
きに応じた深さが表示され、動いているものの時間的変
化を観察できる。
In the M mode display, the ultrasonic pulse repeatedly propagated into the living body from the ultrasonic probe is reflected at a position where there is a difference in acoustic impedance in the living body and returns to the ultrasonic probe again. Brightness modulation (converting the amplitude of the reflected wave into a change in brightness), the time until the reflected wave returns (depth of each reflection point) is the vertical axis of the cathode ray tube, and the repetition time of the transmission pulse is the cathode ray tube. The image is displayed on the horizontal axis of. Since the depth of the reflected echo from the moving echo source changes with time, the depth corresponding to the movement is displayed, and the temporal change of the moving echo can be observed.

【0004】Mモード表示は、常に同一方向に超音波パ
ルスを送信して、その方向の反射エコーに関して表示し
ているが、Bモード表示では、一度超音波パルスの送受
信を行って反射波形を輝度変調して画面に表示した後、
超音波ビームの方向を少し変え、再度送受信を行って結
果を画面に表示する。このとき超音波ビームの移動方向
と移動距離に対応させて画面上での輝線の表示位置を動
かす。これを繰り返すことによって、エコー源となる生
体臓器の位置や形状を断層像として得ることができる。
In the M mode display, the ultrasonic pulse is always transmitted in the same direction and the reflected echo in that direction is displayed. In the B mode display, however, the ultrasonic pulse is transmitted and received once and the reflected waveform is radiated. After modulating and displaying on the screen,
Change the direction of the ultrasonic beam, send and receive again, and display the results on the screen. At this time, the display position of the bright line on the screen is moved according to the moving direction and moving distance of the ultrasonic beam. By repeating this, it is possible to obtain the position and shape of the living body organ as the echo source as a tomographic image.

【0005】Bモード表示では、反射波形の振幅を輝度
変調して表示し音響インピーダンスの境界に関する断層
像を得ているが、カラードプラ表示では、エコー源各点
からの反射波に基づいて各点における血流速度を算出
し、血流速度の空間分布を断層像に重ねて表示すること
によって、心臓や動脈内での血流の逆流などの異常を検
出することができる。
In the B mode display, the amplitude of the reflected waveform is brightness-modulated and displayed to obtain a tomographic image of the boundary of the acoustic impedance. In the color Doppler display, each point is based on the reflected wave from each point of the echo source. By calculating the blood flow velocity of the blood flow and displaying the spatial distribution of the blood flow velocity on the tomographic image, an abnormality such as reverse flow of blood flow in the heart or artery can be detected.

【0006】カラードプラ表示で得られる、エコー源各
点における血流速度は高速であるが、反射波の振幅自体
が非常に小さいため、カラードプラ表示装置では、これ
らの高速な成分だけを検出できるように、高域通過フィ
ルターを用いている。一方、心筋などの組織の運動速度
は、血流速度に比較して低速であるため、上記高域通過
フィルターを低域通過フィルターに置き換えることによ
って、組織内各点の速度の空間分布を断層像に重ねて表
示することができる。これが組織ドプラ表示の原理であ
る。
Although the blood flow velocity at each point of the echo source obtained by color Doppler display is high, the amplitude of the reflected wave itself is very small, so that the color Doppler display device can detect only these high-speed components. As such, a high pass filter is used. On the other hand, since the velocity of motion of tissues such as myocardium is slower than the velocity of blood flow, by replacing the above high-pass filter with a low-pass filter, the spatial distribution of the velocity at each point in the tissue is shown as a tomographic image. Can be displayed on top of each other. This is the principle of tissue Doppler display.

