JPH09309312A - Damping force control device of suspension system - Google Patents

Damping force control device of suspension system

Info

Publication number
JPH09309312A
JPH09309312A JP12846796A JP12846796A JPH09309312A JP H09309312 A JPH09309312 A JP H09309312A JP 12846796 A JP12846796 A JP 12846796A JP 12846796 A JP12846796 A JP 12846796A JP H09309312 A JPH09309312 A JP H09309312A
Authority
JP
Japan
Prior art keywords
target value
value
damping
damping constant
damping force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12846796A
Other languages
Japanese (ja)
Other versions
JP3860251B2 (en
Inventor
Osamu Isobe
修 磯邉
Taketoshi Kawabe
武俊 川邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP12846796A priority Critical patent/JP3860251B2/en
Publication of JPH09309312A publication Critical patent/JPH09309312A/en
Application granted granted Critical
Publication of JP3860251B2 publication Critical patent/JP3860251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a damping force control device of a suspension system to improve riding comfortability by restraining car body oscillation, to sufficiently maintain a tire grounding property at the time of quick acceleration and deceleration of a vehicle and to improve a braking and driving property and travelling stability. SOLUTION: A damping coefficient target value computing means 3 to compute a damping coefficient target value of a damping force variable shock absorber 4 is devised to selectively change a basic damping coefficient target value constituting this damping coefficient target value between a large value and a small value in accordance with whether an absolute value of longitudinal acceleration of a vehicle from a longitudinal acceleration detection means 5 is larger than a set value or smaller. Additionally, it is devised to carry out this change-over in accordance with an acceleration indication signal such as, for example, an acceleration pedal angle and brake pedal angle signal from an acceleration indication signal detection means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、減衰力を可変制御
できるショックアブソーバとバネとを組み合わせた懸架
系において、時々刻々と変化する振動状態に応じて減衰
力を的確に制御する装置に関し、特に車両の加減速時に
おけるタイヤ接地性を十分に保ち、制駆動性能および操
縦安定性を良好にするものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suspension system in which a shock absorber capable of variably controlling a damping force and a spring are combined to accurately control the damping force in accordance with a vibration state which changes from moment to moment. The present invention relates to a vehicle that sufficiently maintains a tire ground contact property during acceleration / deceleration of a vehicle and improves braking / driving performance and steering stability.

【0002】[0002]

【従来の技術】減衰力が可変なショックアブソーバを利
用した懸架系において、振動状態に応じて減衰係数を変
化させ、例えばバネ上からの振動の減衰率を高め、かつ
バネ下からの振動の絶縁効果を改善するようにした提案
が、以下の参考文献等によってなされている。
2. Description of the Related Art In a suspension system using a shock absorber having a variable damping force, a damping coefficient is changed according to a vibration state to increase, for example, a damping rate of vibration from above a spring and isolation of vibration from below a spring. Proposals for improving the effect are made by the following references and the like.

【0003】参考文献1…D.Karnopp et
al.:Vibration Control Usi
ng Semi−Active Force Gene
rators,J.E.I.ASME,May,619
/626(1974)、参考文献2…藤岡健彦、木戸孝
二;可変ダンパの制御方式に関する研究(VSS理論か
ら見た車両振動制御)、自動車技術会学術講演会前刷集
862 197/200(1989)、参考文献3…A
n Introduction to Sliding
mode Variable Structure
and Lyapunov Control,1/2
0,Springer(1994)。
Reference 1 ... D. Karnopp et
al. : Vibration Control Usi
ng Semi-Active Force Gene
rats, J. et al. E. FIG. I. ASME, May, 619
/ 626 (1974), Reference 2 ... Takehiko Fujioka, Koji Kido; Study on control method of variable damper (Vehicle vibration control viewed from VSS theory), Preprint 862 197/200 (1989) of the Society of Automotive Engineers of Japan , Reference 3 ... A
n Introduction to Sliding
mode Variable Structure
and Lyapunov Control, 1/2
0, Springer (1994).

【0004】さらに、本出願人により、特願平7−32
6169号において、バネ上とバネ下の相対速度、相対
変位のように比較的検出が容易な信号を用いて、減衰力
可変ショックアブソーバの減衰力を調整することによ
り、目標どおりの減衰力特性を発揮させられるようにし
た減衰力制御装置が提案されている。
Furthermore, the applicant of the present invention filed Japanese Patent Application No. 7-32
In 6169, by adjusting the damping force of the damping force variable shock absorber using signals that are relatively easy to detect, such as the relative speed and relative displacement between the sprung and unsprung, the damping force characteristics as desired can be obtained. There has been proposed a damping force control device that can be used.

【0005】[0005]

【発明が解決しようとする課題】ところで、一般に減衰
力制御装置においては、サスペンションの減衰特性を柔
らかめに設定すると、車体の振動特性は良好になる一方
で、タイヤの接地性は悪化する結果、操縦安定性が低下
してしまう。またこれとは逆に、減衰特性を硬めに設定
すると、操縦安定性は良好になるが、乗り心地が悪化し
てしまう。
Generally, in the damping force control device, when the damping characteristic of the suspension is set to be soft, the vibration characteristic of the vehicle body becomes good, but the ground contactability of the tire deteriorates. The steering stability will decrease. On the contrary, if the damping characteristic is set to be harder, the steering stability is improved, but the riding comfort is deteriorated.

【0006】このような乗り心地とタイヤ接地性との間
のトレードオフの関係は、前述の特願平7−32616
9号の減衰力制御装置においても生ずる。すなわち、こ
の減衰力制御装置は、路面からの入力により車体振動が
励起された場合に制振効果が大きいものではあるが、基
本減衰定数目標値c0を乗り心地とタイヤ接地性の両者
のバランスを考えて決定するものであり(特願平7−3
26169号の明細書の第10頁参照)、実際には、乗
り心地とタイヤ接地性に関する性能の両方を、必ずしも
十分に満足させるものとは言えなかった。
The trade-off relationship between the ride comfort and the tire ground contact property is described in the above-mentioned Japanese Patent Application No. 7-32616.
It also occurs in the damping force control device of No. 9. That is, this damping force control device has a large damping effect when the vehicle body vibration is excited by an input from the road surface, but the basic damping constant target value c 0 is set to balance the ride comfort and the tire ground contact property. It is decided by considering (Japanese Patent Application No. 7-3
In the specification of No. 26169, p. 10), actually, it cannot be said that both the ride comfort and the performance relating to the tire ground contact property are not always sufficiently satisfied.

【0007】本発明は、このような問題点に着目し、車
体振動を抑制し乗り心地を高めるとともに、車両の加減
速時におけるタイヤ接地性を十分に保ち、制駆動性能お
よび走行安定性を良好にする懸架系の減衰力制御装置を
提供することを目的とする。
Focusing on these problems, the present invention suppresses vehicle body vibrations to improve riding comfort, and also maintains sufficient tire ground contact when the vehicle is being accelerated or decelerated, resulting in good braking / driving performance and running stability. It is an object of the present invention to provide a suspension system damping force control device.

