JPH09306265A - Power cable and manufacture thereof - Google Patents

Power cable and manufacture thereof

Info

Publication number
JPH09306265A
JPH09306265A JP8121371A JP12137196A JPH09306265A JP H09306265 A JPH09306265 A JP H09306265A JP 8121371 A JP8121371 A JP 8121371A JP 12137196 A JP12137196 A JP 12137196A JP H09306265 A JPH09306265 A JP H09306265A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
power cable
resin composition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8121371A
Other languages
Japanese (ja)
Inventor
Yoichi Kawasaki
陽一 川崎
Takeshi Tachikawa
毅 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NUC Corp
Original Assignee
Nippon Unicar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Unicar Co Ltd filed Critical Nippon Unicar Co Ltd
Priority to JP8121371A priority Critical patent/JPH09306265A/en
Publication of JPH09306265A publication Critical patent/JPH09306265A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To decrease melt fracture, critical surface misalignment, or generation of electric torry and obtain a long service life by providing an internal semiconductor layer, two layers i.e., insulation layer and external semiconductor layer of a specific resin composition, and an external semiconductor layer on a conductor and performing heating cross-linking after coating. SOLUTION: Each resin composition of an internal semiconductor layer, insulation layers A and B, and an external semiconductor layer is coated using a common four-layer extruder on a conductor, and heating cross-linking is performed on a conductor. Here, an insulation layer A is made of resin composition containing 100wt.% of a high-pressure method diverged low density ethylene based resin of 0.915 to 0.912g/cm<3> and of 0.3 to 3.0g/10 minutes in melt index and 0.1 to 5wt.% of organic peroxide. An insulation layer B contains 100wt.% of a straight chain shaped low density ethylene-α-olefin copolymer α of 0.91 to 0.93g/cm<3> in density and 0.1 to 5.0g/10 minutes in let index and 0.3 to 3wt.% of organic peroxide. In addition, the relationship between thickness a and thickness b of the insulation layers A and B is a<=b<=(1/2)a. Thus, misalignment of each boundary is eliminated, and longer service life is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電力ケーブルおよび
その製造方法に関する。本発明の電力ケーブルは発電所
から都市、工場等の電力需要地に中圧または高圧の電気
を送る手段として、また、都市、工場、建築物等の相互
の間またはこれらの内部において中圧または高圧の電気
を送る手段として利用される。
TECHNICAL FIELD The present invention relates to a power cable and a method for manufacturing the same. The power cable of the present invention is used as a means for transmitting medium-voltage or high-voltage electricity from a power plant to a power demand area such as a city or factory, and between or inside a city, factory, building or the like. It is used as a means of sending high voltage electricity.

【0002】[0002]

【従来の技術】電力ケーブルはOFケーブル(油浸紙絶
縁ケーブル)とCVケーブル(架橋ポリエチレン絶縁塩
化ビニル被覆ケーブル)とに大別されるが、OFケーブ
ルは設置スペース、メンテナンスおよび油による火災対
策等の費用を要する等の問題があるため、近年はこれら
の問題を必要としないCVケーブルがOFケーブルに代
わって使用されるようになってきた。
2. Description of the Related Art Power cables are roughly classified into OF cables (oil-impregnated paper-insulated cables) and CV cables (cross-linked polyethylene insulated vinyl chloride-coated cables). OF cables are installed space, maintenance, and fire countermeasures due to oil, etc. However, in recent years, CV cables that do not require these problems have been used in place of OF cables.

【0003】CVケーブルは導体上に内部半導電層を介
して、絶縁耐力に優れ、誘電率や誘電損が低い高圧法ポ
リエチレンを被覆し、該高圧法ポリエチレンを化学架橋
剤(有機過酸化物)で架橋して絶縁層とし、その上に外
部半導電層やシース層を被覆した電力ケーブルである
が、固形絶縁であるため、給油設備を要せず、布設およ
びメンテナンスが比較的容易であり、防災上も有利であ
ることから、OFケーブルの代替として大量に利用され
ている。
A CV cable is coated with a high-voltage polyethylene having excellent dielectric strength, low dielectric constant and low dielectric loss on a conductor through an internal semiconductive layer, and the high-voltage polyethylene is chemically crosslinked (organic peroxide). Although it is a power cable that is cross-linked with an insulating layer and covered with an external semiconductive layer or a sheath layer on it, since it is solid insulation, it does not require oiling equipment and is relatively easy to lay and maintain, Since it is also advantageous in disaster prevention, it is used in large quantities as an alternative to OF cables.