【0007】[0007]

【発明が解決しようとする課題】心臓の断層像上で、壁
面に垂直な線上の複数点での変位波形や速度波形を考え
る。心臓壁内のこれら各点の運動には、拍動、弁の開
閉、血液の流入によって生じる低周波で大振幅の振動成
分と、心臓壁内部の心筋の弛緩収縮によって生じる運動
成分がある。前者の振動成分は、壁内の各点において同
相で並進運動を表す。一方、後者の運動成分は、心筋内
各点での速度差の時間的変化に基づく厚さの変化に対応
するものである。この心筋線維の局所ごとの弛緩収縮特
性が測定できれば、医学的に重要な診断手法となる。し
かし、従来の手法や診断装置においては、この弛緩収縮
特性を非侵襲的に計測することが不可能で、心筋線維の
弛緩収縮特性の空間分布とその時間的変化を表示するこ
とのできる超音波診断装置の開発が望まれている。
Consider a displacement waveform and a velocity waveform at a plurality of points on a line perpendicular to the wall surface on the tomographic image of the heart. The motion of each of these points in the heart wall includes a low-frequency, large-amplitude vibration component caused by pulsation, valve opening / closing, and blood inflow, and a motion component caused by relaxation contraction of the myocardium inside the heart wall. The former vibration component represents a translational motion in phase at each point in the wall. On the other hand, the latter motion component corresponds to the change in thickness based on the temporal change in the velocity difference at each point in the myocardium. If the relaxation and contraction characteristics of each local part of the myocardial fiber can be measured, it will be a medically important diagnostic method. However, in conventional methods and diagnostic devices, it is impossible to non-invasively measure the relaxation contraction property, and an ultrasonic wave that can display the spatial distribution of the relaxation contraction property of myocardial fiber and its temporal change. Development of a diagnostic device is desired.

【0008】[0008]

【課題を解決するための手段】本発明においては、心臓
壁内の2点間の速度の差の時間積分が2点における変位
の差、すなわち2点間の厚みの変化となること、また2
点間の速度の差が厚み変化の速度を表わすことを利用し
て、心筋局所ごとの心筋線維の弛緩収縮特性を定量的に
評価し、さらに局所心筋ごとに得られた瞬時的伸び成分
と縮み成分をカラー表示し、超音波診断装置で得られる
Mモード像、Bモード像に重ねることよって、心筋線維
の弛緩収縮特性の空間分布と時間的変化を二次元画像と
して提供する。まず心臓壁内心筋各点の変位運動と速度
を波形として計測するために、各点の変位をトラッキン
グする。そのため、心臓壁に超音波パルスをΔT間隔で
繰り返し送信し、心室壁内の注目する1点(点iと呼
ぶ)から戻って来る反射波の伝搬遅延時間に関するΔT
時間内での変化から、その1点における瞬時速度を算出
する。これは従来の超音波パルスドプラ法に基づいてい
るが、さらに、いま得られた瞬時速度にΔTを掛けて、
ΔT時間内における注目点の変位を求め、注目点の位置
をその変位だけ仮想的に動かす。次に送信する超音波パ
ルスに関する速度算出においては、いま設定し直した新
しい位置から超音波パルスが戻ってきたタイミングにお
ける反射波形を用いて行う。この処理を繰り返すことに
よって、大振幅の拍動に伴って、最初設定した注目点の
位置が変位しても、その位置を追跡し、その注目する点
の変位波形x(i;t)と速度波形v(i;t)を算出
できる。さらに、この注目点iを1つの超音波ビーム上
にΔx間隔に多数(N個)設定し、各々の点の変位波形
x(i;t),i=1,2,..,Nと速度波形v
(i;t),i=1,2,..,Nを算出する。
According to the present invention, the time integration of the difference in velocity between two points in the heart wall is the difference in displacement between the two points, that is, the change in thickness between the two points.
By utilizing the fact that the difference in velocity between points expresses the velocity of thickness change, the relaxation and contraction characteristics of myocardial fibers for each local myocardium are quantitatively evaluated, and the instantaneous elongation component and shrinkage obtained for each local myocardium are further evaluated. By displaying the components in color and superimposing them on the M-mode image and the B-mode image obtained by the ultrasonic diagnostic apparatus, the spatial distribution and temporal change of the relaxation contraction property of the myocardial fiber are provided as a two-dimensional image. First, in order to measure the displacement motion and velocity of each point of the myocardium in the heart wall as a waveform, the displacement of each point is tracked. Therefore, an ultrasonic pulse is repeatedly transmitted to the heart wall at intervals of ΔT, and ΔT relating to the propagation delay time of the reflected wave returning from one point of interest (called point i) in the ventricle wall.
The instantaneous velocity at that one point is calculated from the change within the time. This is based on the conventional ultrasonic pulse Doppler method, but further, by multiplying the instantaneous speed obtained now by ΔT,
The displacement of the point of interest within ΔT time is obtained, and the position of the point of interest is virtually moved by the displacement. The velocity calculation relating to the ultrasonic pulse to be transmitted next is performed using the reflection waveform at the timing when the ultrasonic pulse returns from the new position that has been reset. By repeating this process, even if the initially set position of the target point is displaced due to a large-amplitude beat, the position is tracked, and the displacement waveform x (i; t) and velocity of the target point are tracked. The waveform v (i; t) can be calculated. Further, a large number (N pieces) of the points of interest i are set on one ultrasonic beam at Δx intervals, and displacement waveforms x (i; t), i = 1, 2 ,. . , N and velocity waveform v
(I; t), i = 1, 2 ,. . , N is calculated.