【0008】[0008]

【課題を解決するための手段】第1の発明は、バネ上と
バネ下の相対速度検出手段と、バネ上とバネ下の相対変
位検出手段と、これらから検出された相対速度と相対変
位を入力として減衰力可変ショックアブソーバの減衰定
数目標値を設定する減衰定数目標値演算手段と、この減
衰定数目標値を入力して減衰定数を調節する減衰力可変
ショックバブソーバとを備えるとともに、前記減衰力目
標値演算手段は、所定の定数である基本減衰定数目標値
を設定する目標値設定手段と、前記相対速度及び相対変
位に基づいて演算した理想減衰力を修正した減衰定数修
正値を演算する修正値演算手段とを備え、これら基本減
衰定数目標値と減衰定数修正値とを含む減衰定数目標値
を出力する懸架系の減衰力制御装置において、車両の前
後加速度を検出する前後加速度検出手段を備え、前記目
標値設定手段は、前記前後加速度の絶対値が設定値より
も小さなときには前記基本減衰定数目標値として小さい
所定値を選択し、前記前後加速度の絶対値が設定値より
も大きなときには前記基本減衰定数目標値として大きい
所定値を選択する。
A first aspect of the present invention is directed to a sprung and unsprung relative velocity detecting means, a sprung and unsprung relative displacement detecting means, and a relative velocity and relative displacement detected from these. A damping constant target value computing means for setting a damping constant target value of the damping force variable shock absorber as an input, and a damping force variable shock babsaver for inputting the damping constant target value to adjust the damping constant are provided. The force target value calculation means calculates a target value setting means for setting a basic damping constant target value which is a predetermined constant, and a damping constant correction value obtained by correcting the ideal damping force calculated based on the relative speed and relative displacement. A suspension damping force control device that includes a correction value calculation means and outputs a damping constant target value including the basic damping constant target value and the damping constant correction value, and detects the longitudinal acceleration of the vehicle. A longitudinal acceleration detecting means is provided, and the target value setting means selects a small predetermined value as the basic damping constant target value when the absolute value of the longitudinal acceleration is smaller than a set value, and the absolute value of the longitudinal acceleration is the set value. When it is larger than the above, a large predetermined value is selected as the basic damping constant target value.

【0009】第2の発明は、バネ上とバネ下の相対速度
検出手段と、バネ上とバネ下の相対変位検出手段と、こ
れらから検出された相対速度と相対変位を入力として減
衰力可変ショックアブソーバの減衰定数目標値を設定す
る減衰定数目標値演算手段と、この減衰定数目標値を入
力して減衰定数を調節する減衰力可変ショックバブソー
バとを備えるとともに、前記減衰力目標値演算手段は、
所定の定数である基本減衰定数目標値を設定する目標値
設定手段と、前記相対速度及び相対変位に基づいて演算
した理想減衰力を修正した減衰定数修正値を演算する修
正値演算手段とを備え、これら基本減衰定数目標値と減
衰定数修正値とを含む減衰定数目標値を出力する懸架系
の減衰力制御装置において、車両の加速を指示する加速
指示信号と車両の減速を指示する減速指示信号を検出す
る加減速指示信号検出手段を備え、前記目標値設定手段
は、前記加速指示信号および減速指示信号と所定の基準
値との大小関係にしたがって、前記基本減衰定数目標値
として小さい所定値または大きな所定値を選択する。
A second aspect of the present invention is a sprung and unsprung relative velocity detecting means, sprung and unsprung relative displacement detecting means, and a damping force variable shock using the relative velocity and relative displacement detected from these as input. A damping constant target value calculating means for setting a damping constant target value of the absorber, and a damping force variable shock bubbsaver for inputting the damping constant target value to adjust the damping constant are provided, and the damping force target value calculating means is ,
A target value setting means for setting a basic damping constant target value that is a predetermined constant, and a correction value calculating means for calculating a damping constant correction value that corrects the ideal damping force calculated based on the relative speed and the relative displacement are provided. In a suspension damping force control device that outputs a damping constant target value including these basic damping constant target value and damping constant correction value, an acceleration instruction signal for instructing vehicle acceleration and a deceleration instruction signal for instructing vehicle deceleration The target value setting means detects a small predetermined value as the basic damping constant target value according to the magnitude relationship between the acceleration instruction signal and the deceleration instruction signal and a predetermined reference value. Select a large predetermined value.

【0010】第3の発明は、前記加速指示信号はアクセ
ルペダル角を検出する信号であり、前記減速指示信号は
ブレーキペダル角を検出する信号であり、前記目標値設
定手段は、前記アクセルペダル角およびブレーキペダル
角のいずれもが設定値よりも小さなときには前記基本減
衰定数目標値として小さい所定値を選択し、前記アクセ
ルペダル角またはブレーキペダル角の少なくともいずれ
か一方が設定値よりも大きなときには前記基本減衰定数
目標値として大きい所定値を選択する。
In a third invention, the acceleration instruction signal is a signal for detecting an accelerator pedal angle, the deceleration instruction signal is a signal for detecting a brake pedal angle, and the target value setting means is the accelerator pedal angle. When both the brake pedal angle and the brake pedal angle are smaller than the set value, a small predetermined value is selected as the basic damping constant target value, and when at least one of the accelerator pedal angle and the brake pedal angle is larger than the set value, the basic value is set. A large predetermined value is selected as the damping constant target value.

【0011】[0011]

【作用】第1の発明では、減衰力可変ショックアブソー
バに入力される減衰定数目標値は、基本減衰定数目標値
と減衰定数修正値から決定されるが、目標値設定手段
が、定速走行時、緩制動時、緩加速時など前後加速度の
絶対値が設定値よりも小さなときには、基本減衰定数目
標値を小さい値とし、急制動時または急加速時など前後
加速度の絶対値が設定値よりも大きなときには、基本減
衰定数目標値を大きい値とするので、定速走行時などに
は柔らかめな減衰力特性により良好な乗り心地を保つ一
方で、急制動時、急加速時など車両の乗り心地よりも操
縦安定性を重視する必要があるときには、減衰力特性を
硬めにしてタイヤの接地性を高め、制駆動性能および操
縦安定性を高めるようにでき、車両の乗り心地の向上
と、制駆動性能および操縦安定性の向上とを同時に最大
限に図ることができる。
In the first aspect of the present invention, the damping constant target value input to the damping force variable shock absorber is determined from the basic damping constant target value and the damping constant correction value. When the absolute value of the longitudinal acceleration is smaller than the set value, such as during slow braking or slow acceleration, the basic damping constant target value is set to a small value and the absolute value of the longitudinal acceleration during sudden braking or sudden acceleration is smaller than the set value. When it is large, the target value of the basic damping constant is set to a large value, so while maintaining a good ride comfort due to the soft damping force characteristics during constant speed driving, the ride comfort of the vehicle during sudden braking, sudden acceleration, etc. When it is necessary to place more importance on steering stability than on the other hand, the damping force characteristics can be hardened to improve the ground contact of the tires and improve braking / driving performance and steering stability. Performance and Vertical stability improvements and at the same time can be achieved to the maximum.

【0012】第2の発明では、目標値設定手段が、前記
加速指示信号および前記減速指示信号と所定の基準値と
の大小関係に応じて走行状態を判断し、定速走行時、緩
制動時、緩加速時などには、基本減衰定数目標値を小さ
い値とし、急制動時または急加速時などには、基本減衰
定数目標値を大きい値とするので、定速走行時などには
柔らかめな減衰力特性により良好な乗り心地を保つ一方
で、急制動時、急加速時など車両の乗り心地よりも操縦
安定性を重視する必要があるときには、減衰力特性を硬
めにしてタイヤの接地性を高め、制駆動性能および操縦
安定性を高めるようにでき、車両の乗り心地の向上と、
制駆動性能および操縦安定性の向上とを同時に最大限に
図ることができる。
In the second aspect of the invention, the target value setting means determines the traveling state according to the magnitude relation between the acceleration instruction signal and the deceleration instruction signal and a predetermined reference value, and when the vehicle is traveling at a constant speed or when braking slowly. , The basic damping constant target value is set to a small value during slow acceleration, and the basic damping constant target value is set to a large value during sudden braking or sudden acceleration. While maintaining good ride comfort with various damping force characteristics, when it is necessary to prioritize steering stability rather than vehicle comfort such as during sudden braking or sudden acceleration, the damping force characteristics should be hardened to improve the tire's ground contact. To improve braking / driving performance and steering stability, and improve the ride comfort of the vehicle.
It is possible to maximize braking / driving performance and steering stability at the same time.