【0004】CVケーブルの絶縁層に用いられる上記高
圧法ポリエチレンは、柔軟性があり、不純物が比較的少
なく、加工性が高いので、従来より大量に使用されてき
たが、製造コストが高く、また融点が104℃前後であ
ることにより、耐熱性が不十分で加熱変形が大きいた
め、改善またはこれに代わるポリエチレンが求められて
いた。
The high-pressure polyethylene used for the insulating layer of the CV cable is flexible, has relatively few impurities, and has high processability, so that it has been used in a large amount from the past, but the manufacturing cost is high, and Since the melting point is around 104 ° C., the heat resistance is insufficient and the heat deformation is large, and therefore, polyethylene which is improved or replaced therefor has been demanded.

【0005】近年、チーグラー系触媒やカミンスキー系
触媒を用いて低圧法により直鎖状低密度エチレン−α−
オレフィン共重合体が製造されるようになり、これを高
圧法ポリエチレンに代えて用いたCVケーブルが提案さ
れている(例えば、チーグラー系触媒を用いたものとし
ては特開昭55−9677号公報に、そしてカミンスキ
ー系触媒を用いたものとしては特開平7−312118
号公報に開示されている)。この種の直鎖状低密度エチ
レン−α−オレフィン共重合体はコストが低く、耐熱性
に優れており、架橋効率が高いので、高圧法ポリエチレ
ンに直ちに代替できるものと期待されてきたが、溶融押
出による電線被覆の際、望ましい押出速度では甚だしい
被覆表面の荒れ、いわゆるメルトフラクチャーを生じ、
絶縁体としての電気特性が悪化し、外観が悪く、商品価
値が著しく低下するという問題がある。また、直鎖状低
密度エチレン−α−オレフィン共重合体は粘度が低いた
め、電線に被覆した際に偏心を起こし、電線に均一な厚
さの絶縁層を被覆することが難しく、良好な品質の電力
ケーブルを得ることが困難である。
In recent years, linear low-density ethylene-α-by a low pressure method using a Ziegler type catalyst or a Kaminsky type catalyst.
An olefin copolymer has come to be produced, and a CV cable using this instead of high-pressure polyethylene has been proposed (for example, JP-A-55-9677 discloses one using a Ziegler type catalyst). Japanese Patent Application Laid-Open No. 7-312118, which uses a Kaminsky catalyst.
Disclosed in the publication). This type of linear low-density ethylene-α-olefin copolymer has low cost, excellent heat resistance, and high cross-linking efficiency, so it has been expected that it can be immediately replaced with high-pressure polyethylene. When the wire is coated by extrusion, at the desired extrusion speed, the surface of the coating becomes extremely rough, so-called melt fracture,
There are problems that the electrical characteristics as an insulator are deteriorated, the appearance is poor, and the commercial value is significantly reduced. In addition, since the linear low-density ethylene-α-olefin copolymer has a low viscosity, it causes eccentricity when it is coated on an electric wire, and it is difficult to cover the electric wire with an insulating layer having a uniform thickness. It's difficult to get a power cable.

【0006】[0006]

【発明が解決しようとする課題】上記したように、直鎖
状低密度エチレン−α−オレフィン共重合体を絶縁層と
した電力ケーブルは偏心が生じることや、メルトフラク
チャーが生じること等の欠点があったが、本発明はこれ
らの欠点を解決し、良好な品質の電力ケーブルおよびそ
の製造方法の提供を課題としてなされたものである。
As described above, a power cable having a linear low-density ethylene-α-olefin copolymer as an insulating layer has drawbacks such as eccentricity and melt fracture. However, the present invention has been made to solve these drawbacks and to provide a power cable of good quality and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明者は、従来の電力
ケーブルの絶縁層は単一層から構成されていたが、それ
を二層構造とすれば上記の課題が解決できるのではない
かと想定し、各層の材料を各種エチレン系樹脂から選択
し、多数の実験を行ったところ、特定の2種類のエチレ
ン系樹脂を特定の厚さに共押出したところ、良好な結果
が得られることを見出し、さらに検討を重ね、本発明を
完成させた。
The inventor of the present invention has assumed that the insulating layer of the conventional power cable is composed of a single layer, but if the insulating layer has a two-layer structure, the above problem can be solved. However, when the material for each layer was selected from various ethylene-based resins and many experiments were conducted, it was found that good results were obtained when two specific ethylene-based resins were coextruded to a specific thickness. After further studies, the present invention has been completed.

