JPH09308140A - Power supply device for bioinstrumentation - Google Patents

Power supply device for bioinstrumentation

Info

Publication number
JPH09308140A
JPH09308140A JP8117787A JP11778796A JPH09308140A JP H09308140 A JPH09308140 A JP H09308140A JP 8117787 A JP8117787 A JP 8117787A JP 11778796 A JP11778796 A JP 11778796A JP H09308140 A JPH09308140 A JP H09308140A
Authority
JP
Japan
Prior art keywords
power
power supply
supply device
magnetic field
induction coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8117787A
Other languages
Japanese (ja)
Other versions
JP2842374B2 (en
Inventor
Yasuhiko Mizushima
泰彦 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8117787A priority Critical patent/JP2842374B2/en
Publication of JPH09308140A publication Critical patent/JPH09308140A/en
Application granted granted Critical
Publication of JP2842374B2 publication Critical patent/JP2842374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device for bioinstrumentation which casts only a little burden on a living body and has a few influence on a small organism such as a fish. SOLUTION: A power supply device is constituted of induction coils 121-128 and a power controller 4, which are installed at the power supply 10 side, and a pickup coil 18 and a power detector 20, which are installed at the sensor 16 side. With power (a) being supplied from the power supply 10, the induction coils 121-128 generate alternating magnetic fields ϕ in different directions. The pickup coil 18 generates powerdue to the alternating magnetic fields ϕ generated by the induction coils 121-128. The power detector 20 outputs a power signal (c) suited to the magnitude of received power to the space. Based on the power signal (c), the power controller 14 switches the induction coils 121-128 and lets the selected ones generate the alternating magnetic fields ϕ so that the received power may be a specified level or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、魚、動物、人等の
動き回る生体にセンサを装着し、このセンサから空間へ
出力された生体信号を常時計測する生体計測技術に関
し、詳しくは、センサへ電力を供給する電力供給装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body measuring technique in which a sensor is attached to a moving living body such as a fish, an animal, or a person, and a living body signal output from the sensor to a space is constantly measured. The present invention relates to a power supply device that supplies power.

【0002】[0002]

【従来の技術】動き回る生体に装着されたセンサから空
間へ出力された生体信号を常時計測する生体計測技術に
おいて、センサへ電力を供給するには、センサとともに
電池を生体に装着する技術が考えられる。
2. Description of the Related Art In a biometric technique for constantly measuring a biomedical signal output to the space from a sensor mounted on a moving living body, in order to supply power to the sensor, a technique of mounting a battery together with the sensor on the living body is considered. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな技術では次のような問題がある。生体に電池を取付
けることは、重量や体積の点で生体に負担となる。特に
魚のような小さい動物に電池を取付けると、その動物の
活動を大きく阻害することになる。
However, such a technique has the following problems. Attaching a battery to a living body imposes a burden on the living body in terms of weight and volume. Especially when a battery is attached to a small animal such as a fish, the activity of the animal is greatly hindered.

【0004】[0004]

【発明の目的】そこで、本発明の目的は、生体に対して
負担が少なく、特に魚のような小さい動物に対しても影
響の少ない生体計測用電力供給装置(以下、単に「電力
供給装置」という。)を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a biometric power supply device (hereinafter, simply referred to as "power supply device") which has a small burden on a living body and has a small influence particularly on a small animal such as a fish. .) Is provided.

【0005】[0005]