【0013】第3の発明では、加速指示信号としてアク
セルペダル角を検出する信号が、また減速指示信号とし
てブレーキペダル角を検出する信号がそれぞれ検出さ
れ、目標値設定手段が、定速走行時、緩制動時、緩加速
時など、ブレーキペダル角およびアクセルペダル角のい
ずれもが設定値よりも小さなときには、基本減衰定数目
標値を小さい値とし、急制動時などブレーキペダル角が
設定値より大きいか、急加速時などアクセルペダル角が
設定値より大きなときには、基本減衰定数目標値を大き
い値とするので、定速走行時などには柔らかめな減衰力
特性により良好な乗り心地を保つ一方で、急制動時、急
加速時など車両の乗り心地よりも操縦安定性を重視する
必要があるときには、減衰力特性を硬めにしてタイヤの
接地性を高め、制駆動性能および操縦安定性を高めるよ
うにでき、車両の乗り心地の向上と、制駆動性能および
操縦安定性の向上とを同時に最大限に図ることができ
る。
According to the third aspect of the present invention, the signal for detecting the accelerator pedal angle is detected as the acceleration instruction signal and the signal for detecting the brake pedal angle is detected as the deceleration instruction signal. When both the brake pedal angle and the accelerator pedal angle are smaller than the set values, such as during slow braking and slow acceleration, set the basic damping constant target value to a small value and check whether the brake pedal angle is larger than the set value during sudden braking. , When the accelerator pedal angle is larger than the set value, such as during rapid acceleration, the basic damping constant target value is set to a large value, so while maintaining a good ride comfort due to the soft damping force characteristics during constant speed running, When it is necessary to prioritize steering stability rather than vehicle comfort, such as during sudden braking or sudden acceleration, the damping force characteristics should be hardened to improve tire contact and Can to enhance the performance and steering stability, and comfort improve ride vehicle, it is possible to reduce the braking and driving performance and steering stability improvement and the maximally simultaneously.

【0014】[0014]

【発明の実施の形態】以下、添付図面に基づいて、本発
明の実施の形態について説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】図1において、1は、減衰力可変ショック
アブソーバ4の、バネ上とバネ下の相対変位を検出する
相対変位検出手段、2は同じくバネ上とバネ下の相対速
度を検出する相対速度検出手段、5は車両の前後加速度
Gを検出する前後加速度検出手段、3はこれら相対変
位、相対速度および前後加速度に基づいて減衰定数の目
標値を演算し、この結果を減衰力可変ショックアブソー
バ4に入力して目標とする減衰力を発生させるように制
御するための減衰定数目標値演算手段である。
In FIG. 1, 1 is a relative displacement detecting means for detecting the relative displacement of the damping force variable shock absorber 4 between the sprung and unsprung portions, and 2 is the relative speed for similarly detecting the relative velocity of the sprung and unsprung portions. Detecting means 5, a longitudinal acceleration detecting means for detecting a longitudinal acceleration G of the vehicle, 3 calculates a target value of a damping constant on the basis of the relative displacement, relative velocity and longitudinal acceleration, and the result is a damping force variable shock absorber 4 It is a damping constant target value calculation means for controlling to generate a target damping force by inputting into the.

【0016】図2は減衰定数目標値演算手段3の具体的
な構成を示すもので、図示するように、バネ上とバネ下
のの相対変位x1(以下単に相対変位という)、バネ上
とバネ下の相対速度x2(以下単に相対速度という)、
及び後述するフィルタWc(s)13の状態量xcとに基
づいて切換入力を演算する切換入力演算手段11と、同
じく相対速度、相対変位、フィルタ状態量xcとに基づ
いて線形入力を演算する線形入力演算手段12と、これ
らの切換入力と線形入力とを加算する加算器16と、こ
の加算器16の出力である理想入力に基づいて理想減衰
力を出力するフィルタWc(s)13と、フィルタW
c(s)13から出力される理想減衰力から減衰力定数
の修正値を演算する修正値演算手段14と、前後加速度
Gから基本減衰定数目標値を設定する目標値設定手段1
5と、これらの出力を加算して減衰定数目標値として出
力する加算器17とから構成される。
FIG. 2 shows a concrete structure of the damping constant target value calculating means 3. As shown in the drawing, the relative displacement x 1 between the sprung part and the unsprung part (hereinafter simply referred to as relative displacement), Unsprung relative velocity x 2 (hereinafter simply referred to as relative velocity),
And a switching input calculation means 11 for calculating a switching input based on a state quantity x c of a filter W c (s) 13 which will be described later, and a linear input based on a relative speed, a relative displacement and a filter state quantity x c. A linear input calculation means 12 for calculating, an adder 16 for adding the switching input and the linear input, and a filter W c (s) for outputting an ideal damping force based on the ideal input which is the output of the adder 16. 13 and filter W
The correction value calculating means 14 for calculating the correction value of the damping force constant from the ideal damping force output from the c (s) 13, and the target value setting means 1 for setting the basic damping constant target value from the longitudinal acceleration G.
5 and an adder 17 for adding these outputs and outputting as an attenuation constant target value.

【0017】以下、これをさらに詳しく説明する。な
お、以下の説明において、(d/dt)は時間について
の一階微分、(d2/dt2)は二階微分を意味する。
This will be described in more detail below. In the following description, (d / dt) means the first derivative with respect to time, and (d 2 / dt 2 ) means the second derivative.

【0018】切換入力演算手段11は相対速度、相対変
位、フィルタの状態量xc、所定のゲインN、M、ρ、
及び定数δから、次のように切換入力uswを計算する。
The switching input calculation means 11 has a relative velocity, a relative displacement, a filter state quantity x c , predetermined gains N, M, ρ,
And the constant δ, the switching input u sw is calculated as follows.

【0019】 usw=ρMxe/(‖Nxe‖+δ) …(1) だだし、xe=[xTC TT、x=[x12T
ある。
U sw = ρMx e / (‖Nx e ‖ + δ) (1) However, x e = [x T x C T ] T and x = [x 1 x 2 ] T.

【0020】線形入力演算手段12は、制御ゲインLか
ら次のように線形入力ulnを演算する。
The linear input calculation means 12 calculates the linear input u ln from the control gain L as follows.

【0021】uln=Lxe …(2) フィルタWc(s)13は、理想入力uideal=usw
lnから理想減衰力fidealを次のように演算する。
U ln = Lx e (2) The filter Wc (s) 13 has an ideal input u ideal = u sw +
The ideal damping force f ideal is calculated from u ln as follows.

【0022】 (d/dt)xc=Acc+Bcideal …(3) fideal=Ccc …(4) ここでAC、BC、CCはフィルタWc(s)13の減衰特
性を表す適当な次元の定数行列である。例えばフィルタ
c(s)がカットオフ周波数10[Hz]のローパス
フィルタ; Wc(s)=2π×10/(s+2π×10)、sはラ
プラス演算子 であれば、 AC=BC=2π×10、CC=1 とすればよい。
(D / dt) x c = A c x c + B c u ideal (3) f ideal = C c x c (4) where A C , B C , and C C are filters W c (s ) 13 is a constant matrix of appropriate dimension that represents the damping characteristic. For example, if the filter W c (s) is a low-pass filter having a cutoff frequency of 10 [Hz]; W c (s) = 2π × 10 / (s + 2π × 10), and s is a Laplace operator, then A C = B C = 2π × 10 and C C = 1 may be set.

【0023】減衰定数目標値演算手段3は、 c′=−fideal/x2+c0 …(5) により、減衰定数目標値c′を出力する。ここでc0
高周波帯域の振動特性から決められる所定の定数であ
る。なお、請求項の記載との関係で、c0は基本減衰定
数目標値に、−fideal/x2は減衰定数修正値に、それ
ぞれ対応する。
The damping constant target value calculating means 3 outputs the damping constant target value c'according to c '=-f ideal / x 2 + c 0 (5). Here, c 0 is a predetermined constant determined from the vibration characteristics in the high frequency band. Note that in relation to the description of the claims, c 0 corresponds to the basic damping constant target value, and −f ideal / x 2 corresponds to the damping constant correction value.

【0024】減衰力可変ショックアブソーバ4はc′を
入力し、その発生減衰力cが、 c=c′ …(6) となるものとする。
It is assumed that the damping force variable shock absorber 4 receives c'and the generated damping force c is c = c '(6).

【0025】以下、各制御ゲインの導き方を説明する。Hereinafter, how to derive each control gain will be described.