【0008】すなわち、本発明は、導体上に、内部半導
電層、密度0.915〜0.925g/cm3 、メルト
インデックス0.3〜3.0g/10分の高圧法分岐状
低密度エチレン系樹脂100重量部および有機過酸化物
0.1〜5重量部を含有する樹脂組成物からなる絶縁層
(A)、密度0.91〜0.93g/cm3 、メルトイ
ンデックス0.1〜5.0g/10分の直鎖状低密度エ
チレン−α−オレフィン共重合体100重量部および有
機過酸化物0.3〜3重量部を含有する樹脂組成物から
なる絶縁層(B)〔ただし、絶縁層(A)と絶縁層
(B)の厚さ(それぞれをaおよびbとする)がa≧b
≧(1/2)aの関係にある〕、および外部半導電層を
コモン四層押出機を用いて被覆した後、加熱架橋を行う
ことを特徴とする電力ケーブルの製造方法に関する。本
発明はまた、この本発明の方法により製造された電力ケ
ーブルに関する。
That is, according to the present invention, a high pressure branched low density ethylene having an inner semiconductive layer, a density of 0.915 to 0.925 g / cm 3 , and a melt index of 0.3 to 3.0 g / 10 min is formed on a conductor. Insulating layer (A) made of a resin composition containing 100 parts by weight of a base resin and 0.1 to 5 parts by weight of an organic peroxide, a density of 0.91 to 0.93 g / cm 3 , and a melt index of 0.1 to 5 An insulating layer (B) composed of a resin composition containing 100 parts by weight of a linear low-density ethylene-α-olefin copolymer of 0.0 g / 10 minutes and 0.3 to 3 parts by weight of an organic peroxide [however, The thicknesses of the insulating layer (A) and the insulating layer (B) (respectively a and b) are a ≧ b
≧ (1/2) a] and the external semiconducting layer is coated using a common four-layer extruder, and then heat crosslinking is performed. The invention also relates to a power cable produced by the method of the invention.

【0009】本発明において、内部半導電層および外部
半導電層は電位傾度の改善や同電位化を図り、耐電圧性
質を向上させるためのものであり、エチレン−酢酸ビニ
ル共重合体、エチレン−エチルアクリレート共重合体、
高圧法低密度ポリエチレン、直鎖状低密度エチレン−α
−オレフィン共重合体、中密度ポリエチレン等のエチレ
ン系樹脂100重量部に、ファーネスブラック、アセチ
レンブラック、ケッチェンブラック等の導電性付与剤3
0〜100重量部、必要に応じて、1,1−ビス第三ブ
チルパーオキシベンゾエート、2,2−ビス第三ブチル
パーオキシブタン、第三ブチルパーオキシベンゾエー
ト、ジクミルパーオキサイド、2,5−ジメチル−2,
5−ジ第三ブチルパーオキシヘキサン、第三ブチルクミ
ルパーオキサイド、2,5−ジメチル−2,5−ジ第三
ブチルパーオキシヘキシン−3等の1分間半減期を得る
までの分解温度が150〜200℃の有機過酸化物を最
大5重量部、さらに必要に応じて酸化防止剤、加工助
剤、剥離性改良剤等からなる樹脂組成物を導体または絶
縁層上に0.1〜2mmの厚さに被覆したものであり、
当業界において一般的に使用されているものである。
In the present invention, the inner semi-conductive layer and the outer semi-conductive layer are for improving the potential gradient and attaining the same potential, and for improving the withstanding voltage property. The ethylene-vinyl acetate copolymer, ethylene- Ethyl acrylate copolymer,
High pressure method low density polyethylene, linear low density ethylene-α
-Conductivity-imparting agent 3 such as furnace black, acetylene black or Ketjen black to 100 parts by weight of an ethylene resin such as an olefin copolymer or medium density polyethylene.
0 to 100 parts by weight, if necessary, 1,1-bis-tert-butylperoxybenzoate, 2,2-bis-tert-butylperoxybutane, tert-butylperoxybenzoate, dicumyl peroxide, 2,5 -Dimethyl-2,
The decomposition temperature of 5-di-tert-butylperoxyhexane, tert-butylcumyl peroxide, 2,5-dimethyl-2,5-di-tert-butylperoxyhexyne-3, etc. until the one-minute half-life is obtained is A resin composition comprising an organic peroxide of 150 to 200 ° C. at a maximum of 5 parts by weight and, if necessary, an antioxidant, a processing aid, a peelability improver, etc., on the conductor or insulating layer is 0.1 to 2 mm. It is coated to the thickness of
It is generally used in the art.

【0010】本発明において、絶縁層(A)を構成する
密度0.915〜0.925g/cm3 、メルトインデ
ックス0.3〜3.0g/10分の高圧法分岐状低密度
エチレン系樹脂とは、2000〜3000気圧の高圧下
で、酸素または有機過酸化物を触媒とし、エチレン単独
またはエチレンとプロピレン、ブテン−1等を、連鎖移
動剤を使用または使用せずに重合して得られた長鎖分岐
を持つ加工性の非常に高い重合体である。高圧法分岐状
低密度エチレン系樹脂の密度が0.915g/cm3
満であると得られる電力ケーブルの耐熱性、機械的強度
が不十分であり、0.925g/cm3 を越えと可撓性
が劣り望ましくない。また、メルトインデックスが0.
3g/10分未満のものは加工性が低く、被覆速度が非
常に遅いか、被覆不能であり、望ましくなく、3.0g
/10分を越えると耐熱性や機械的強度が不十分となり
望ましくない。
In the present invention, a high-pressure branched low-density ethylene-based resin having a density of 0.915 to 0.925 g / cm 3 and a melt index of 0.3 to 3.0 g / 10 min, which constitutes the insulating layer (A), Was obtained by polymerizing ethylene alone or ethylene and propylene, butene-1 or the like under a high pressure of 2000 to 3000 atmospheres using oxygen or an organic peroxide as a catalyst, with or without a chain transfer agent. It is a polymer with long chain branching and very high processability. If the density of the high-pressure branched low-density ethylene resin is less than 0.915 g / cm 3 , the heat resistance and mechanical strength of the obtained power cable are insufficient, and if it exceeds 0.925 g / cm 3 , it is flexible. It is inferior in nature and is not desirable. Further, the melt index is 0.
Less than 3 g / 10 min has low workability, coating speed is very slow or uncoatable, undesired, 3.0 g
If it exceeds / 10 minutes, heat resistance and mechanical strength become insufficient, which is not desirable.

