JPH09308823A - Method for decomposing halogenated ethylene - Google Patents

Method for decomposing halogenated ethylene

Info

Publication number
JPH09308823A
JPH09308823A JP14788496A JP14788496A JPH09308823A JP H09308823 A JPH09308823 A JP H09308823A JP 14788496 A JP14788496 A JP 14788496A JP 14788496 A JP14788496 A JP 14788496A JP H09308823 A JPH09308823 A JP H09308823A
Authority
JP
Japan
Prior art keywords
halogenated ethylene
diaphragm
aqueous solution
electrolysis
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14788496A
Other languages
Japanese (ja)
Other versions
JP3981424B2 (en
Inventor
Mitsuo Matsumura
光夫 松村
Hideo Koshimura
英雄 越村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAITO KANKYO KANRI KK
Original Assignee
NAITO KANKYO KANRI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAITO KANKYO KANRI KK filed Critical NAITO KANKYO KANRI KK
Priority to JP14788496A priority Critical patent/JP3981424B2/en
Publication of JPH09308823A publication Critical patent/JPH09308823A/en
Application granted granted Critical
Publication of JP3981424B2 publication Critical patent/JP3981424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for decomposing a halogenated ethylene effectively. SOLUTION: In the electrolysis of an aqueous solution containing electron carrying electrolyte in an electrolytic bath divided into an anodic side and a cathodic side by a diaphragm, a halogenated ethylene or its aqueous solution is introduced into the acidic anode side and/or the alkaline cathodic side and decomposed by the application of electrolytic voltage. By introducing the halogenated ethylene or its aqueous solution into a diaphragm electrolytic process, the halogenated ethylene can be decomposed efficiently and simply into harmless substances.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】(産業上の利用分野)本発明はハロゲン化
エチレンの分解処理方法に関する。
(Field of Industrial Application) The present invention relates to a method of decomposing halogenated ethylene.

【0002】[0002]

【従来の技術および発明の解決すべき課題】塩素系有機
化合物であるトリクロロエチレン、テトラクロロエチレ
ン等のハロゲン化エチレンは不燃性の液体であり、物質
を溶解する溶解速度が大きいことから脱脂剤および洗浄
剤として重用され広く利用されてきた。しかしながらこ
れら脱脂剤等は環境汚染の見地から公害対策基本法にお
ける規制対象物となっており、現在これらの代替となる
実用的な技術は確立されていない。
2. Description of the Related Art Chlorinated organic compounds such as trichlorethylene and tetrachloroethylene, which are halogenated ethylene, are nonflammable liquids and have a high dissolution rate for dissolving substances. Therefore, they are used as degreasers and detergents. It has been heavily used and widely used. However, from the viewpoint of environmental pollution, these degreasers and the like are regulated objects in the Basic Law for Pollution Control, and at present, practical technologies to substitute them are not established.

【0003】一方、使用済のトリクロロエチレン等のハ
ロゲン化エチレンについての回収、除去方法が従来から
種々提案されており、たとえば、活性炭等による吸着/
回収法、紫外線照射による分解法、オゾン分解法あるい
は特定の酸化剤による酸化分解法等が提案されてている
(特開昭63−190620号公報、特開平22959
3等)。
On the other hand, various methods for collecting and removing used halogenated ethylene such as used trichlorethylene have been proposed in the past. For example, adsorption / activation with activated carbon or the like has been proposed.
A recovery method, a decomposition method by ultraviolet irradiation, an ozone decomposition method, an oxidative decomposition method using a specific oxidizing agent, and the like have been proposed (JP-A-63-190620, JP-A-229595).
3rd grade).

【0004】しかし前記処理方法は、たとえば吸着媒体
の二次処理を必要とし、分解効率が不十分であり、処理
操作が複雑でありまたは処理コストが嵩んだりする等の
点で必ずしも実用化には適してはいない。
However, the above-mentioned treatment method is not always put to practical use because, for example, it requires a secondary treatment of the adsorption medium, the decomposition efficiency is insufficient, the treatment operation is complicated, and the treatment cost is high. Is not suitable.