【0026】図3に示す懸架系を考える。この系のバネ
上の運動方程式は次のように書くことができる。
Consider the suspension system shown in FIG. The equation of motion on the spring of this system can be written as

【0027】 m2(d2/dt2)z2=−k2(z2−z1)−c2[(d/dt)z2−(d/d t)z1] m1(d2/dt2)z1=k2(z2−z1)+c2[(d/dt)z2−(d/dt )z1]−k1(z1−z0) …(7) ここで、m1はバネ下質量、k1はバネ下剛性、m2はバ
ネ上質量、k2はバネ剛性、c2はショクアブソーバ減衰
定数、(d2/dt2)z2はバネ上の絶対座標に対する
上下方向加速度、(d2/dt2)z1はバネ下の絶対座
標に対する上下方向加速度、z0は外乱変位、z1はバネ
下変位、z2はバネ上変位である。これは自動車のサス
ペンションを簡略化したモデルであるが、例えばm1
0、k1→∞のようにしても以下の議論は成立する。懸
架系の目的は外乱z0の存在下で、バネ上の動きを制振
することである。
M 2 (d 2 / dt 2 ) z 2 = −k 2 (z 2 −z 1 ) −c 2 [(d / dt) z 2 − (d / dt) z 1 ] m 1 (d 2 / dt 2) z 1 = k 2 (z 2 -z 1) + c 2 [(d / dt) z 2 - (d / dt) z 1] -k 1 (z 1 -z 0) ... (7) Here, m 1 is the unsprung mass, k 1 is the unsprung mass, m 2 is the unsprung mass, k 2 is the spring rigidity, c 2 is the shock absorber damping constant, and (d 2 / dt 2 ) z 2 is the unsprung mass. Vertical acceleration with respect to absolute coordinates of (d 2 / dt 2 ) z 1 is vertical acceleration with respect to absolute unsprung coordinates, z 0 is disturbance displacement, z 1 is unsprung displacement, and z 2 is sprung displacement. This is a simplified model of an automobile suspension, for example m 1
The following argument holds even if 0, k 1 → ∞. The purpose of the suspension system is to damp the motion on the spring in the presence of the disturbance z 0 .

【0028】バネ上とバネ下の相対変位をx1=z2−z
1、バネ上とバネ下の相対速度をx2=(d/dt)z2
−(d/dt)z1とおくと、
The relative displacement between the sprung part and the unsprung part is x 1 = z 2 −z
1 , the relative speed of sprung and unsprung is x 2 = (d / dt) z 2
If-(d / dt) z 1 is set,

【0029】[0029]

【数1】 [Equation 1]

【0030】が得られる。この式(8)を次のように書
き直す。
Is obtained. This equation (8) is rewritten as follows.

【0031】[0031]

【数2】 [Equation 2]

【0032】ただし、 c2=c0+cu、u=[0 −cu]x である。cuは減衰力可変ショックアブソーバ4の減衰
係数可変代である。c0は実際のショックアブソーバの
可変代と関係なく、後で述べるように、高周波帯域での
振動特性および前後加速度検出手段5により検出される
前後加速度Gを考慮して決める。
However, c 2 = c 0 + c u and u = [0-c u ] x. c u is a variable damping coefficient of the variable damping force shock absorber 4. c 0 is determined in consideration of the vibration characteristic in the high frequency band and the longitudinal acceleration G detected by the longitudinal acceleration detecting means 5, as will be described later, regardless of the actual variable amount of the shock absorber.

【0033】uはフィルタWc(s)を介して、 u(s)=Wc(s)uideal …(10) のように発生させる。このように、例えばWc(s)を
ローパスフィルタとしておけばu(s)の高周波成分が
減衰され、高周波帯域では、 u≒0⇒cu≒0⇒c2≒c0 …(11) となる。この効果については後に説明する。
U is generated via the filter W c (s) as follows: u (s) = W c (s) u ideal (10) Thus, for example, if by W c (s) is a low pass filter which attenuates high frequency components of u (s), the high frequency band, u ≒ 0⇒c u ≒ 0⇒c 2 ≒ c 0 ... (11) Become. This effect will be described later.

【0034】さて、式(10)のようにuを発生する
と、懸架系とフィルタの拡大系は、次のように表すこと
ができる。
When u is generated as in the equation (10), the suspension system and the filter expansion system can be expressed as follows.

【0035】[0035]

【数3】 (Equation 3)

【0036】また,加速度(d2/dt2)z2は、 (d2/dt2)z2=[CP0c]xe …(13) となる。ここで、xe=[xTc TTである。The acceleration (d 2 / dt 2 ) z 2 is (d 2 / dt 2 ) z 2 = [C P0 C c ] x e (13) Here, x e = [x T x c T ] T.

【0037】以下、Sliding Mode制御理論
に基づき制御ゲインを導く。
Below, the control gain is derived based on the sliding mode control theory.

【0038】式(12)はT1c=[0 B2 TT、B2
は正則行列、となるT1を用いた相似変換;
Equation (12) is given by T 1 B c = [0 B 2 T ] T , B 2
Is a regular matrix, and a similarity transformation using T 1 such that

【0039】[0039]

【数4】 (Equation 4)

【0040】により、According to

【0041】[0041]

【数5】 (Equation 5)

【0042】と書き直せる。Can be rewritten as

【0043】後述する式(19)のようにuidealを発
生すると、制御を始めてから実用上十分短い時間のうち
に、Sliding Modeを切換面; σ=0、σ=Fy1+y2 …(15) に発生させることができる。すなわち、拡大系の状態量
はσ=0の平面に拘束される[ただし参考文献3を参
照]。このとき拡大系の運動は, (d/dt)y1=A111+A122+B11(d2/dt2)z12=−Fy1 …(16) すなわち、 (d/dt)y1=(A11−A12F)y1+B11(d2/dt2)z1 …(17) と表現できる。
When u ideal is generated as in equation (19) described later, the sliding mode is switched within a sufficiently short time from the start of control for practical use; σ = 0, σ = Fy 1 + y 2 (15) ) Can be generated. That is, the state quantity of the expansion system is constrained to the plane of σ = 0 [see Reference 3]. At this time, the motion of the expanding system is (d / dt) y 1 = A 11 y 1 + A 12 y 2 + B 11 (d 2 / dt 2 ) z 1 y 2 = −Fy 1 (16) That is, (d / dt) y 1 = (A 11 −A 12 F) y 1 + B 11 (d 2 / dt 2 ) z 1 (17)

【0044】制御目的を満たすには、望ましい切換面に
状態を拘束すればよい。言葉をかえると、式(17)が
好ましい振動特性を表すようにすればよい。これは、 (d/dt)y1=A111+A12v で表される系を、状態フィードバックv=−Fy1で制
振する問題と等価である。このようなフィードバックゲ
インF(切換面)を設計するには次の公知の方法を用い
ればよい。
To meet the control objective, the state may be constrained to the desired switching surface. In other words, the expression (17) may be expressed as a preferable vibration characteristic. This is equivalent to the problem of damping the system represented by (d / dt) y 1 = A 11 y 1 + A 12 v with state feedback v = −Fy 1 . In order to design such a feedback gain F (switching surface), the following known method may be used.

【0045】状態が切換面σ=0に拘束されていると
き、次の評価関数
When the state is restricted to the switching surface σ = 0, the following evaluation function

【0046】[0046]

【数6】 (Equation 6)

【0047】が最小になる切換面σ=0、σ=F
1+y2は式(16)からH最適化により設計でき
る。ここで、Qは正定対称な重み行列、y=[y1
2T、γは懸架系の特性とフィルタの特性によって決
まる定数である。あるいは、(d2/dt2)z1をイン
パルス関数又は白色ノイズと仮定すると、Slidin
gModeが発生しているとき次の評価関数;
The switching surface that minimizes σ = 0, σ = F
y 1 + y 2 can be designed from the equation (16) by H optimization. Here, Q is a positive definite symmetric weight matrix, y = [y 1
y 2 ] T and γ are constants determined by the characteristics of the suspension system and the characteristics of the filter. Alternatively, if (d 2 / dt 2 ) z 1 is assumed to be an impulse function or white noise, Slidein
The following evaluation function when gMode is generated;

【0048】[0048]

【数7】 (Equation 7)

【0049】が最小になる切換面σ2=0、σ2=F21
+y2は,H2最適化により設計できる[参考文献3参
照]。
The switching surface that minimizes σ 2 = 0, σ 2 = F 2 y 1
+ Y 2 can be designed by H 2 optimization [see Reference 3].