【0011】上記絶縁層(A)において、高圧法分岐状
低密度エチレン系樹脂に配合する有機過酸化物は、上で
内部および外部半導電層に対して説明したものと同じも
のから選択され、その配合量は高圧法分岐状低密度エチ
レン系樹脂100重量部に対して0.1〜5重量部であ
る。この配合量が0.1重量部未満であると、耐熱性や
機械的強度が不十分であり、5重量部を越えて使用して
も耐熱性や機械的強度等は飽和点に達し、さらに向上す
ることはなく、コスト上昇や分解残渣による電気的特性
の悪化をもたらし、望ましくない。
In the insulating layer (A), the organic peroxide compounded in the high-pressure branched low-density ethylene resin is selected from the same ones as described above for the inner and outer semiconductive layers, The blending amount is 0.1 to 5 parts by weight with respect to 100 parts by weight of the high pressure branched low density ethylene resin. If the blending amount is less than 0.1 parts by weight, heat resistance and mechanical strength are insufficient, and even if it is used in excess of 5 parts by weight, heat resistance, mechanical strength, etc. reach a saturation point. However, it does not improve, resulting in cost increase and deterioration of electrical characteristics due to decomposition residues, which is not desirable.

【0012】本発明において、絶縁層(B)を構成する
密度0.91〜0.93g/cm3、メルトインデック
ス0.1〜5.0g/10分の直鎖状低密度エチレン−
α−オレフィン共重合体とは、チーグラー触媒、フィリ
ップ触媒、カミンスキー触媒、シングルサイト触媒等を
使用して気相法、液相法、スラリー法、懸濁法等によ
り、エチレンとプロピレン、ブテン−1、ペンテン−
1、ヘキセン−1、4−メチルペンテン−1、ヘプテン
−1、4−メチルヘキセン−1、4,4−ジメチルペン
テン−1、オクテン−1、デセン−1、ドデセン−1等
を共重合させて得られるものである。直鎖状低密度エチ
レン−α−オレフィン共重合体の密度が0.91g/c
3未満であると得られる電力ケーブルの耐熱性が不十
分であり、0.93g/cm 3 を越えると可撓性が劣り
望ましくない。また、メルトインデックスが0.1g/
10分未満であると加工性が低く、被覆速度が非常に遅
いか、被覆不能であり、望ましくなく、5.0g/10
分を越えると耐熱性や機械的強度が不十分となり望まし
くない。
In the present invention, the insulating layer (B) is formed.
Density 0.91 to 0.93 g / cmThree, Melt index
0.1 to 5.0 g / 10 min linear low density ethylene-
α-Olefin copolymer means Ziegler catalyst, Phili
Up catalyst, Kaminsky catalyst, single-site catalyst, etc.
Using gas phase method, liquid phase method, slurry method, suspension method, etc.
Ethylene, propylene, butene-1, pentene-
1, hexene-1, 4-methylpentene-1, heptene
-1,4-methylhexene-1,4,4-dimethyl pen
Ten-1, Octene-1, Decene-1, Dodecene-1, etc.
It is obtained by copolymerizing. Linear low density Eth
The density of the ren-α-olefin copolymer is 0.91 g / c.
mThreeIf it is less than 1, the heat resistance of the obtained power cable is insufficient.
Minutes, 0.93 g / cm ThreeIs less flexible
Not desirable. The melt index is 0.1 g /
If it is less than 10 minutes, the workability is low and the coating speed is very slow.
Squid, uncoverable, undesired, 5.0 g / 10
If it exceeds the limit, heat resistance and mechanical strength become insufficient, which is desirable.
No