【課題を解決するための手段】本発明に係る電力供給装
置は、センサ側に設けられたピックアップコイル及び電
力検出手段と、電源側に設けられた誘導コイル及び電力
制御手段とから構成されている。複数の誘導コイルは、
電源の送電電力により互いに異なる方向に交流磁界を発
生するものであり、例えば、生体の可動範囲を取り囲む
ように円周状に配設され、かつ円周の中心方向へ交流磁
界を発生するように配設されている。ピックアップコイ
ルは、誘導コイルから発生した交流磁界により受電電力
を発生する。電力検出手段は、ピックアップコイルで発
生した受電電力の大きさに応じた電力信号を空間へ出力
する。電力制御手段は、電力検出手段から出力された電
力信号に基づき、受電電力が一定以上になるように又は
最大になるように、誘導コイルを切り換えて交流磁界を
発生させる。
A power supply device according to the present invention comprises a pickup coil and power detection means provided on the sensor side, and an induction coil and power control means provided on the power supply side. . The multiple induction coils
An AC magnetic field is generated in mutually different directions by the transmitted power of the power source. For example, the AC magnetic fields are arranged so as to surround the movable range of the living body in a circular shape and generate an AC magnetic field in the central direction of the circumference. It is arranged. The pickup coil generates received power by the AC magnetic field generated from the induction coil. The power detection means outputs a power signal according to the magnitude of the received power generated by the pickup coil to the space. The power control means switches the induction coil to generate an AC magnetic field based on the power signal output from the power detection means so that the received power becomes equal to or higher than a certain level or becomes maximum.

【0006】次に、本発明に係る電力供給装置の作用を
説明する。複数の誘導コイル及びピックアップコイル
は、それぞれ指向性を有している。そのため、誘導コイ
ルのいずれかから発生する交流磁界の方向とピックアッ
プコイルの最大利得の得られる方向とが一致したとき、
受電電力が最大となる。まず、ある誘導コイルから交流
磁界が発生しており、電力信号が一定以上になっている
とする。続いて、生体が動くことによりピックアップコ
イルの向きも変わるので、その誘導コイルから発生する
交流磁界の方向とピックアップコイルの最大利得の得ら
れる方向とが一致しなくなる。その結果、受電電力が低
下することにより、電力検出手段から出力される電力信
号も小さくなる。そこで、電力制御手段は、電力信号が
一定以下になると現在の交流磁界では電力供給が不十分
であると判断し、交流磁界の方向を順次切り換える。そ
して、別の誘導コイルから交流磁界を発生させた場合
に、電力信号が一定以上になると、電力制御手段はその
状態を維持する。
Next, the operation of the power supply device according to the present invention will be described. The plurality of induction coils and the pickup coil each have directivity. Therefore, when the direction of the AC magnetic field generated from any of the induction coils and the direction in which the maximum gain of the pickup coil is obtained,
Maximum received power. First, it is assumed that an AC magnetic field is generated from a certain induction coil and the power signal is above a certain level. Then, since the direction of the pickup coil is changed by the movement of the living body, the direction of the AC magnetic field generated from the induction coil and the direction in which the maximum gain of the pickup coil is obtained do not match. As a result, the received power decreases, and the power signal output from the power detecting unit also decreases. Therefore, the power control unit determines that the power supply is insufficient with the current AC magnetic field when the power signal becomes less than a certain value, and sequentially switches the direction of the AC magnetic field. Then, when an AC magnetic field is generated from another induction coil and the power signal becomes a certain value or more, the power control means maintains the state.

【0007】ところで、電波を用いて電力を供給する場
合は、例えばアンテナを小さくするため等の理由によ
り、数GHzという高い周波数を用いる必要がある。し
かし、水による損失は周波数の2乗に比例することか
ら、水中で電波を用いて電力を供給することは実際には
不可能である。これに対して、本発明に係る電力供給装
置は、交流磁界を用いて電力を供給することにより、周
波数を十分に低くできるので、水中での電力損失は極め
て少ない。
By the way, when electric power is supplied using radio waves, it is necessary to use a high frequency of several GHz for the reason of, for example, making the antenna small. However, since the loss due to water is proportional to the square of the frequency, it is actually impossible to supply electric power using radio waves in water. On the other hand, in the power supply device according to the present invention, the frequency can be sufficiently lowered by supplying the power using the alternating magnetic field, so that the power loss in water is extremely small.

【0008】[0008]

【発明の実施の形態】図1及び図2は、本発明に係る電
力供給装置の第一実施形態を示すブロック図である。以
下、この図面に基づき説明する。
1 and 2 are block diagrams showing a first embodiment of a power supply apparatus according to the present invention. Hereinafter, description will be given with reference to this drawing.