【0050】ここで、例えばバネ上上下加速度(d2
dt2)z2を抑えたいときには、(d2/dt2)z2
評価関数に入れればよく、 (d2/dt2)z2=[CP0c]xe、T2e=y …(18) となることから、 Q=Q0+([CP0c]T2 -1T([CP0c]T2 -1) …(18a) とすればよい。だだし、xe=[xTc TT、Q0はQ
の正定対称性を満たすための行列である。
Here, for example, the sprung vertical acceleration (d 2 /
To suppress dt 2 ) z 2 , (d 2 / dt 2 ) z 2 may be put in the evaluation function, and (d 2 / dt 2 ) z 2 = [C P0 C c ] x e , T 2 x e = Y (18), Q = Q 0 + ([C P0 C c ] T 2 -1 ) T ([C P0 C c ] T 2 -1 ) ... (18a). However, x e = [x T x c T ] T , and Q 0 is Q
Is a matrix for satisfying the positive definite symmetry of.

【0051】Sliding Modeを実現する理想
入力uidealは、 uideal=Lxe+ρMxe/(‖Nxe‖+δ) …(19) と発生すればよい。ここで、制御ゲインL、M、Nは前
記参考文献3に示された適当な行列であり、次のように
求められる。まず、Σ、Θ、Фを次のように定義する。
The ideal input u ideal for realizing the sliding mode may be generated as u ideal = Lx e + ρMx e / (‖Nx e ‖ + δ) (19). Here, the control gains L, M, and N are the appropriate matrices shown in the above-mentioned reference document 3, and are obtained as follows. First, Σ, Θ, and Φ are defined as follows.

【0052】Σ=A11−A12F Θ=FΣ−A22F+A21 Ф=FA12+A22 これらから、L、M、Nは、 L=−B2 -1(Θ Ф−Ф′)T32 M=−B2 -1(0 P2)T32 N=(0 P2)T32 となる。ここでP2は次のLyapunov方程式の正
定対称解とする。
Σ = A 11 −A 12 F Θ = FΣ−A 22 F + A 21 Φ = FA 12 + A 22 From these, L, M and N are L = −B 2 −1 (Θ Φ−Φ ′ ′) T 3 T 2 M = -B 2 -1 (0 P 2) T 3 T 2 N = (0 P 2) becomes T 3 T 2. Here, P 2 is a positive definite symmetric solution of the following Lyapunov equation.

【0053】P2Ф′+Ф′T2=−I Ф′とρは設計パラメータで、それぞれSliding
modeへの収束の速さを決める安定行列、uswの大
きさを決める正定数である。また、
[0053] In the P 2 Ф '+ Ф' T P 2 = -I Ф ' and ρ is the design parameters, respectively Sliding
A stability matrix that determines the speed of convergence to the mode, and a positive constant that determines the size of u sw . Also,

【0054】[0054]

【数8】 (Equation 8)

【0055】である。Is as follows.

【0056】δ≧0は設計パラメータで、チャタリング
を防止する正定数である。減衰定数の応答が十分速く、
かつ相対変位、相対速度の検出が十分速く行えるときに
は、δ=0とするとuswは不連続な切換入力となり、切
換面への状態の拘束を確実にすることができる。
Δ ≧ 0 is a design parameter, which is a positive constant for preventing chattering. The response of the damping constant is fast enough,
In addition, when the relative displacement and the relative velocity can be detected sufficiently fast, if δ = 0, u sw becomes a discontinuous switching input, and the state can be reliably restrained to the switching surface.

【0057】uidealから理想減衰力は前に示したよう
に、 fideal(s)=Wc(s)uideal(s) と発生される。理想減衰力で、ショックアブソーバで発
生可能なfsabsは −fideal/x2=c″≧0、fsabs=−c″x2 …(20) で−fideal/x2≧0のときに限られる。ここで必ずし
も−fideal/x2≧0である保証はないが、フィルタW
c(s)や切換面σ=0が適切に設定されていれば実用
領域で十分な制御効果を期待することができる。このこ
とから減衰力可変ショックアブソーバの減衰定数の目標
値は減衰力の固定分c0を考慮して式(5)に示したよ
うに、 c′=cu+c0、cu=−fideal/x2 とすればよい。
From u ideal , the ideal damping force is generated as previously shown: f ideal (s) = W c (s) u ideal (s). With ideal damping force, f sabs that can be generated by the shock absorber is -f ideal / x 2 = c ″ ≧ 0, f sabs = −c ″ x 2 (20) and when −f ideal / x 2 ≧ 0. Limited Here, it is not always guaranteed that −f ideal / x 2 ≧ 0, but the filter W
If c (s) and the switching surface σ = 0 are properly set, a sufficient control effect can be expected in the practical area. From this, the target value of the damping constant of the damping force variable shock absorber is as shown in equation (5) in consideration of the fixed component c 0 of the damping force, as shown in equation (5): c ′ = c u + c 0 , c u = −f ideal / X 2 is sufficient.

【0058】つぎに基本減衰定数目標値c0の効果につ
いて説明する。
Next, the effect of the basic damping constant target value c 0 will be described.

【0059】本発明では、以下に説明するように、この
基本減衰定数目標値c0として、例えば大小2種類の所
定値を設定しておき、これらを前後加速度Gの絶対値│
G│の大小にしたがって切り換えて用いることにより、
高周波帯域において、懸架系の減衰力特性を柔らかめに
し、主としてバネ上上下加速度を抑制して乗り心地を高
めるか、懸架系の減衰力特性を硬めにして、主としてバ
ネ下上下加速度を抑制してタイヤの接地性を高めること
により、制駆動性能および操縦安定性を向上させるかを
選択することができる。
In the present invention, as will be described below, as the basic damping constant target value c 0 , for example, two large and small predetermined values are set, and these absolute values of the longitudinal acceleration G |
By switching according to the magnitude of G│,
In the high frequency band, soften the damping force characteristics of the suspension system to suppress the vertical acceleration on the springs to improve the ride comfort, or harden the damping force characteristics of the suspension system to suppress the vertical accelerations on the unsprung area. It is possible to select whether to improve the braking / driving performance and the steering stability by increasing the ground contact property of the tire.

【0060】まず、懸架系の運動方程式(7)を次のよ
うに書き換える。
First, the motion equation (7) of the suspension system is rewritten as follows.

【0061】 m2(d2/dt2)z2+c2(d/dt)z2+k22=c2(d/dt)z1+k 21 …(21) ここで、制振すべきはバネ上の振動であると考えれば、
1、(d/dt)z1は外乱であり、k2、c2はそれぞ
れの入力ゲインになっていることが分かる。このことか
らc2の値を小さくすれば外乱(d/dt)z1の影響は
遮断され、したがって比較的高周波帯域での振動特性は
改良されるが、そうすると左辺のダンピングが不足し、
共振周波数(k2/m21/2の付近の振動が大きくな
る。
MTwo(DTwo/ DtTwo) ZTwo+ CTwo(D / dt) zTwo+ KTwozTwo= CTwo(D / dt) z1+ K Two z1 (21) Here, considering that the vibration to be damped is the vibration on the spring,
z1, (D / dt) z1Is a disturbance, kTwo, CTwoEach
It can be seen that this is the input gain. This thing
La cTwoDistortion (d / dt) z by decreasing the value of1The effect of
Therefore, the vibration characteristics in the relatively high frequency band are blocked.
It will be improved, but then the damping on the left side will be insufficient,
Resonance frequency (kTwo/ MTwo)1/2Vibration near the
You.