【0013】上記絶縁層(B)において、直鎖状低密度
エチレン−α−オレフィン共重合体に配合する有機過酸
化物もまた、上で内部および外部半導電層に対して説明
したものと同じものから選択され、その配合量は直鎖状
低密度エチレン−α−オレフィン共重合体100重量部
に対して0.3〜3重量部である。この配合量が0.3
重量部未満であると、耐熱性や機械的強度が不十分であ
り、3重量部を越えて使用しても耐熱性や機械的強度等
は飽和点に達し、さらに向上することはなく、コスト上
昇や分解残渣による電気的特性の悪化をもたらし、望ま
しくない。
In the insulating layer (B), the organic peroxide compounded in the linear low-density ethylene-α-olefin copolymer is also the same as that described above for the inner and outer semiconductive layers. The blending amount thereof is 0.3 to 3 parts by weight with respect to 100 parts by weight of the linear low-density ethylene-α-olefin copolymer. This blend amount is 0.3
If it is less than parts by weight, the heat resistance and mechanical strength are insufficient, and even if it is used in excess of 3 parts by weight, the heat resistance and mechanical strength, etc. reach the saturation point and there is no further improvement, and the cost is reduced. This is not desirable because it causes an increase or deterioration of electrical characteristics due to decomposition residues.

【0014】本発明において、絶縁層(A)と絶縁層
(B)の厚さは、それぞれの厚さをaおよびbとした場
合、a≧b≧(1/2)aの関係にあることが必要であ
る。bがaを越えると、偏心が生じ、被覆時にメルトフ
ラクチャーを生じ、電気特性が良好な電力ケーブルが得
られず、また被覆速度が低下し、コストが上昇し、望ま
しくない。bが(1/2)a未満、すなわちaの半分未
満となると、耐熱性、機械的強度が悪化し、また比較的
高価格の高圧法分岐状低密度エチレン系樹脂の使用量が
相対的に増加するので、コストが上昇し、望ましくな
い。また、絶縁層(A)および絶縁層(B)の厚さの合
計、すなわちa+bは好ましくは3mm〜30mmの範
囲である。
In the present invention, the thicknesses of the insulating layer (A) and the insulating layer (B) have a relationship of a ≧ b ≧ (1/2) a, where the respective thicknesses are a and b. is necessary. When b exceeds a, eccentricity occurs, melt fracture occurs at the time of coating, a power cable with good electrical characteristics cannot be obtained, and the coating speed decreases and the cost increases, which is not desirable. When b is less than (1/2) a, that is, less than half of a, heat resistance and mechanical strength deteriorate, and the amount of relatively expensive high-pressure branched low-density ethylene resin used is relatively high. This increases cost, which is undesirable. Further, the total thickness of the insulating layer (A) and the insulating layer (B), that is, a + b is preferably in the range of 3 mm to 30 mm.

【0015】本発明において使用される四層コモン押出
機は、内部半導電層押出機、絶縁層(A)押出機、絶縁
層(B)押出機および外部半導電層押出機を配置した四
層コモンクロスヘッドを有するものである。
The four-layer common extruder used in the present invention is a four-layered one in which an internal semiconductive layer extruder, an insulating layer (A) extruder, an insulating layer (B) extruder and an external semiconductive layer extruder are arranged. It has a common crosshead.

【0016】[0016]

【発明の実施の形態】本発明の電力ケーブルは、上記し
た内部半導電層、絶縁層(A)、絶縁層(B)および外
部半導電層の各層の樹脂組成物をコモン四層押出機のそ
れぞれの押出機に供給し、上記各層を導体上に、好まし
くは同時に被覆した後、架橋管内に導き、外部から加熱
し架橋を行うことにより製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION A power cable of the present invention comprises a resin composition of each of the above-mentioned inner semiconductive layer, insulating layer (A), insulating layer (B) and outer semiconductive layer, which is prepared by using a common four-layer extruder. It can be produced by supplying each extruder, coating each of the above layers on the conductor, preferably at the same time, then introducing it into a cross-linking tube, and heating from the outside to perform cross-linking.

【0017】[0017]

【実施例】次に本発明を実施例に基づいて説明するが、
本発明はこれらに限定されるものではない。
Next, the present invention will be described based on examples.
The present invention is not limited to these.

【0018】実施例1 A.内部および外部半導電層用樹脂組成物の準備 高圧法エチレン−酢酸ビニル共重合体(酢酸ビニル含有
量28重量%,メルトインデックス20g/10分,融
点91℃)100重量部に酸化防止剤〔イルガノックス
1010(商品名,Irganox 1010)〕0.5重量部およ
びアセチレンブラック80重量部を130℃で10分間
混練した後、ペレット(3mm×3mm)とし、これに
有機過酸化物〔2,5−ジメチル−2,5−ジ(第三ブ
チルパーオキシ)ヘキシン〕0.5重量部を添加し、7
0℃で5時間ゆっくり攪拌しペレット内部まで有機過酸
化物を均一に含浸させ、内部および外部半導電層用樹脂
組成物とした。
Example 1 A. Preparation of Resin Composition for Inner and Outer Semiconducting Layer 100 parts by weight of a high-pressure ethylene-vinyl acetate copolymer (vinyl acetate content 28% by weight, melt index 20 g / 10 minutes, melting point 91 ° C.) was added with an antioxidant [IRGA Knox 1010 (trade name, Irganox 1010)] 0.5 part by weight and 80 parts by weight of acetylene black are kneaded at 130 ° C. for 10 minutes to obtain pellets (3 mm × 3 mm), and organic peroxide [2,5- Dimethyl-2,5-di (tert-butylperoxy) hexyne] 0.5 part by weight was added,
The mixture was slowly stirred at 0 ° C. for 5 hours to uniformly impregnate the inside of the pellet with an organic peroxide to obtain a resin composition for the inner and outer semiconductive layers.