【0009】ここで算出された各々の点の変位波形x
(i;t),i=1,2,..,Nと速度波形v(i;
t),i=1,2,..,Nには、並進運動成分と、内
部の心筋の弛緩収縮運動による厚み変化成分の2成分が
含まれている。前者は、すべての点での波形に同相で含
まれているため、隣あった点iとi+1で得られた変位
波形の差と速度波形の差を求めることによって、前者の
並進運動成分を相殺し、厚み変化の成分だけ算出でき
る。すなわち、変位波形の差x(i;t)−x(i+
1;t)から、心臓壁内に設定したi点とi+1点間の
厚みの変化h(i;t)が算出され、速度波形の差v
(i;t)−v(i+1;t)から、心臓壁内に設定し
たi点とi+1点間の厚み変化の速度Δh(i;t)が
算出できる。
Displacement waveform x of each point calculated here
(I; t), i = 1, 2 ,. . , N and velocity waveform v (i;
t), i = 1, 2 ,. . , N contains two components, a translational motion component and a thickness change component due to relaxation contraction motion of the internal myocardium. In the former, the waveforms at all points are included in the same phase, so the translational motion component of the former is canceled by obtaining the difference between the displacement waveform and the velocity waveform obtained at the adjacent points i and i + 1. However, only the component of the thickness change can be calculated. That is, the difference between displacement waveforms x (i; t) -x (i +
1; t), the change in thickness h (i; t) between the point i and the point i + 1 set in the heart wall is calculated, and the difference in velocity waveform v
From (i; t) -v (i + 1; t), the rate of thickness change Δh (i; t) between the point i and the point i + 1 set in the heart wall can be calculated.

【0010】ここで得られた厚み変化の速度Δh(i;
t)は、心臓壁内の心筋が一様に弛緩収縮している場合
を考えると、2点iとi+1の最初に設定した間隔Δx
が狭ければ小さくなり、Δxが広ければ大きくなること
から、2点の間隔に依存してしまう。そこで得られた厚
み変化の速度Δh(i;t)を、最初設定した厚みΔx
で割って得られたΔh(i;t)/Δxを用いることに
よって、厚みの正規化を行い、最初設定した点の間隔Δ
xには依存しない厚み変化の速度が得られる。
The rate of change in thickness Δh (i;
Considering the case where the myocardium in the heart wall is uniformly relaxing and contracting, t) is the interval Δx set at the beginning between the two points i and i + 1.
Is narrower, and Δx is larger, and therefore depends on the interval between the two points. The speed Δh (i; t) of the thickness change thus obtained is set to the initially set thickness Δx.
The thickness is normalized by using Δh (i; t) / Δx obtained by dividing by
A rate of thickness change independent of x is obtained.