【0062】ところが、以上述べてきた制御方式におい
て、例えばフィルタWc(s)をローパスフィルタと
し、c0を十分小さい値としておけば、式(11)で述
べたように,高周波ではc2≒c0となり、外乱の遮断性
が改良され、かつ低周波帯域ではSliding Mo
de制御の効果が現れて懸架系のダンピングを改良する
ことができる。
However, in the control method described above, for example, if the filter W c (s) is a low-pass filter and c 0 is a sufficiently small value, then c 2 ≈ at high frequencies as described in equation (11). c 0 , the disturbance blocking property is improved, and Sliding Mo is used in the low frequency band.
The effect of de control appears and the damping of the suspension system can be improved.

【0063】したがって、車両の定速走行時、緩制動
時、緩加速時など、前後加速度Gの絶対値│G│が所定
の設定値G0よりも小さい場合(│G│<G0)には、主
としてバネ上上下加速度を抑制し、乗り心地を向上させ
る必要があるので、基本減衰定数目標値c0を小さいほ
うの所定値に切り換え、減衰力特性を柔らかめに設定し
ておけば、図4のグラフ(A)に示すように、高周波帯
域におけるバネ上上下加速度特性として良好な特性が得
られる。
Therefore, when the absolute value │G│ of the longitudinal acceleration G is smaller than a predetermined set value G 0 (│G│ <G 0 ), such as when the vehicle is traveling at a constant speed, at the time of slow braking, or at the time of slow acceleration. Since it is necessary to mainly suppress the sprung vertical acceleration and improve the riding comfort, if the basic damping constant target value c 0 is switched to a smaller predetermined value and the damping force characteristic is set softly, As shown in the graph (A) of FIG. 4, a good sprung vertical acceleration characteristic in a high frequency band can be obtained.

【0064】一方、車両の急制動時、急加速時等、操舵
速度Gの絶対値│G│が所定の設定値G0よりも大きい
場合(│G│>G0)には、基本減衰定数目標値c0を大
きいほうの所定値に切り換えることにより、ショックア
ブソーバ4の減衰力特性を硬めにする。これにより、図
5のグラフ(B)に示すように、バネ下上下加速度が抑
制され、タイヤ接地性が高められるので、制駆動性能お
よび操縦安定性が向上する。
On the other hand, when the absolute value │G│ of the steering speed G is larger than the predetermined set value G 0 (│G│> G 0 ), such as during sudden braking or sudden acceleration of the vehicle, the basic damping constant By switching the target value c 0 to the larger predetermined value, the damping force characteristic of the shock absorber 4 is made harder. As a result, as shown in the graph (B) of FIG. 5, the unsprung vertical acceleration is suppressed and the tire ground contact property is enhanced, so that the braking / driving performance and the steering stability are improved.

【0065】なお、修正演算値設定手段14からの出力
である減衰定数可変代cuは変わらないため、このcu
効いて来る低周波帯域での懸架系の振動特性は変化する
ことはない。
Since the damping constant variable amount c u which is the output from the corrected calculation value setting means 14 does not change, the vibration characteristic of the suspension system does not change in the low frequency band where this c u is effective. .

【0066】このように、本発明によれば、比較的検出
容易な信号を用いて車体の上下振動を抑制することがで
きるとともに、前後加速度Gによって判断される車両の
状態に応じて基本減衰定数目標値c0を切り換えること
により、高周波帯域におけるショックアブソーバの減衰
力が切り換えられ、車両の通常の定速走行時などには、
バネ上上下加速度を抑制して乗り心地を高める一方、車
両の急制動時、急加速時などには、主としてバネ下上下
加速度を抑制して操縦安定性を高めることができる。こ
れにより、車両の運転状況に応じて、最も効果のあるサ
スペンション特性を得ることができるため、車両の乗り
心地の向上と、制駆動性能および操縦安定性の向上を、
同時に最大限に図ることができる。
As described above, according to the present invention, the vertical vibration of the vehicle body can be suppressed by using the signal which is relatively easy to detect, and the basic damping constant is determined according to the state of the vehicle judged by the longitudinal acceleration G. By switching the target value c 0 , the damping force of the shock absorber in the high frequency band is switched, and when the vehicle is traveling at a constant speed,
While suppressing the sprung vertical acceleration to improve the riding comfort, it is possible to suppress the unsprung vertical acceleration mainly to enhance the steering stability when the vehicle is suddenly braked or suddenly accelerated. As a result, the most effective suspension characteristics can be obtained according to the driving situation of the vehicle, so that the riding comfort of the vehicle is improved, and the braking / driving performance and the steering stability are improved.
At the same time, it can be maximized.

【0067】図6、図7には本発明の他の実施の形態を
示す。
6 and 7 show another embodiment of the present invention.

【0068】図6に示すように、この実施の形態では、
図1の操舵速度検出手段5の代わりに加速指示信号(本
実施の形態ではアクセルペダル角λA)および減速指示
信号(本実施の形態ではブレーキペダル角λB)を検出
する加減速指示信号検出手段6が設けられ、減衰定数目
標値決定手段3は、相対変位検出手段1からのバネ上と
バネ下の相対変位、相対速度検出手段2からのバネ上と
バネ下の相対速度、加減速指示信号検出手段6からの加
速指示信号および減速指示信号に基づいて減衰定数の目
標値を演算し、この結果を減衰力可変ショックアブソー
バ4に入力して目標とする減衰力を発生させるように制
御する。
As shown in FIG. 6, in this embodiment,
Acceleration / deceleration instruction signal detection for detecting an acceleration instruction signal (accelerator pedal angle λ A in this embodiment) and a deceleration instruction signal (brake pedal angle λ B in this embodiment) instead of the steering speed detection means 5 in FIG. Means 6 is provided, and the damping constant target value determining means 3 is configured such that the sprung and unsprung relative displacement from the relative displacement detecting means 1, the sprung and unsprung relative speeds from the relative speed detecting means 2, and acceleration / deceleration instruction The target value of the damping constant is calculated based on the acceleration instruction signal and the deceleration instruction signal from the signal detection means 6, and the result is input to the damping force variable shock absorber 4 so that the target damping force is generated. .

【0069】すなわち、図7の減衰定数目標値演算手段
3の具体的な構成において示されるように、加速指示信
号であるアクセルペダル角λAおよび減速指示信号であ
るブレーキペダル角λBは目標値設定手段15に入力さ
れ、このアクセルペダル角λAおよびブレーキペダル角
λBにしたがって、基本減衰定数目標値c0が切り換えら
れるようになっている。
That is, as shown in the concrete configuration of the damping constant target value calculating means 3 in FIG. 7, the accelerator pedal angle λ A as the acceleration instruction signal and the brake pedal angle λ B as the deceleration instruction signal are the target values. The basic damping constant target value c 0 is switched according to the accelerator pedal angle λ A and the brake pedal angle λ B which are input to the setting means 15.

【0070】具体的には、例えば定速走行時、緩加速
時、緩制動時など、アクセルペダル角λAおよびブレー
キペダル角λBのいずれもが、それぞれの設定値λA0
λB0より小さい場合(λA<λA0かつλB<λB0の場合)
には、基本減衰定数目標値c0を小さめの所定値として
懸架系の減衰力特性を柔らかめとすることにより、主と
してバネ上上下加速度を抑制することにより、高周波帯
域における車体振動を抑制し、乗り心地を向上させる。
Specifically, for example, at the time of constant speed running, slow acceleration, slow braking, etc., both the accelerator pedal angle λ A and the brake pedal angle λ B have their respective set values λ A0 ,
When smaller than λ B0 (when λ AA0 and λ BB0 )
In order to suppress the vehicle body vibration in the high frequency band by suppressing the sprung vertical acceleration by softening the damping force characteristic of the suspension system by setting the basic damping constant target value c 0 to a small predetermined value, Improves ride comfort.