【0009】本実施形態の電力供給装置は、電源10側
に設けられた誘導コイル121〜128及び電力制御手
段14と、センサ16側に設けられたピックアップコイ
ル18及び電力検出手段20とから構成されている。誘
導コイル121〜128は、電源10の送電電力aによ
り互いに異なる方向に交流磁界φを発生するものであ
り、生体Bの可動範囲を取り囲むように円周状に配設さ
れ、かつ円周の中心方向へ交流磁界φを発生するように
配設されている。ピックアップコイル18は、誘導コイ
ル121〜128から発生した交流磁界φにより受電電
力bを発生する。電力検出手段20は、ピックアップコ
イル18で発生した受電電力bの大きさに応じた電力信
号cを空間へ出力する。電力制御手段14は、電力検出
手段20から出力された電力信号cに基づき、受電電力
bが一定以上になるように、誘導コイル121〜128
を切り換えて交流磁界φを発生させる。
The power supply system of this embodiment comprises induction coils 121 to 128 and power control means 14 provided on the power supply 10 side, and pickup coil 18 and power detection means 20 provided on the sensor 16 side. ing. The induction coils 121 to 128 generate alternating magnetic fields φ in directions different from each other according to the transmission power a of the power source 10, and are arranged in a circular shape so as to surround the movable range of the living body B, and the center of the circumference. It is arranged so as to generate an alternating magnetic field φ in the direction. The pickup coil 18 generates the received power b by the AC magnetic field φ generated from the induction coils 121 to 128. The power detection means 20 outputs to the space a power signal c corresponding to the magnitude of the received power b generated by the pickup coil 18. The electric power control means 14 is based on the electric power signal c output from the electric power detection means 20, and the induction coils 121 to 128 are set so that the received electric power b becomes a certain value or more.
To generate an AC magnetic field φ.

【0010】センサ16は、動き回る魚である生体Bに
装着されており、例えば神経電位等の生体信号sを電極
から検出する。電力検出手段20は、ピックアップコイ
ル18で発生した受電電力bを直流電圧dに変換する直
流安定化回路201と、生体信号sを増幅及びディジタ
ル変換するとともに送信用信号に変調する送信回路20
2と、送信回路202で変調された生体信号sを電波に
より空間へ出力する送信アンテナ203とを備えてい
る。直流電圧dは、センサ16及び送信回路202へ供
給される。電力信号cは、生体信号sの出力レベルであ
る。すなわち、受電電力bが小さければ、センサ16及
び送信回路202へ供給される電力も小さくなるので、
生体信号sの出力レベル(電力信号c)も小さくなる。
The sensor 16 is attached to a living body B, which is a moving fish, and detects a biological signal s such as a nerve potential from an electrode. The power detection means 20 includes a DC stabilizing circuit 201 that converts the received power b generated by the pickup coil 18 into a DC voltage d, and a transmission circuit 20 that amplifies and digitally converts the biomedical signal s and modulates it into a transmission signal.
2 and a transmission antenna 203 that outputs the biological signal s modulated by the transmission circuit 202 to the space by radio waves. The DC voltage d is supplied to the sensor 16 and the transmission circuit 202. The power signal c is the output level of the biological signal s. That is, if the received power b is small, the power supplied to the sensor 16 and the transmission circuit 202 is also small.
The output level (power signal c) of the biological signal s also decreases.