【0011】以上の処理を、心臓壁心筋内で数百ミクロ
ン(Δx)ごとに設定した点各々に適用して、数百ミク
ロン単位での局所心筋の厚みの変化、その厚み変化の速
度の空間分布を算出する。
The above process is applied to each point set every several hundreds of microns (Δx) in the heart wall myocardium to change the thickness of the local myocardium in units of several hundreds of microns and the space of the velocity of the thickness change. Calculate the distribution.

【0012】このようにして得られた局所心筋の厚み変
化の速度を、その値の正と負、それらの大きさに従っ
て、局所ごとに所定のカラーコードに従って色付けし、
従来ののMモード像、Bモード断層像に重ねて表示する
ことによって、心筋の弛緩収縮性の空間分布とその時間
的変化がわかる。
The velocity of the change in thickness of the local myocardium thus obtained is colored according to a predetermined color code for each region according to the positive and negative values and their magnitudes,
By superimposing and displaying the conventional M-mode image and B-mode tomographic image, the spatial distribution of relaxation contractility of the myocardium and its temporal change can be known.

【0013】[0013]

【作用】本発明を超音波診断装置と組み合わせることに
よって、心筋局所ごとの心筋線維の弛緩収縮特性の空間
分布と時間変化を定量的に評価でき、心臓疾患の非侵襲
的診断が可能となる。
By combining the present invention with an ultrasonic diagnostic apparatus, it is possible to quantitatively evaluate the spatial distribution and temporal change of the relaxation contraction characteristic of the myocardial fiber for each local myocardium, and it becomes possible to perform non-invasive diagnosis of heart disease.

【0014】[0014]

【実施例】以下、本発明のヒトの心臓壁への実施例を示
す。図2は、20代健康な男性の左心室と心室中隔壁
の、超音波による断層像を示す。図2の左心室LVと右
心室RVの間の心室中隔壁IVSにほぼ垂直に入射する
ように超音波ビームbeamを固定する。超音波ビーム
上の右心室RV側境界の点Rと左心室LV側の点Lの間
に0.75mm間隔に14個の点を設定する。
EXAMPLES Examples of applying the present invention to a human heart wall will be described below. FIG. 2 shows an ultrasonic tomographic image of the left ventricle and septal wall of the ventricle of a healthy man in his 20s. The ultrasonic beam beam is fixed so as to enter the interventricular septum IVS between the left ventricle LV and the right ventricle RV of FIG. 2 almost vertically. Fourteen points are set at 0.75 mm intervals between the point R on the right ventricle RV side boundary on the ultrasonic beam and the point L on the left ventricle LV side.

【0015】図1は、図2に示した点Rと点Lの間に
0.75mm間隔に設定した14個の点の上の変位波形
と速度波形の計測結果を示している。図1の波形(a)
は心電図である。図1の波形(b)は心音波形である。
図1の(c)は、反射波の振幅から作成したMモード図
である。図1の(c)の左端の(R)と(L)が図2の
点Rと点Lの深さに対応している。
FIG. 1 shows the measurement results of displacement waveforms and velocity waveforms on 14 points set at 0.75 mm intervals between points R and L shown in FIG. Waveform (a) in Figure 1
Is an electrocardiogram. The waveform (b) in FIG. 1 is a heart sound waveform.
FIG. 1C is an M mode diagram created from the amplitude of the reflected wave. The left edges (R) and (L) of FIG. 1C correspond to the depths of the points R and L of FIG.