【0005】本発明者らはトリクロロエチレン等のハロ
ゲン化エチレンが所定の電解条件におかれた際に極めて
効率的に分解されることを図らずも発見し、この知見に
基いて本発明を完成するに到った。
The present inventors have unexpectedly discovered that halogenated ethylene such as trichlorethylene is decomposed extremely efficiently when it is subjected to predetermined electrolysis conditions, and the present invention is completed based on this finding. Came to.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の方法
によれば隔膜によって陽極側と陰極側とに区画される電
解槽中に電子キャリヤ性の電解質を含む水溶液を電解液
として用いて電解を行う際に、前記電解槽の酸性を呈す
る陽極側および/またはアルカリ性を呈する陰極側にハ
ロゲン化エチレンまたはその水溶液を導入し、電解電圧
の印加下において分解することを特徴とするハロゲン化
エチレンの分解処理方法により、ハロゲン化エチレンが
効果的に分解処理される。
That is, according to the method of the present invention, electrolysis is performed by using an aqueous solution containing an electron carrier electrolyte in an electrolytic cell divided into an anode side and a cathode side by a diaphragm as an electrolytic solution. In carrying out, the halogenated ethylene or an aqueous solution thereof is introduced into the acidic anode side and / or the alkaline cathode side of the electrolytic cell, and decomposed under the application of an electrolytic voltage to decompose the halogenated ethylene. Depending on the treatment method, the halogenated ethylene is effectively decomposed.

【0007】[0007]

【発明の実施態様】本発明においては、隔膜によって陽
極側と陰極側とに区画された電解槽において電子キャリ
ヤ性の電解質、たとえばKNO3 を含む水溶液を電解液
として用いる。槽の具体的な構成は、たとえば電解槽中
に円筒状の素焼磁性隔膜(以下素焼き円筒)等を設置す
ることによって簡単に得られる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an aqueous solution containing an electron carrier electrolyte such as KNO 3 is used as an electrolytic solution in an electrolytic cell divided into an anode side and a cathode side by a diaphragm. The specific configuration of the tank can be easily obtained by, for example, installing a cylindrical unglazed magnetic diaphragm (hereinafter referred to as unglazed cylinder) in the electrolytic cell.

【0008】前記電解槽中の素焼円筒の内部を陽極、外
部を陰極として所定の電圧を印加すると、電解電流が流
れ、KNO3 を含む電解液の電解により陽極側がpH約
0.8の硝酸の強酸性に陰極側がpH約13.2の水酸
化カリウムの強アルカリ性となる。かゝる電解槽に対し
てその陽極側、陰極側又はその双方の側にハロゲン化エ
チレン、たとえばトリクロロエチレンを導入すると、ト
リクロロエチレンが次亜塩素酸、塩素ガスおよび有機・
無機の炭素化合物に分解される。
When a predetermined voltage is applied with the inside of the bisque-fired cylinder in the electrolytic cell as the anode and the outside as the cathode, an electrolysis current flows, and the electrolysis of the electrolytic solution containing KNO 3 causes nitric acid having a pH of about 0.8 to form nitric acid. It becomes strongly acidic and the cathode side becomes strongly alkaline of potassium hydroxide having a pH of about 13.2. When halogenated ethylene, such as trichlorethylene, is introduced into the anode side, the cathode side, or both sides of such an electrolytic cell, trichlorethylene turns into hypochlorous acid, chlorine gas and organic.
Decomposed into inorganic carbon compounds.

【0009】一定時間毎に陰極側および陽極側の溶液を
採取してトリクロロエチレン濃度を測定すると、トリク
ロロエチレンは通電時間の経過と共に減少し分解の進行
が確認される。電解初期には陽極室中に次亜塩素酸が認
められ、また電解終了後の陽極側および陰極側には塩素
イオンおよび無機炭素等が認められトリクロルエチレン
はほとんど残留していなかった。
When the solution on the cathode side and the solution on the anode side are sampled at regular intervals and the concentration of trichlorethylene is measured, the amount of trichlorethylene is reduced with the passage of time of energization, and the progress of decomposition is confirmed. Hypochlorous acid was found in the anode chamber at the beginning of electrolysis, and chlorine ions and inorganic carbon were found on the anode and cathode sides after the electrolysis, and trichloroethylene was scarcely left.

【0010】前記電解処理工程において電解槽に導入さ
れたトリクロロエチレンは陽極側および陰極側において
次のような反応によって分解されるものと考えられる。
It is considered that the trichlorethylene introduced into the electrolytic cell in the electrolytic treatment step is decomposed by the following reactions on the anode side and the cathode side.