【0019】B.絶縁層(A)用樹脂組成物の準備 密度0.922g/cm3 、メルトインデックス2.5
g/10分の高圧法低密度ポリエチレン100重量部に
酸化防止剤〔シーノックスBCS(商品名,Seenox BC
S)〕0.2重量部を130℃で10分間混練した後、
ペレット(3mm×3mm)とし、これに有機過酸化物
(ジクミルパーオキサイド)3.5重量部を添加し、6
8℃で5時間ゆっくり攪拌しペレット内部まで有機過酸
化物を均一に含浸させ、絶縁層(A)用樹脂組成物とし
た。
B. Preparation of resin composition for insulating layer (A) Density 0.922 g / cm 3 , melt index 2.5
Antioxidant [Cynox BCS (trade name, Seenox BC
S)] After kneading 0.2 parts by weight at 130 ° C. for 10 minutes,
Pellet (3 mm x 3 mm), 3.5 parts by weight of organic peroxide (dicumyl peroxide) was added to this, and 6
The mixture was slowly stirred at 8 ° C. for 5 hours to uniformly impregnate the inside of the pellet with an organic peroxide to obtain a resin composition for the insulating layer (A).

【0020】C.絶縁層(B)用樹脂組成物の準備 密度0.923g/cm3 、メルトインデックス0.8
g/10分の気相法直鎖状低密度エチレン−ブテン−1
共重合体100重量部に酸化防止剤〔シーノックスBC
S(商品名,Seenox BCS)〕0.2重量部を150℃で
10分間混練した後、ペレット(3mm×3mm)と
し、これに有機過酸化物(ジクミルパーオキサイド)
2.5重量部を添加し、70℃で5時間ゆっくり攪拌し
ペレット内部まで有機過酸化物を均一に含浸させ、絶縁
層(B)用樹脂組成物とした。
C. Preparation of Resin Composition for Insulating Layer (B) Density 0.923 g / cm 3 , Melt Index 0.8
g / 10 min gas phase linear low density ethylene-butene-1
Antioxidant [Cynox BC
0.2 parts by weight of S (trade name, Seenox BCS)] is kneaded at 150 ° C. for 10 minutes to obtain pellets (3 mm × 3 mm), and organic peroxide (dicumyl peroxide) is added to the pellets.
2.5 parts by weight was added, and the mixture was slowly stirred at 70 ° C. for 5 hours to uniformly impregnate the inside of the pellet with an organic peroxide to obtain a resin composition for the insulating layer (B).

【0021】D.四層コモン押出装置 500メッシュ以上のスクリーンパックをダイプレート
にそれぞれ設けた内部半導電層押出機、絶縁層(A)押
出機、絶縁層(B)押出機および外部半導電層押出機を
順次配置した四層コモンクロスヘッドを有する押出装置
を準備した。
D. Four-layer common extruder: An internal semi-conductive layer extruder, an insulating layer (A) extruder, an insulating layer (B) extruder, and an external semi-conductive layer extruder in which a screen pack of 500 mesh or more is provided on each die plate are sequentially arranged. An extruder having the above-mentioned four-layer common crosshead was prepared.