【0016】図1の(d)の図の中の14本の白い線
が、点Rと点Lの間に0.75mm間隔に設定した14
個の点に関して得られた変位波形x(i;t)を示して
おり、図1の(c)のMモード図の上に重ねた形式で表
示している。これらの変位波形に関して、右室側RV境
界線上の点Rの変位波形x(1;t)と、心室中隔壁内
に設定した他の13点での変位波形x(i;t)との差
x(i;t)−x(i+1;t)を求めた結果を図1の
(f)に示している。これは、時刻0に中隔壁内に0.
75mm間隔に設定した14個の点に関する時間的変位
を、右室側の点からの相対距離(厚さ)で表示している
ことになる.図1の心電波形(a)のR波のタイミング
の厚さに対して、その後の収縮期(0.5秒付近)で厚
さが約3mm厚くなっていることがわかる。
The 14 white lines in the diagram of FIG. 1 (d) are set at 0.75 mm intervals between the points R and L 14
The displacement waveform x (i; t) obtained for each point is shown, and is displayed in a form of being superimposed on the M-mode diagram of FIG. 1 (c). Regarding these displacement waveforms, the difference between the displacement waveform x (1; t) at the point R on the right ventricular RV boundary line and the displacement waveform x (i; t) at the other 13 points set in the septal wall of the ventricle. The result of obtaining x (i; t) -x (i + 1; t) is shown in (f) of FIG. This means that at time 0, 0.
The temporal displacements of the 14 points set at 75 mm intervals are displayed as the relative distance (thickness) from the point on the right ventricle side. It can be seen that the thickness at the timing of the R wave of the electrocardiographic waveform (a) in FIG. 1 is increased by about 3 mm in the subsequent systole (around 0.5 seconds).

【0017】図1の(e)は図1の(d)の14本の白
い線で表した各点の速度波形v(i;t)を14点すべ
てについて重ねて表示している。収縮期(0.5秒付
近)において線が太くなっているのは、14点の速度に
速度差があることを示しており、心臓壁内の厚みの変化
が発生していることを示している。一方拡張期(1秒付
近)では14本の線がほぼ一致しており、速度差がなく
厚さの変化もないことがわかる。
FIG. 1E shows the velocity waveforms v (i; t) at each point represented by the 14 white lines in FIG. 1D for all 14 points. The thicker line during systole (around 0.5 seconds) indicates that there is a velocity difference between the 14 points, indicating that there is a change in thickness within the heart wall. There is. On the other hand, in the diastole (around 1 second), the 14 lines are almost coincident with each other, showing that there is no difference in speed and no change in thickness.

【0018】図1の(d)は、14点の速度波形に関し
て、隣あった点間の速度差である厚み変化の速度Δh
(i;t)=v(i;t)−v(i+1;t)を、最初
設定した点の間隔0.75mmで割って正規化した厚さ
変化の速度を色で表示した結果である。本実施例では、
厚くなる速度が速いほど青色から水色へ、一方薄くなる
速度が速いほど赤色から黄色になるように着色してお
り、中隔壁心筋内部の弛緩収縮に伴う局所厚さの時間的
変化が心周期約1拍に関して表されている。
FIG. 1 (d) shows a speed change Δh of the thickness change which is a speed difference between adjacent points with respect to the speed waveforms of 14 points.
(I; t) = v (i; t) -v (i + 1; t) is a result in which the speed of the thickness change normalized by dividing the initially set point interval of 0.75 mm is displayed in color. In this embodiment,
The color changes from blue to light blue as the speed of thickening increases, and from red to yellow as the speed of thinning increases, and the temporal change in local thickness associated with relaxation contraction inside the septal myocardium is approximately the cardiac cycle. Shown for one beat.