【0011】陽極側ではトリクロルエチレンの塩素が発
生する活性酸素で酸化され塩素ガスあるいは塩素イオン
として存在しこれらがさらに水と反応する。
On the anode side, trichlorethylene is oxidized by active oxygen generated as chlorine and exists as chlorine gas or chlorine ions, which further react with water.

【0012】Cl2 C=CClH + nO2 = Cl
2 +Cl- +CO2 +CO3 2 - Cl2 + H2 O = HClO + H+ Cl- + 2H2 O = 2HClO + 2H+
Cl 2 C = CClH + nO 2 = Cl
2 + Cl - + CO 2 + CO 3 2 - Cl 2 + H 2 O = HClO + H + Cl - + 2H 2 O = 2HClO + 2H +

【0013】陰極側ではトリクロルエチレンの塩素が発
生する活性水素によって置換されて塩素ガスあるいは塩
素イオン等となりこれらがさらに水と反応して次亜塩素
酸イオンとなる。
On the cathode side, the chlorine of trichloroethylene is replaced by active hydrogen to generate chlorine gas or chlorine ions, which further react with water to form hypochlorite ions.

【0014】Cl2 C=CClH + nH2 = 2C
4 + Cl2 + Cl- Cl- + 2OH- = ClO- + H2
Cl 2 C = CClH + nH 2 = 2C
H 4 + Cl 2 + Cl - Cl - + 2OH - = ClO - + H 2 O

【0015】電解質硝酸カリウム 電解液としての硝酸カリウム溶液は電解操作後も何等変
化を示さず、添加時の濃度を維持する。電解開始から時
間と共に陽極としての素焼き円筒内部の液容が増加す
る。これは陽極に対する外部からの硝酸イオンの移動に
水が随伴するためであると考えられる。
Electrolyte Potassium Nitrate The potassium nitrate solution as an electrolytic solution shows no change after the electrolysis operation and maintains the concentration at the time of addition. The liquid volume inside the unglazed cylinder as an anode increases with time from the start of electrolysis. It is considered that this is because water accompanies the movement of nitrate ions from the outside to the anode.

【0016】トリクロロエチレンの濃度は時間と共に低
下するが、その分解速度は電解電圧の増加にともなって
増大する。したがってこの場合の印加電圧は目的とする
処理量や処理時間にしたがって適宜に設定される。
The concentration of trichlorethylene decreases with time, but its decomposition rate increases with the increase of electrolysis voltage. Therefore, the applied voltage in this case is appropriately set according to the target processing amount and processing time.

【0017】尚本発明をトリクロロエチレンの分解につ
いて説明したが、本発明の方法は分子量が比較的小さ
く、二重結合を有するたとえばテトラクロロエチレン等
の他のハロゲン化エチレンについても同様に適用するこ
とができる。また電解操作の電解液として用いる電子キ
ャリヤ性の電解質としては、前記硝酸カリウムの他、硫
酸カリウム、硝酸ナトリウム、硫酸ナトリウム等の強電
解質も同様に用いられる。また隔膜としては前記素焼き
円筒の他、中性、アニオンもしくはカチオンのイオン交
換樹脂繊維が用いられる。
Although the present invention has been described with reference to the decomposition of trichlorethylene, the method of the present invention can be similarly applied to other halogenated ethylene such as tetrachloroethylene having a relatively small molecular weight and having a double bond. Further, as the electron carrier electrolyte used as an electrolytic solution in the electrolysis operation, in addition to potassium nitrate, strong electrolytes such as potassium sulfate, sodium nitrate, sodium sulfate and the like can also be used. In addition to the unglazed cylinder, neutral, anionic or cation ion exchange resin fibers are used as the diaphragm.

【0018】[0018]

【実施例】以下本発明の方法を図面に基づいて説明す
る。図1は本発明のハロゲン化エチレンの分解処理方法
を示す概念図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing the decomposition treatment method of halogenated ethylene of the present invention.