【0022】E.電力ケーブルの製造 上述した内部半導電層用樹脂組成物、絶縁層(A)用樹
脂組成物、絶縁層(B)用樹脂組成物および外部半導電
層用樹脂組成物を上記押出装置のそれぞれの押出機に供
給し、内部半導電層押出機では200℃で加熱混練し、
絶縁層(A)押出機では130℃で加熱混練し、、絶縁
層(B)押出機では140℃で加熱混練し、外部半導電
層押出機では110℃で加熱混練し、それぞれの押出機
から押出し、四層コモンクロスヘッドのダイスより導体
上に同時に押出被覆し(ただし、各半導電層の厚さは1
mm,絶縁層(A)の厚さは15mm,絶縁層(B)の
厚さは10mmである)、その下流に位置する230℃
に加熱した架橋管で架橋反応を行い、導体上に内側から
内部半導電層、絶縁層(A)、絶縁層(B)および外部
半導電層が被覆された電力ケーブルを得た。この電力ケ
ーブルの各層の架橋度(ゲル分率)を測定したところ、
内部半導電層、絶縁層(A)、絶縁層(B)および外部
半導電層はそれぞれ76%、82%、80%および78
%であり、各層の界面ではメルトフラクチャーによる不
整は認められず、高品質の電力ケーブルが得られた。
E. Manufacture of power cable The resin composition for the inner semiconductive layer, the resin composition for the insulating layer (A), the resin composition for the insulating layer (B), and the resin composition for the outer semiconductive layer, which are described above, are each prepared by using the above-mentioned extruder. It is supplied to the extruder and heated and kneaded at 200 ° C. in the internal semiconductive layer extruder,
The insulating layer (A) extruder is heated and kneaded at 130 ° C., the insulating layer (B) extruder is heated and kneaded at 140 ° C., and the external semiconductive layer extruder is heated and kneaded at 110 ° C. Extruded and simultaneously extruded and coated on the conductor from the die of the four-layer common crosshead (However, the thickness of each semiconductive layer is 1
mm, the thickness of the insulating layer (A) is 15 mm, the thickness of the insulating layer (B) is 10 mm), 230 ° C. located downstream thereof.
A cross-linking reaction was carried out with a cross-linking tube heated to 0.degree. C. to obtain a power cable in which the inner semi-conductive layer, the insulating layer (A), the insulating layer (B) and the outer semi-conductive layer were coated on the conductor from the inside. When the degree of crosslinking (gel fraction) of each layer of this power cable was measured,
The inner semiconductive layer, the insulating layer (A), the insulating layer (B) and the outer semiconductive layer are 76%, 82%, 80% and 78, respectively.
%, No irregularity due to melt fracture was observed at the interface of each layer, and a high quality power cable was obtained.

【0023】実施例2 実施例1において、直鎖状低密度エチレン−ブテン−1
共重合体に代えて、メタロセン系シングルサイト触媒を
用いて製造したエチレン−オクテン−1共重合体(密度
0.910g/cm3 ,メルトインデックス3.5g/
10分)を使用した以外は実施例1と同様の実験を行っ
たところ、各層の架橋度(ゲル分率)は、内部半導電層
が76%、絶縁層(A)が83%、、絶縁層(B)が8
5%、そして外部半導電層が78%であり、各層間の界
面ではメルトフラクチャーによる不整が認められない高
品質の電力ケーブルが得られた。
Example 2 In Example 1, the linear low density ethylene-butene-1 was used.
An ethylene-octene-1 copolymer produced by using a metallocene-based single-site catalyst instead of the copolymer (density 0.910 g / cm 3 , melt index 3.5 g /
The same experiment as in Example 1 was performed except that 10 minutes) was used, and the degree of crosslinking (gel fraction) of each layer was 76% for the inner semiconductive layer, 83% for the insulating layer (A), and 8 layers (B)
5%, and the outer semiconductive layer was 78%, and a high-quality power cable was obtained in which irregularities due to melt fracture were not observed at the interface between the layers.

【0024】比較例1 実施例1に記載した内部半導電層、絶縁層(A)および
外部半導電層のみを有する電力ケーブルを製造したとこ
ろ、絶縁層(A)と外部半導電層との界面に不整が発生
し、電気トリーが生じ、電力ケーブルとしての寿命が短
く、実用性がないものだった。また、偏心を生じていた
点でも望ましくなかった。
Comparative Example 1 A power cable having only the inner semiconducting layer, the insulating layer (A) and the outer semiconducting layer described in Example 1 was manufactured, and an interface between the insulating layer (A) and the outer semiconducting layer was obtained. It had irregularities, electrical trees, and had a short life as a power cable, making it impractical. Moreover, it was not desirable in that eccentricity was generated.

【0025】比較例2 絶縁層(A)の厚さを20mm、絶縁層(B)の厚さを
30mmとした以外は実施例1と同様の操作を行い電力
ケーブルを製造したところ、偏心を生じただけでなく、
電力ケーブルの可撓性が劣り、望ましくなかった。ま
た、絶縁層(B)の両表面においてメルトフラクチャー
を生じ、界面特性が悪化した。
Comparative Example 2 A power cable was manufactured in the same manner as in Example 1 except that the insulating layer (A) had a thickness of 20 mm and the insulating layer (B) had a thickness of 30 mm. Not only
The power cable was inferior in flexibility and was not desirable. Further, melt fracture occurred on both surfaces of the insulating layer (B), and the interface characteristics deteriorated.

【0026】比較例3 絶縁層(A)の厚さを30mm、絶縁層(B)の厚さを
10mmとした以外は実施例1と同様の操作を行い電力
ケーブルを製造したところ、耐熱性、機械的強度に劣る
電力ケーブルが得られたばかりでなく、コストが上昇
し、望ましくなかった。
Comparative Example 3 A power cable was manufactured in the same manner as in Example 1 except that the insulating layer (A) had a thickness of 30 mm and the insulating layer (B) had a thickness of 10 mm. Not only was a power cable with inferior mechanical strength obtained, but the cost increased, which was not desirable.