【0071】一方、急加速、急制動時など、アクセルペ
ダル角λAまたはブレーキペダル角λBの少なくともいず
れか一方が、それぞれの設定値λA0,λB0より大きい場
合(λA>λA0またはλB>λB0の場合)には、c0を大
きめの所定値として懸架系の減衰力特性を硬めとするこ
とにより、主としてバネ下上下加速度を抑制し、高周波
帯域においても硬めな減衰力特性によりタイヤ接地性を
高め、制駆動性能および操縦安定性を高めるようにす
る。
On the other hand, when at least one of the accelerator pedal angle λ A and the brake pedal angle λ B is larger than the respective set values λ A0 and λ B0A > λ A0 or In the case of λ B > λ B0 ), the damping force characteristic of the suspension system is made stiff with a large predetermined value of c 0 to mainly suppress unsprung vertical acceleration, and the damping force characteristic is stiff even in the high frequency band. Will improve the ground contact of the tires and improve braking / driving performance and steering stability.

【0072】これにより、本発明によれば、車両の運転
状況に応じて、最も効果のあるサスペンション特性を得
ることができ、車両の乗り心地の向上と、制駆動性能お
よび操縦安定性の向上とを、同時に最大限に図ることが
できる。
As a result, according to the present invention, the most effective suspension characteristics can be obtained according to the driving condition of the vehicle, the riding comfort of the vehicle is improved, and the braking / driving performance and the steering stability are improved. Can be maximized at the same time.

【0073】[0073]

【発明の効果】第1の発明によれば、減衰力可変ショッ
クアブソーバに入力される減衰定数目標値は、基本減衰
定数目標値と減衰定数修正値から決定されるが、目標値
設定手段が、定速走行時、緩制動時、緩加速時など前後
加速度の絶対値が設定値よりも小さなときには、基本減
衰定数目標値を小さい値とし、急制動時または急加速時
など前後加速度の絶対値が設定値よりも大きなときに
は、基本減衰定数目標値を大きい値とするので、定速走
行時などには柔らかめな減衰力特性により良好な乗り心
地を保つ一方で、急制動時、急加速時など車両の乗り心
地よりも操縦安定性を重視する必要があるときには、減
衰力特性を硬めにしてタイヤの接地性を高め、制駆動性
能および操縦安定性を高めるようにでき、車両の乗り心
地の向上と、制駆動性能および操縦安定性の向上とを同
時に最大限に図ることができる。
According to the first aspect of the present invention, the damping constant target value input to the damping force variable shock absorber is determined from the basic damping constant target value and the damping constant correction value. When the absolute value of the longitudinal acceleration is smaller than the set value, such as during constant speed driving, slow braking, or slow acceleration, the basic damping constant target value is set to a small value and the absolute value of the longitudinal acceleration during sudden braking or sudden acceleration is reduced. When the value is larger than the set value, the target value of the basic damping constant is set to a large value, so while maintaining a good riding comfort due to the soft damping force characteristics, such as during constant speed driving, during sudden braking, sudden acceleration, etc. When it is necessary to focus on driving stability rather than riding comfort of the vehicle, the damping force characteristics can be hardened to improve the ground contact of the tires, improving braking / driving performance and driving stability, and improving the riding comfort of the vehicle. And braking It can be achieved to maximize performance and steering stability improved and at the same time.

【0074】第2の発明によれば、目標値設定手段が、
前記加速指示信号および前記減速指示信号と所定の基準
値との大小関係に応じて走行状態を判断し、定速走行
時、緩制動時、緩加速時などには、基本減衰定数目標値
を小さい値とし、急制動時または急加速時などには、基
本減衰定数目標値を大きい値とするので、定速走行時な
どには柔らかめな減衰力特性により良好な乗り心地を保
つ一方で、急制動時、急加速時など車両の乗り心地より
も操縦安定性を重視する必要があるときには、減衰力特
性を硬めにしてタイヤの接地性を高め、制駆動性能およ
び操縦安定性を高めるようにでき、車両の乗り心地の向
上と、制駆動性能および操縦安定性の向上とを同時に最
大限に図ることができる。
According to the second invention, the target value setting means is
The running state is determined according to the magnitude relationship between the acceleration instruction signal and the deceleration instruction signal and a predetermined reference value, and the basic damping constant target value is small during constant speed traveling, slow braking, slow acceleration, etc. Since the target value of the basic damping constant is set to a large value during sudden braking or sudden acceleration, a soft damping force characteristic keeps a good ride comfort while driving at a constant speed. When it is necessary to prioritize steering stability rather than riding comfort of the vehicle during braking or sudden acceleration, the damping force characteristics can be hardened to improve the ground contact of the tires and enhance braking / driving performance and steering stability. In addition, it is possible to maximize the improvement of the riding comfort of the vehicle and the improvement of braking / driving performance and steering stability at the same time.

【0075】第3の発明によれば、加速指示信号として
アクセルペダル角を検出する信号が、また減速指示信号
としてブレーキペダル角を検出する信号がそれぞれ検出
され、目標値設定手段が、定速走行時、緩制動時、緩加
速時など、ブレーキペダル角およびアクセルペダル角の
いずれもが設定値よりも小さなときには、基本減衰定数
目標値を小さい値とし、急制動時などブレーキペダル角
が設定値より大きいか、急加速時などアクセルペダル角
が設定値より大きなときには、基本減衰定数目標値を大
きい値とするので、定速走行時などには柔らかめな減衰
力特性により良好な乗り心地を保つ一方で、急制動時、
急加速時など車両の乗り心地よりも操縦安定性を重視す
る必要があるときには、減衰力特性を硬めにしてタイヤ
の接地性を高め、制駆動性能および操縦安定性を高める
ようにでき、車両の乗り心地の向上と、制駆動性能およ
び操縦安定性の向上とを同時に最大限に図ることができ
る。
According to the third invention, the signal for detecting the accelerator pedal angle is detected as the acceleration instruction signal, and the signal for detecting the brake pedal angle is detected as the deceleration instruction signal. When both the brake pedal angle and the accelerator pedal angle are smaller than the set values, such as during slow braking, slow braking, and slow acceleration, the basic damping constant target value is set to a small value, and the brake pedal angle is less than the set value during sudden braking. If the accelerator pedal angle is larger than the set value, such as during large acceleration, the target value for the basic damping constant is set to a large value, while maintaining a good ride comfort due to the soft damping force characteristics during constant speed driving. Then, during sudden braking,
When it is necessary to prioritize steering stability rather than riding comfort of the vehicle, such as during sudden acceleration, the damping force characteristics can be hardened to improve the ground contact of the tires and enhance braking / driving performance and steering stability. It is possible to maximize the riding comfort and the braking / driving performance and the steering stability at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】同じく減衰力演算手段を示すブロック図であ
る。
FIG. 2 is a block diagram showing a damping force calculation means.

【図3】同じく懸架系を示すモデル図である。FIG. 3 is a model diagram showing a suspension system of the same.

【図4】同じく制振効果を示す特性図である。FIG. 4 is a characteristic diagram similarly showing a vibration damping effect.

【図5】同じく特性図である。FIG. 5 is a characteristic diagram similarly.

【図6】本発明の他の実施の形態を示すブロック図であ
る。
FIG. 6 is a block diagram showing another embodiment of the present invention.

【図7】同じく減衰力演算手段を示すブロック図であ
る。
FIG. 7 is a block diagram showing a damping force calculating means.