【0019】実施例 1 2000cm3 容積のガラスビーカ(1)の内部に25
0cm3 容積の素焼円筒(2)を配置し、素焼円筒
(2)の内部に白金(Pt)電極(3)、外部にスティ
ンレス鋼(SUS)電極(4)を夫々設けた。この電解
槽に電解液(5)として硝酸カリウムの0.05モル水
溶液1750cm3 を充填し、陽極室としての素焼円筒
(2)の内部にトリクロロエチレンの水溶液(0.98
g/リットル)200cm3 を導入し、初期電圧1.5
Vおよび電流2.1Aで電解操作を行った。2時間後の
トリクロルエチレン濃度は排水基準値の0.03mg/
リットルに対して0.01mg/リットルに低下してい
た。
Example 1 A glass beaker (1) having a volume of 2000 cm 3 was filled with 25 pieces.
A bisque-fired cylinder (2) having a volume of 0 cm 3 was arranged, a platinum (Pt) electrode (3) was provided inside the bisque-fired cylinder (2), and a stainless steel (SUS) electrode (4) was provided outside. 1750 cm 3 of a 0.05 molar aqueous solution of potassium nitrate was filled as an electrolytic solution (5) into this electrolytic cell, and an aqueous solution of trichlorethylene (0.98
g / liter) 200 cm 3 is introduced, and the initial voltage is 1.5
Electrolysis was performed at V and current of 2.1A. The concentration of trichlorethylene after 2 hours is 0.03 mg /
It was lowered to 0.01 mg / liter per liter.

【0020】実施例 2 実施例1と同様な構成の電解槽(1)に対して、トリク
ロロエチレン10gを素焼き円筒(2)に導入し、初期
電圧18Vおよび電流5.8Aで電解操作を行った。電
解開始後10時間後のトリクロロエチレン濃度は排水基
準値の0.03mg/リットルに対して0.02mg/
リットルに低下していた。
Example 2 In an electrolytic cell (1) having the same structure as in Example 1, 10 g of trichlorethylene was introduced into a bisque-fired cylinder (2), and electrolysis was performed at an initial voltage of 18 V and a current of 5.8 A. The concentration of trichlorethylene 10 hours after the start of electrolysis was 0.02 mg / l against the standard value of wastewater of 0.03 mg / l.
It had dropped to liters.

【0021】全く同様な条件でトリクロロエチレン2g
を導入して電解操作を行ったところ、10時間後のトリ
クロロエチレンの濃度は0.01mg以下となった。
2 g of trichlorethylene under exactly the same conditions
When was introduced and electrolyzed, the concentration of trichlorethylene after 10 hours was 0.01 mg or less.

【0022】[0022]

【発明の効果】本発明によれば、トリクロロエチレンま
たはその水溶液を電子キャリヤ性の強電解質の水溶液を
電解液として用いる隔膜電解法により極めて容易にかつ
著しく高い処理効率によって分解することができる。
According to the present invention, trichlorethylene or its aqueous solution can be decomposed very easily and with extremely high treatment efficiency by the diaphragm electrolysis method using an aqueous solution of a strong electrolyte having an electron carrier property as an electrolytic solution.

【0023】この方法に用いる装置としては素焼き円筒
等の隔膜を設置した電解槽を用いるだけの簡単な構造で
よく、また処理量や処理時間によって電解電圧を設定し
て連続もしくはバッチ方式により簡単な操作で処理を行
うことができる。
The apparatus used in this method may have a simple structure such as an electrolytic cell provided with a diaphragm such as a biscuit cylinder, and the electrolytic voltage may be set according to the treatment amount and the treatment time so as to be simple in a continuous or batch system. Processing can be performed by operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の分解処理方法に用いる装置を示す概念
図である。
FIG. 1 is a conceptual diagram showing an apparatus used for a decomposition treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1…電解槽(陰極側) 2…素焼円筒(陽極側) 3…白金電極(陽極) 4…SUS電極(陰極) 5…電解液 DESCRIPTION OF SYMBOLS 1 ... Electrolytic tank (cathode side) 2 ... Unfired cylinder (anode side) 3 ... Platinum electrode (anode) 4 ... SUS electrode (cathode) 5 ... Electrolyte