【0019】図1は、20代健康な男性に関してであっ
たが、比較をするために図3には重度の心筋症の患者に
関して図1と同様にして求めた結果を示す。図3の
(f)の変位波形の差の波形は、収縮期と拡張期でほと
んど変化がなく、収縮期に約400ミクロンしか厚くな
っていない。すなわち、ほとんど並進運動成分しかない
ことがわかる。したがって、図3の波形(e)の14本
の速度波形は、ほとんど重なりあっている。また、図3
の(d)の心筋内部の局所的厚さの時間的変化に関する
着色結果についても収縮期と拡張期に心筋全体の統一的
な厚さの変化がないことがわかる。この例では、心筋の
弛緩収縮がもはや十分には行われておらず、心臓が十分
機能していないことを示している。
Although FIG. 1 was for a healthy man in his twenties, for comparison, FIG. 3 shows the results obtained in the same manner as in FIG. 1 for a patient with severe cardiomyopathy. The waveform of the difference between the displacement waveforms of FIG. 3 (f) shows almost no change between systole and diastole, and the systole has a thickness of only about 400 μm. That is, it can be seen that there is almost only a translational motion component. Therefore, the 14 velocity waveforms of waveform (e) in FIG. 3 almost overlap. Also, FIG.
Regarding the coloring result of (d) regarding the temporal change of the local thickness inside the myocardium, it can be seen that there is no uniform thickness change of the entire myocardium during the systole and the diastole. In this example, the relaxation contraction of the myocardium is no longer sufficient, indicating that the heart is not functioning well.

【0020】[0020]

【発明の効果】以上説明したように、本発明の超音波生
体計測装置は、超音波を用いて心臓壁内で微小な距離離
れた複数の点ごとに変位運動波形と速度波形を非侵襲的
に計測し、当該微小な距離離れた2点における変位運動
波形の差と速度波形の差それぞれの算出から、心臓壁の
併進運動成分を相殺して当該微小な距離離れた2点で挟
まれた局所心筋ごとにその内部で発生する厚みと厚みの
変化速度を求め、さらに、心臓壁内で微小な距離離れた
2点で挟まれた局所心筋ごとに得られた心筋線維の弛緩
収縮特性の中で、瞬時的伸び成分と縮み成分をそれぞれ
青色系、赤色系によって着色して、超音波診断装置で得
られるMモード像、Bモード像に重ねることよって、心
筋線維の弛緩収縮特性の空間分布と時間的変化をカラー
画像表示することによって、心臓疾患の診断に必要不可
欠な局所心筋ごとの心筋線維の弛緩収縮特性を定量的に
評価することを可能としている。
As described above, the ultrasonic living body measuring apparatus of the present invention uses ultrasonic waves to non-invasively detect displacement motion waveforms and velocity waveforms at a plurality of points separated by a minute distance in the heart wall. The difference between the displacement motion waveform and the velocity waveform difference at the two points separated by the minute distance is calculated, and the translational motion component of the heart wall is canceled to sandwich the two points separated by the minute distance. For each local myocardium, the thickness and rate of change of the thickness are calculated, and the relaxation contraction characteristics of the myocardial fibers obtained for each local myocardium sandwiched by two points separated by a minute distance Then, the instantaneous elongation component and the contraction component are colored in blue and red, respectively, and are superimposed on the M-mode image and the B-mode image obtained by the ultrasonic diagnostic apparatus to obtain a spatial distribution of relaxation contraction characteristics of myocardial fibers. Displaying time-varying color images Therefore, it is made possible to quantitatively evaluate the relaxation shrinkage characteristics of cardiac muscle fibers of each essential regional myocardial necessary for the diagnosis of heart disease.

【図面の簡単な説明】[Brief description of drawings]

【図1】正常者に関して本発明を適用した結果である。FIG. 1 is a result of applying the present invention to a normal person.

【図2】心室中隔壁付近の、超音波による断層像を示す
図である。
FIG. 2 is a diagram showing an ultrasonic tomographic image in the vicinity of the septal wall of the ventricle.

【図3】重症の心筋症の患者に関して本発明を適用した
結果である。
FIG. 3 is a result of applying the present invention to a patient with severe cardiomyopathy.