【0011】電源10は、例えば数100kHzの交流の送電
電力aを発生する。電力制御手段14は、誘導コイル1
21〜128に対応して設けられ送電電力aを誘導コイ
ル121〜128へ供給するスイッチ141〜148
と、電力信号c及び生体信号sを受信する受信アンテナ
149と、電力信号cの大きさが一定以上となるように
切り換え信号e1 〜e8 をスイッチ141〜148へ出
力する切り換え制御回路150と、受信アンテナ149
で受信された電力信号c及び生体信号sを増幅及び復調
する受信回路151とを備えている。スイッチ141〜
148は、トランジスタ又はリレー等であり、切り換え
信号e1 〜e8 に基づき開閉する。切り換え制御回路1
50は、例えばマイクロコンピュータ及びデコーダによ
って構成されている。ここで、切り換え制御回路150
から切り換え信号e8 が出力されると、スイッチ148
のみが閉成し、スイッチ141〜147は開成したまま
である。したがって、図示するように誘導コイル128
から交流磁界φが発生する。切り換え信号e1 〜e7
それぞれのスイッチ141〜147のみを閉成する。ま
た、受信回路151で増幅・復調された生体信号sは計
測器30へ出力される。
The power supply 10 generates AC transmission power a of several 100 kHz, for example. The power control means 14 is the induction coil 1
Switches 141 to 148 provided corresponding to 21 to 128 and supplying the transmission power a to the induction coils 121 to 128
A receiving antenna 149 that receives the power signal c and the biological signal s, and a switching control circuit 150 that outputs the switching signals e 1 to e 8 to the switches 141 to 148 so that the magnitude of the power signal c becomes a certain value or more. , Receiving antenna 149
The reception circuit 151 for amplifying and demodulating the power signal c and the biological signal s received in 1. Switches 141-
A transistor or a relay 148 is opened / closed based on the switching signals e 1 to e 8 . Switching control circuit 1
The numeral 50 is composed of, for example, a microcomputer and a decoder. Here, the switching control circuit 150
When the switching signal e 8 is output from the switch 148
Only the switches are closed, and the switches 141 to 147 remain open. Therefore, as shown, the induction coil 128
AC magnetic field φ is generated from the. The switching signals e 1 to e 7 also close only the respective switches 141 to 147. The biological signal s amplified and demodulated by the receiving circuit 151 is output to the measuring device 30.

【0012】次に、本実施形態の電力供給装置の作用を
説明する。
Next, the operation of the power supply device of this embodiment will be described.

【0013】誘導コイル121〜128及びピックアッ
プコイル18は、それぞれ指向性を有している。そのた
め、誘導コイル121〜128のいずれかから発生する
交流磁界φの方向とピックアップコイル18の最大利得
の得られる方向とが一致したとき、受電電力bが最大と
なる。
The induction coils 121 to 128 and the pickup coil 18 have directivity. Therefore, when the direction of the AC magnetic field φ generated from any of the induction coils 121 to 128 and the direction in which the maximum gain of the pickup coil 18 is obtained match, the received power b becomes maximum.

【0014】まず、誘導コイル126,127間で交流
磁界φが発生しており、電力信号cが一定以上になって
いるとする。続いて、生体Bが動くことによりピックア
ップコイル18の向きも変わるので、誘導コイル12
6,127間で発生する交流磁界φの方向とピックアッ
プコイル18の最大利得の得られる方向とが一致しなく
なる。その結果、受電電力bが低下することにより、セ
ンサ16及び送信回路202が十分に動作しなくなるの
で、電力信号cも小さくなる。そこで、切り換え制御回
路150は、電力信号cが一定以下になると現在の交流
磁界φでは電力供給が不十分であると判断し、交流磁界
φの方向を順次切り換える。そして、誘導コイル12
6,128間で交流磁界φを発生させた場合に、電力信
号cが一定以上になると、切り換え制御回路150はそ
の状態を維持する。生体Bの動きに合わせて、上記手順
を繰り返すことにより、ピックアップコイル18に対し
て最適な交流磁界φを発生できる。このとき、誘導コイ
ル121〜128の全てではなくいずれか二個のみを通
電しているので、低消費電力化が図れる。
First, it is assumed that an AC magnetic field φ is generated between the induction coils 126 and 127 and the power signal c is above a certain level. Subsequently, since the orientation of the pickup coil 18 changes as the living body B moves, the induction coil 12
6 and 127, the direction of the AC magnetic field φ and the direction in which the maximum gain of the pickup coil 18 is obtained do not match. As a result, the received power b decreases and the sensor 16 and the transmission circuit 202 do not operate sufficiently, so that the power signal c also decreases. Therefore, the switching control circuit 150 determines that the power supply is insufficient with the current AC magnetic field φ when the power signal c becomes a certain value or less, and sequentially switches the direction of the AC magnetic field φ. And the induction coil 12
When the alternating-current magnetic field φ is generated between 6 and 128 and the power signal c exceeds a certain level, the switching control circuit 150 maintains the state. By repeating the above procedure according to the movement of the living body B, an optimum AC magnetic field φ can be generated for the pickup coil 18. At this time, since only any two of the induction coils 121 to 128 are energized, low power consumption can be achieved.