【符号の説明】[Explanation of symbols]

1 相対変位検出手段 2 相対速度検出手段 3 減衰定数目標値演算手段 4 ショックアブソーバ 5 前後加速度検出手段 6 加減速指示信号検出手段 11 切換入力演算手段 12 線形入力演算手段 13 フィルタ 14 修正値演算手段 15 目標値設定手段 1 Relative Displacement Detecting Means 2 Relative Velocity Detecting Means 3 Damping Constant Target Value Calculating Means 4 Shock Absorbers 5 Longitudinal Acceleration Detecting Means 6 Acceleration / Deceleration Instruction Signal Detecting Means 11 Switching Input Calculating Means 12 Linear Input Calculating Means 13 Filters 14 Correction Value Calculating Means 15 Target value setting means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】バネ上とバネ下の相対速度検出手段と、 バネ上とバネ下の相対変位検出手段と、 これらから検出された相対速度と相対変位を入力として
減衰力可変ショックアブソーバの減衰定数目標値を設定
する減衰定数目標値演算手段と、 この減衰定数目標値を入力して減衰定数を調節する減衰
力可変ショックバブソーバとを備えるとともに、 前記減衰力目標値演算手段は、所定の定数である基本減
衰定数目標値を設定する目標値設定手段と、前記相対速
度及び相対変位に基づいて演算した理想減衰力を修正し
た減衰定数修正値を演算する修正値演算手段とを備え、
これら基本減衰定数目標値と減衰定数修正値とを含む減
衰定数目標値を出力する懸架系の減衰力制御装置におい
て、 車両の前後加速度を検出する前後加速度検出手段を備
え、 前記目標値設定手段は、前記前後加速度の絶対値が設定
値よりも小さなときには前記基本減衰定数目標値として
小さい所定値を選択し、前記前後加速度の絶対値が設定
値よりも大きなときには前記基本減衰定数目標値として
大きい所定値を選択することを特徴とする懸架系の減衰
力制御装置。
1. A sprung and unsprung relative velocity detecting means, a sprung and unsprung relative displacement detecting means, and a damping constant of a damping force variable shock absorber using the relative velocity and relative displacement detected from these as input. A damping constant target value calculating means for setting a target value, and a damping force variable shock babsaver for inputting the damping constant target value to adjust the damping constant are provided, and the damping force target value calculating means is a predetermined constant. A target value setting means for setting a basic damping constant target value that is, and a correction value calculating means for calculating a damping constant correction value that corrects the ideal damping force calculated based on the relative speed and relative displacement,
In a suspension system damping force control device that outputs a damping constant target value including these basic damping constant target value and damping constant correction value, a longitudinal acceleration detecting means for detecting longitudinal acceleration of the vehicle is provided, and the target value setting means is When the absolute value of the longitudinal acceleration is smaller than a set value, a small predetermined value is selected as the basic damping constant target value, and when the absolute value of the longitudinal acceleration is larger than the set value, a large predetermined value is set as the basic damping constant target value. A suspension damping force control device characterized by selecting a value.
【請求項2】バネ上とバネ下の相対速度検出手段と、 バネ上とバネ下の相対変位検出手段と、 これらから検出された相対速度と相対変位を入力として
減衰力可変ショックアブソーバの減衰定数目標値を設定
する減衰定数目標値演算手段と、 この減衰定数目標値を入力して減衰定数を調節する減衰
力可変ショックバブソーバとを備えるとともに、 前記減衰力目標値演算手段は、所定の定数である基本減
衰定数目標値を設定する目標値設定手段と、前記相対速
度及び相対変位に基づいて演算した理想減衰力を修正し
た減衰定数修正値を演算する修正値演算手段とを備え、
これら基本減衰定数目標値と減衰定数修正値とを含む減
衰定数目標値を出力する懸架系の減衰力制御装置におい
て、 車両の加速を指示する加速指示信号と車両の減速を指示
する減速指示信号を検出する加減速指示信号検出手段を
備え、 前記目標値設定手段は、前記加速指示信号および減速指
示信号と所定の基準値との大小関係にしたがって、前記
基本減衰定数目標値として小さい所定値または大きな所
定値を選択することを特徴とする懸架系の減衰力制御装
置。
2. A sprung and unsprung relative velocity detecting means, a sprung and unsprung relative displacement detecting means, and a damping constant of a damping force variable shock absorber using the relative velocity and relative displacement detected from these as input. A damping constant target value calculating means for setting a target value, and a damping force variable shock babsaver for inputting the damping constant target value to adjust the damping constant are provided, and the damping force target value calculating means is a predetermined constant. A target value setting means for setting a basic damping constant target value that is, and a correction value calculating means for calculating a damping constant correction value that corrects the ideal damping force calculated based on the relative speed and relative displacement,
In a suspension damping force control device that outputs a damping constant target value including these basic damping constant target value and damping constant correction value, an acceleration instruction signal for instructing vehicle acceleration and a deceleration instruction signal for instructing vehicle deceleration are provided. The target value setting means includes an acceleration / deceleration instruction signal detecting means for detecting, and the target value setting means has a small predetermined value or a large value as the basic damping constant target value according to a magnitude relationship between the acceleration instruction signal and the deceleration instruction signal and a predetermined reference value. A damping force control device for a suspension system, wherein a predetermined value is selected.
【請求項3】前記加速指示信号はアクセルペダル角を検
出する信号であり、前記減速指示信号はブレーキペダル
角を検出する信号であり、前記目標値設定手段は、前記
アクセルペダル角およびブレーキペダル角のいずれもが
設定値よりも小さなときには前記基本減衰定数目標値と
して小さい所定値を選択し、前記アクセルペダル角また
はブレーキペダル角の少なくともいずれか一方が設定値
よりも大きなときには前記基本減衰定数目標値として大
きい所定値を選択することを特徴とする請求項2に記載
の懸架系の減衰力制御装置。
3. The acceleration instruction signal is a signal for detecting an accelerator pedal angle, the deceleration instruction signal is a signal for detecting a brake pedal angle, and the target value setting means is the accelerator pedal angle and the brake pedal angle. When any of the above is smaller than the set value, a small predetermined value is selected as the basic damping constant target value, and when at least one of the accelerator pedal angle and the brake pedal angle is larger than the set value, the basic damping constant target value is selected. The damping force control device for a suspension system according to claim 2, wherein a large predetermined value is selected as.
JP12846796A 1996-05-23 1996-05-23 Suspension damping force control device Expired - Lifetime JP3860251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12846796A JP3860251B2 (en) 1996-05-23 1996-05-23 Suspension damping force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12846796A JP3860251B2 (en) 1996-05-23 1996-05-23 Suspension damping force control device

Publications (2)

Publication Number Publication Date
JPH09309312A true JPH09309312A (en) 1997-12-02
JP3860251B2 JP3860251B2 (en) 2006-12-20

Family

ID=14985456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12846796A Expired - Lifetime JP3860251B2 (en) 1996-05-23 1996-05-23 Suspension damping force control device

Country Status (1)

Country Link
JP (1) JP3860251B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107891723A (en) * 2017-11-29 2018-04-10 辽宁工业大学 The sliding-mode control and control device of automobile electrically-controlled air suspension
CN115195555A (en) * 2021-04-02 2022-10-18 丰田自动车株式会社 Vehicle control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107891723A (en) * 2017-11-29 2018-04-10 辽宁工业大学 The sliding-mode control and control device of automobile electrically-controlled air suspension
CN107891723B (en) * 2017-11-29 2023-06-30 辽宁工业大学 Sliding mode control method and device for automobile electric control air suspension
CN115195555A (en) * 2021-04-02 2022-10-18 丰田自动车株式会社 Vehicle control device

Also Published As

Publication number Publication date
JP3860251B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
JP2898949B2 (en) Semi-active suspension control device and method
JP5056367B2 (en) Vehicle vibration suppression control device
KR102174283B1 (en) Suspension control unit
US9114683B2 (en) Vehicle control device and method
JP7186282B2 (en) suspension controller
JPH08175193A (en) Active type engine mount device
US5979885A (en) Damping coefficient control apparatus for damping mechanism in vehicle suspension system
JP5679067B2 (en) Vehicle control device
JPH05169959A (en) Method for adaptive control for vehicle pedestal mechanism depending on frequency
JP5110008B2 (en) Vehicle damping force control device
JP2011230718A (en) Vehicular suspension control device
JPH09309312A (en) Damping force control device of suspension system
JPH09301164A (en) Vibration suppressor
JP3860247B2 (en) Suspension damping force control device
JP3433492B2 (en) Vehicle seat control device
JP3270672B2 (en) Suspension damping control system
JPH09254625A (en) Damping force controller of suspension system
JPH1178467A (en) Suspension controller
JPH0986131A (en) Suspension control device
JP5571510B2 (en) Suspension control device
JPH0569718A (en) Suspension control device
JPH09249015A (en) Damping force control device for suspension system
WO2023048085A1 (en) Vehicle control device and vehicle control system
JP2004182031A (en) Suspension control device
JP2002293121A (en) Suspension control device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040130

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040204

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150929

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term