【符号の説明】[Explanation of symbols]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小岩 喜郎 宮城県仙台市青葉区三十人町31番地 (72)発明者 田中 元直 宮城県仙台市青葉区国見四丁目4番26号 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Yoshiro Koiwa, 31 Sanjuto-cho, Aoba-ku, Sendai-shi, Miyagi (72) Inventor Motonao Tanaka 4-4-2, Kunimi, Aoba-ku, Sendai-shi, Miyagi

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 心臓壁に超音波パルスを繰り返し送信
し、心像壁内から戻って来る反射波の伝搬遅延時間の変
化から、心臓壁内において、超音波ビームに沿って微小
な距離離れた複数の点ごとに変位運動波形と速度波形を
計測し、当該微小な距離離れた2点における変位運動波
形の差と速度波形の差のそれぞれの算出から、心臓壁の
併進運動成分を相殺して、当該微小な距離離れた2点で
挟まれた局所心筋ごとにその内部で発生する厚み変化と
厚み変化の速度を求めることによって、心筋局所ごとの
心筋線維の弛緩収縮特性を定量的に評価することを特徴
とする心臓疾患の超音波診断装置。
1. An ultrasonic pulse is repeatedly transmitted to the heart wall, and a plurality of ultrasonic waves are separated by a minute distance along the ultrasonic beam in the heart wall from changes in the propagation delay time of a reflected wave returning from the heart image wall. Displacement motion waveforms and velocity waveforms are measured for each point, and the translational motion component of the heart wall is canceled by calculating the difference between the displacement motion waveforms and the velocity waveform difference at the two points separated by a minute distance, To quantitatively evaluate the relaxation contraction property of the myocardial fiber for each local myocardium by obtaining the thickness change and the speed of the thickness change occurring inside each local myocardium sandwiched by two points separated by the minute distance. An ultrasonic diagnostic apparatus for heart diseases.
【請求項2】 心臓壁内において、超音波ビームに沿っ
て微小な距離離れた2点で挟まれた局所心筋ごとに得ら
れた心筋線維の厚みの瞬時的伸び成分を青色系、縮み成
分を赤色系によって着色して、超音波診断装置で得られ
るMモード像、Bモード像に重ねることよって、心筋線
維の弛緩収縮特性の空間分布と時間的変化をカラー画像
表示することを特徴とする心臓疾患の超音波診断装置。
2. The instantaneous elongation component of the thickness of the myocardial fiber obtained for each local myocardium sandwiched by two points separated by a minute distance along the ultrasonic beam within the heart wall is represented by a blue component and a contraction component. A heart characterized by displaying a color distribution of the spatial distribution and temporal change of the relaxation contraction property of myocardial fiber by superimposing it on the M-mode image and the B-mode image obtained by an ultrasonic diagnostic apparatus by coloring with a reddish color Ultrasound diagnostic equipment for diseases.
JP17537396A 1996-06-02 1996-06-02 Ultrasonic biological measuring device Pending JPH09313486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17537396A JPH09313486A (en) 1996-06-02 1996-06-02 Ultrasonic biological measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17537396A JPH09313486A (en) 1996-06-02 1996-06-02 Ultrasonic biological measuring device

Publications (1)

Publication Number Publication Date
JPH09313486A true JPH09313486A (en) 1997-12-09

Family

ID=15994974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17537396A Pending JPH09313486A (en) 1996-06-02 1996-06-02 Ultrasonic biological measuring device

Country Status (1)