【0015】図3及び図4は、本発明に係る電力供給装
置の第二実施形態を示すブロック図である。以下、この
図面に基づき説明する。ただし、図1及び図2と同一部
分は同一符号を付すことにより重複説明を省略する。
3 and 4 are block diagrams showing a second embodiment of the power supply device according to the present invention. Hereinafter, description will be given with reference to this drawing. However, the same portions as those in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant description will be omitted.

【0016】本実施形態の電力供給装置では、第一実施
形態の電力供給装置に対して、誘導コイル121〜12
8に直列共振用のコンデンサ321〜322が付設さ
れ、ピックアップコイル18に並列共振用のコンデンサ
181が付設され、送信アンテナ203及び受信アンテ
ナ149の代わりに発光ダイオード34及びフォトダイ
オード36が用いられている。電力信号cは、発光ダイ
オード34の光量である。本実施形態によれば、直列共
振用のコンデンサ321〜322及び並列共振用のコン
デンサ181を付設したことにより、送電電力a及び受
電電力bの周波数を安定化できるので、ノイズの少ない
電力を供給できる。また、発光ダイオード34及びフォ
トダイオード36を用い、電力信号c及び生体信号sを
光としたことにより、水中での減衰を電波に比べて小さ
くできる。他の事項は、第一実施形態とほぼ同じである
ので説明を省略する。
The power supply device of this embodiment is different from the power supply device of the first embodiment in induction coils 121 to 12.
8, capacitors 321 to 322 for series resonance are attached, a capacitor 181 for parallel resonance is attached to the pickup coil 18, and a light emitting diode 34 and a photodiode 36 are used instead of the transmitting antenna 203 and the receiving antenna 149. . The power signal c is the light amount of the light emitting diode 34. According to this embodiment, since the capacitors 321 to 322 for series resonance and the capacitor 181 for parallel resonance are additionally provided, the frequencies of the transmitted power a and the received power b can be stabilized, so that power with less noise can be supplied. . Further, by using the light emitting diode 34 and the photodiode 36 and using the power signal c and the biological signal s as light, the attenuation in water can be made smaller than that of radio waves. Since other matters are almost the same as those in the first embodiment, the description thereof will be omitted.

【0017】なお、本発明は、いうまでもなく、上記実
施形態に限定されるものではない。例えば、誘導コイル
は二個ではなく一個のみに通電するようにしてもよい。
この場合は、より低消費電力化を図ることができる。ピ
ックアップコイルは、一個ではなく、二個又は三個とし
それぞれを直交させてもよい。この場合は、より安定し
た電力供給が可能となる。また、交流磁界のの発生方向
を記録しておくと、生体の動作を把握することが可能に
なる。
Needless to say, the present invention is not limited to the above embodiment. For example, only one induction coil may be energized instead of two.
In this case, lower power consumption can be achieved. The number of pickup coils may be two or three instead of one and may be orthogonal to each other. In this case, more stable power supply becomes possible. Further, by recording the generation direction of the AC magnetic field, it becomes possible to grasp the motion of the living body.

【0018】[0018]

【発明の効果】本発明に係る電力供給装置によれば、複
数の誘導コイルを切り換えて異なる方向に交流磁界を発
生させることにより、生体に装着されたピックアップコ
イルで得られる受電電力を常に一定以上にできるので、
生体がどのように動いても常に生体信号を非接触で検出
できる。また、電池を生体に取り付ける必要がないの
で、生体の負担を軽減でき、特に魚のような小さい動物
に対する影響も低減できる。さらに、複数の誘導コイル
の全てではなくいずれかに通電すればよいので、低消費
電力化を図ることができる。
According to the power supply device of the present invention, a plurality of induction coils are switched to generate an alternating magnetic field in different directions, so that the received power obtained by the pickup coil attached to the living body is always above a certain level. Because you can
No matter how the living body moves, it is possible to detect the biological signal without contact. Further, since it is not necessary to attach the battery to the living body, the burden on the living body can be reduced, and the influence on small animals such as fish can be reduced. Furthermore, since it is sufficient to energize not all of the plurality of induction coils, it is possible to reduce power consumption.