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 隔膜によって陽極側と陰極側とに区画さ
れる電解槽中に電子キャリヤ性の電解質を含む水溶液を
電解液として用いて電解を行う際に、前記電解槽の酸性
を呈する陽極側および/またはアルカリ性を呈する陰極
側にハロゲン化エチレンまたはその水溶液を導入し、電
解電圧の印加下において分解することを特徴とするハロ
ゲン化エチレンの分解処理方法。
1. An anode side that exhibits acidity in the electrolytic cell when electrolysis is performed using an aqueous solution containing an electron carrier electrolyte as an electrolytic solution in an electrolytic cell divided into an anode side and a cathode side by a diaphragm. And / or a method for decomposing halogenated ethylene, characterized by introducing ethylene halide or an aqueous solution thereof on the side of the cathode exhibiting alkalinity and decomposing under the application of an electrolysis voltage.
【請求項2】 前記隔膜が素焼き磁性隔膜、および中
性、アニオンもしくはカチオン型の合成繊維隔膜からな
る群より選ばれる請求項1記載のハロゲン化エチレンの
分解処理方法。
2. The method for decomposing halogenated ethylene according to claim 1, wherein the diaphragm is selected from the group consisting of a bismuth magnetic diaphragm and a neutral, anionic or cationic synthetic fiber diaphragm.
【請求項3】 前記ハロゲン化エチレンが二重結合を有
する低分子量のハロゲン化エチレンから選ばれる請求項
1記載のハロゲン化エチレンの分解処理方法。
3. The process for decomposing halogenated ethylene according to claim 1, wherein the halogenated ethylene is selected from low molecular weight halogenated ethylene having a double bond.
JP14788496A 1996-05-20 1996-05-20 Decomposition method of halogenated ethylene Expired - Lifetime JP3981424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14788496A JP3981424B2 (en) 1996-05-20 1996-05-20 Decomposition method of halogenated ethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14788496A JP3981424B2 (en) 1996-05-20 1996-05-20 Decomposition method of halogenated ethylene

Publications (2)

Publication Number Publication Date
JPH09308823A true JPH09308823A (en) 1997-12-02
JP3981424B2 JP3981424B2 (en) 2007-09-26

Family

ID=15440388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14788496A Expired - Lifetime JP3981424B2 (en) 1996-05-20 1996-05-20 Decomposition method of halogenated ethylene

Country Status (1)

Country Link
JP (1) JP3981424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040036A (en) * 2015-10-06 2016-03-24 国立研究開発法人日本原子力研究開発機構 Dechlorination method and dechlorination device for chlorinated ethylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040036A (en) * 2015-10-06 2016-03-24 国立研究開発法人日本原子力研究開発機構 Dechlorination method and dechlorination device for chlorinated ethylene

Also Published As

Publication number Publication date
JP3981424B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
Rodríguez-Peña et al. New insights about the electrochemical production of ozone
JP7494216B2 (en) PFAS Treatment Scheme Using Separation and Electrochemical Rejection
Drogui et al. Oxidising and disinfecting by hydrogen peroxide produced in a two-electrode cell
US5965009A (en) Method of producing acid water and electrolytic cell therefor
Mohan et al. Electrochemical treatment of simulated textile effluent
Savall Electrochemical treatment of industrial organic effluents
KR0142607B1 (en) Generation of Electrolytic Active Water and Wet Treatment of Semiconductor Substrates
US20020130048A1 (en) Process for the production of hydrogen peroxide solution
KR20170099616A (en) Electrodialysis coupled with electrochemical nitrogen removal Process for contaminated groundwater treatment, and Apparatus therefor
JPH07100466A (en) Method for treating waste water
JP3981424B2 (en) Decomposition method of halogenated ethylene
Ito et al. Technical feasibility of electrochemical Fenton-type process using Cu (I)/HOCl system
EP1094052B1 (en) Process for preparing trichloroacetic acid
JP3593759B2 (en) Treatment of waste liquid containing organic matter
KR100545306B1 (en) Electrochemical process for wastewater containing nitric acid
KR20170099615A (en) Electrochemical Process for high concentration of nitrate containing wastewater treatment, and Apparatus therefor
JP2001300538A (en) Decomposition treating method of waste water containing ammonium salt or ammonia
JPH09239371A (en) Treatment of ethanolamine-containing waste dilute hydrochloric acid
Mogyoródy Influence of chlorine-water equilibria on the electrochemical destruction of thiocarbamate herbicides in NaCl solutions
JP2001000975A (en) Method and apparatus for decomposing pollutant
JP2003290729A (en) Method and apparatus for cleaning electronic components
JP2003290767A (en) Functional water, its production method and production equipment
JP2745278B2 (en) Treatment method for precious metal cyanide bath plating wastewater and washing water
JP5285393B2 (en) Electrolyzer
JP3345197B2 (en) Method for producing electrolytic ionic water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term