Country Link
JP (1) JPH09313486A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229078A (en) * 1999-02-10 2000-08-22 Japan Science & Technology Corp Vascular lesion diagnositic system and diagnostic program memory storage medium
JP2009000552A (en) * 2008-09-05 2009-01-08 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP2009050720A (en) * 2008-11-04 2009-03-12 Hitachi Medical Corp Ultrasonic diagnostic system
EP2113202A1 (en) 2008-05-02 2009-11-04 Canon Kabushiki Kaisha Ultrasonic measurement apparatus
JP2010125025A (en) * 2008-11-27 2010-06-10 Fujifilm Corp Ultrasonic diagnostic device
JP2012005708A (en) * 2010-06-25 2012-01-12 Toshiba Corp Ultrasonic diagnostic apparatus, ultrasonic image processor, and ultrasonic image processing program
JP2013541385A (en) * 2010-10-26 2013-11-14 オスロ ユニヴェルジテットサイケフス エイチエフ Work analysis method of myocardial segment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229078A (en) * 1999-02-10 2000-08-22 Japan Science & Technology Corp Vascular lesion diagnositic system and diagnostic program memory storage medium
EP2113202A1 (en) 2008-05-02 2009-11-04 Canon Kabushiki Kaisha Ultrasonic measurement apparatus
US8747318B2 (en) 2008-05-02 2014-06-10 Canon Kabushiki Kaisha Ultrasonic measurement apparatus
JP2009000552A (en) * 2008-09-05 2009-01-08 Hitachi Medical Corp Ultrasonic diagnostic apparatus
JP4498451B2 (en) * 2008-09-05 2010-07-07 株式会社日立メディコ Ultrasonic diagnostic equipment
JP2009050720A (en) * 2008-11-04 2009-03-12 Hitachi Medical Corp Ultrasonic diagnostic system
JP2010125025A (en) * 2008-11-27 2010-06-10 Fujifilm Corp Ultrasonic diagnostic device
JP2012005708A (en) * 2010-06-25 2012-01-12 Toshiba Corp Ultrasonic diagnostic apparatus, ultrasonic image processor, and ultrasonic image processing program
US9161737B2 (en) 2010-06-25 2015-10-20 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus and ultrasonic image processing apparatus
JP2013541385A (en) * 2010-10-26 2013-11-14 オスロ ユニヴェルジテットサイケフス エイチエフ Work analysis method of myocardial segment

Similar Documents

Publication Publication Date Title
US9089278B2 (en) Ultrasonic assessment of cardiac synchronicity and viability
JP3875581B2 (en) Ultrasound diagnostic system
US8144956B2 (en) Ultrasonic diagnosis by quantification of myocardial performance
US7404798B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus control method
JPH11155862A (en) Ultrasonograph and ultrasonic image processor
US8328724B2 (en) Method for imaging intracavitary blood flow patterns
JP5249218B2 (en) Ultrasonic imaging system
JPH09313486A (en) Ultrasonic biological measuring device
US20220068481A1 (en) Methods and system for obtaining a physiological measure from a subject
CN113382685A (en) Method and system for studying vessel characteristics
WO2006098354A1 (en) Ultrasonic diagnostic equipment and method for controlling same
JP4921816B2 (en) Ultrasonic diagnostic apparatus and control program therefor
Kanai et al. Onset of pulsatile waves in the heart walls at end-systole
JP4795672B2 (en) Ultrasonic diagnostic equipment
JP2009000444A (en) Ultrasonic diagnostic equipment
JP2021514281A (en) A method and apparatus for simultaneously performing 4D ultrafast Doppler imaging of cardiac blood flow and tissue and acquisition of quantification parameters.
JP4590609B2 (en) Ultrasonic inspection equipment
Kanai Viscoelasticity measurement of heart wall in in vivo
Moore et al. Ultrasound Visualization and Recording of Transient Myocardial Vibrations
Popescu et al. Translating High-Frame-Rate Imaging into Clinical Practice: Where Do We Stand?
Kerut Novel application of tissue Doppler imaging: A preliminary observational study
Aristizabal et al. Application of guided waves for quantifying elasticity and viscoelasticity of boundary sensitive organs
Kanai Visualization of propagation of pulse vibration along the heart wall and imaging of its propagation speed
Kanai 2H-5 Regional Differences in Phase Velocity of Pulsive Wave Propagating Along the Heart Wall
Honjo et al. Accurate ultrasonic measurement of myocardial regional strain rate at high temporal and spatial resolutions

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607