【0019】本発明に係る電力供給装置は、電波を用い
て電力を供給する場合に比べて、水中での電力損失を極
めて少なくできるので、水中での生体計測に好適であ
る。
Since the power supply device according to the present invention can reduce the power loss in water extremely compared with the case where power is supplied using radio waves, it is suitable for biological measurement in water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電力供給装置の第一実施形態を示
すブロック図である。
FIG. 1 is a block diagram showing a first embodiment of a power supply device according to the present invention.

【図2】本発明に係る電力供給装置の第一実施形態を示
すブロック図である。
FIG. 2 is a block diagram showing a first embodiment of a power supply device according to the present invention.

【図3】本発明に係る電力供給装置の第二実施形態を示
すブロック図である。
FIG. 3 is a block diagram showing a second embodiment of a power supply device according to the present invention.

【図4】本発明に係る電力供給装置の第二実施形態を示
すブロック図である。
FIG. 4 is a block diagram showing a second embodiment of a power supply device according to the present invention.

【符号の説明】[Explanation of symbols]

10 電源 121〜128 誘導コイル 14 電力制御手段 16 センサ 18 ピックアップコイル 20 電力検出手段 a 送電電力 b 受電電力 c 電力信号 φ 交流磁界 B 生体 10 power supply 121-128 induction coil 14 electric power control means 16 sensor 18 pickup coil 20 electric power detection means a transmitted electric power b received electric power c electric power signal φ AC magnetic field B living body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 動き回る生体に装着されたセンサに対し
て、電源の送電電力を非接触で供給する電力供給装置で
あって、 前記送電電力により互いに異なる方向に交流磁界を発生
する複数の誘導コイルと、これらの誘導コイルから発生
した交流磁界により受電電力を発生するピックアップコ
イルと、このピックアップコイルで発生した受電電力の
大きさに応じた電力信号を空間へ出力する電力検出手段
と、この電力検出手段から出力された電力信号に基づき
前記受電電力が一定以上になるように前記誘導コイルを
切り換えて前記交流磁界を発生させる電力制御手段とを
備え、 前記ピックアップコイル及び前記電力検出手段が前記セ
ンサ側に設けられ、前記誘導コイル及び前記電力制御手
段が前記電源側に設けられた、生体計測用電力供給装
置。
1. A power supply device for non-contactly supplying transmission power of a power source to a sensor attached to a moving living body, wherein the induction coils generate alternating magnetic fields in different directions by the transmission power. A pickup coil that generates received power by an alternating magnetic field generated from these induction coils; a power detection unit that outputs a power signal according to the magnitude of the received power generated by the pickup coil to space; Power control means for switching the induction coil so as to generate the AC magnetic field so that the received power becomes equal to or higher than a certain level based on the power signal output from the means, and the pickup coil and the power detection means are provided on the sensor side. And a power supply device for living body measurement, wherein the induction coil and the power control means are provided on the power source side.
【請求項2】 前記複数の誘導コイルは、前記生体の可
動範囲を取り囲むように円周状に配設され、かつ当該円
周の中心方向へ交流磁界を発生するように配設された、
請求項1記載の生体計測用電力供給装置。
2. The plurality of induction coils are arranged circumferentially so as to surround the movable range of the living body, and are arranged so as to generate an alternating magnetic field in the center direction of the circumference.
The biometric power supply device according to claim 1.
【請求項3】 前記電力制御手段は、前記電力検出手段
から送信された信号に基づき前記受電電力が最大になる
ように、前記誘導コイルを切り換えて前記交流磁界を発
生させる、請求項1記載の生体計測用電力供給装置。
3. The power control unit switches the induction coil to generate the AC magnetic field so that the received power becomes maximum based on a signal transmitted from the power detection unit. Biometric power supply device.
JP8117787A 1996-05-13 1996-05-13 Power supply for biological measurement Expired - Lifetime JP2842374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8117787A JP2842374B2 (en) 1996-05-13 1996-05-13 Power supply for biological measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8117787A JP2842374B2 (en) 1996-05-13 1996-05-13 Power supply for biological measurement

Publications (2)

Publication Number Publication Date
JPH09308140A true JPH09308140A (en) 1997-11-28
JP2842374B2 JP2842374B2 (en) 1999-01-06

Family

ID=14720307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8117787A Expired - Lifetime JP2842374B2 (en) 1996-05-13 1996-05-13 Power supply for biological measurement

Country Status (1)

Country Link
JP (1) JP2842374B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133795A1 (en) * 2008-05-02 2009-11-05 オリンパス株式会社 Wireless power supply system
DE102011113740A1 (en) * 2011-09-15 2013-03-21 Forschungsverbund Berlin E.V. Inductive energy transmission device for mobile sensor unit utilized for detecting e.g. heart rate of fish, has base unit comprising control circuit for correcting frequency of oscillating circuit such that voltage at capacitor is maximized
WO2014129531A1 (en) * 2013-02-20 2014-08-28 日本電気株式会社 Power transmission system, transmission apparatus, receiving apparatus, and power transmission method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133795A1 (en) * 2008-05-02 2009-11-05 オリンパス株式会社 Wireless power supply system
JP2009273213A (en) * 2008-05-02 2009-11-19 Olympus Corp Wireless power supply system
DE102011113740A1 (en) * 2011-09-15 2013-03-21 Forschungsverbund Berlin E.V. Inductive energy transmission device for mobile sensor unit utilized for detecting e.g. heart rate of fish, has base unit comprising control circuit for correcting frequency of oscillating circuit such that voltage at capacitor is maximized
WO2014129531A1 (en) * 2013-02-20 2014-08-28 日本電気株式会社 Power transmission system, transmission apparatus, receiving apparatus, and power transmission method
US9887681B2 (en) 2013-02-20 2018-02-06 Nec Corporation Power transmission system, transmission apparatus, receiving apparatus, and power transmission method

Also Published As

Publication number Publication date
JP2842374B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
KR101241706B1 (en) Communication device, method, and recording medium
CN104838599B (en) Parsing is with the communication in the wireless power system of the transmitter in same place
US5882300A (en) Wireless patient monitoring apparatus using inductive coupling
US5589821A (en) Distance determination and alarm system
US6052614A (en) Electrocardiograph sensor and sensor control system for use with magnetic resonance imaging machines
KR101255924B1 (en) Low-Power Wireless Charging Apparatus and Method thereof
EP2388913B1 (en) Wireless transceiver system
JP3842854B2 (en) Method and apparatus for contactless transmission of measured values
US20030078003A1 (en) Surgical communication and power system
US20100315206A1 (en) Electrode diversity for body-coupled communication systems
CN102196760A (en) Position detecting system and position detecting method
US7684016B1 (en) Method and apparatus for measuring distances using light
US20050137652A1 (en) System and method for interfacing cellular matter with a machine
TW201236301A (en) System and method for providing communications in a wireless power supply
FI104463B (en) Metering system
JPH09308140A (en) Power supply device for bioinstrumentation
US20070268018A1 (en) Circuit Arrangement for Detuning a Resonant Circuit of an Mr Apparatus
JP2007117481A (en) Biological information monitor system
FI123360B (en) Procedures and equipment for measuring heart rate
JP4665284B2 (en) Biological signal detector
JP2007054478A (en) Radio capsule transducing system
US20200297242A1 (en) Living body information identification system and method
CN217723496U (en) Magnetic resonance imaging apparatus with motion-dependent energy consumption control
JP2006309464A (en) Information transmission system
US20090276162A1 (en) Sensor device and sensor system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980922