【0027】[0027]

【発明の効果】本発明の電力ケーブルおよびその製造方
法は上に詳しく説明したような構成を採用したことによ
り、従来のものに比べ以下のような顕著な効果を奏す
る: (a)各層間においてメルトフラクチャーが発生しない
ので、各界面において不整がなく、電気トリーが発生せ
ず、電力ケーブルの寿命が長い。 (b)従来の電力ケーブルは高圧法低密度エチレン系樹
脂のみから製造されていたが、本発明ではこれを直鎖状
低密度エチレン−α−オレフィン共重合体と組み合わせ
て使用しているので、架橋効率が高く、耐熱性、機械的
特性、可撓性に優れた電力ケーブルが得られる。架橋効
率が高いことにより、有機過酸化物の配合量を低下させ
ることができ、コストの低下を図ることができる。 (c)偏心を生じることなく、高品質の電力ケーブルが
得られる。
The power cable of the present invention and the method for manufacturing the same have the following remarkable effects as compared with the conventional ones by adopting the structure described in detail above: (a) Between layers Since melt fracture does not occur, there is no irregularity at each interface, no electrical tree occurs, and the life of the power cable is long. (B) The conventional power cable was manufactured only from the high-pressure low-density ethylene-based resin, but in the present invention, since this is used in combination with the linear low-density ethylene-α-olefin copolymer, A power cable having high cross-linking efficiency, heat resistance, mechanical properties, and flexibility can be obtained. Since the crosslinking efficiency is high, the amount of the organic peroxide compounded can be reduced, and the cost can be reduced. (C) A high-quality power cable can be obtained without causing eccentricity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導体上に、内部半導電層、密度0.91
5〜0.925g/cm3 、メルトインデックス0.3
〜3.0g/10分の高圧法分岐状低密度エチレン系樹
脂100重量部および有機過酸化物0.1〜5重量部を
含有する樹脂組成物からなる絶縁層(A)、密度0.9
1〜0.93g/cm3 、メルトインデックス0.1〜
5.0g/10分の直鎖状低密度エチレン−α−オレフ
ィン共重合体100重量部および有機過酸化物0.3〜
3重量部を含有する樹脂組成物からなる絶縁層(B)
〔ただし、絶縁層(A)と絶縁層(B)の厚さ(それぞ
れをaおよびbとする)がa≧b≧(1/2)aの関係
にある〕、および外部半導電層をコモン四層押出機を用
いて被覆した後、加熱架橋を行うことを特徴とする電力
ケーブルの製造方法。
1. An inner semiconductive layer on a conductor, having a density of 0.91.
5 to 0.925 g / cm 3 , melt index 0.3
Insulation layer (A) composed of a resin composition containing 100 parts by weight of a high-pressure branched low-density ethylene resin of 0.1 to 3.0 g / 10 min and 0.1 to 5 parts by weight of an organic peroxide, and a density of 0.9.
1 to 0.93 g / cm 3 , melt index 0.1 to
100 parts by weight of a linear low-density ethylene-α-olefin copolymer at 5.0 g / 10 minutes and an organic peroxide of 0.3 to
Insulating layer (B) made of a resin composition containing 3 parts by weight
[However, the thicknesses of the insulating layer (A) and the insulating layer (B) (respectively a and b) are a ≧ b ≧ (1/2) a], and the external semiconductive layer is common. A method for producing an electric power cable, which comprises performing heating crosslinking after coating using a four-layer extruder.
【請求項2】 請求項1記載の方法により製造された電
力ケーブル。
2. A power cable manufactured by the method of claim 1.
JP8121371A 1996-05-16 1996-05-16 Power cable and manufacture thereof Pending JPH09306265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8121371A JPH09306265A (en) 1996-05-16 1996-05-16 Power cable and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8121371A JPH09306265A (en) 1996-05-16 1996-05-16 Power cable and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09306265A true JPH09306265A (en) 1997-11-28

Family

ID=14809585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8121371A Pending JPH09306265A (en) 1996-05-16 1996-05-16 Power cable and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09306265A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531795A (en) * 2005-02-28 2008-08-14 ボレアリス テクノロジー オイ Method for preparing a crosslinked polymer
JP2009114313A (en) * 2007-11-06 2009-05-28 Nippon Polyethylene Kk Polyethylene resin composition, and print lamination film using the same, and print laminate product
JP2010177183A (en) * 2009-02-02 2010-08-12 Viscas Corp Insulated wire in which anti-tracking performance is improved, and manufacturing method thereof
JP2013511119A (en) * 2009-11-11 2013-03-28 ボレアリス エージー Cable and its manufacturing method
US9587043B2 (en) 2009-11-11 2017-03-07 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US9595374B2 (en) 2010-11-03 2017-03-14 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10246527B2 (en) 2009-11-11 2019-04-02 Borealis Ag Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
US11078312B2 (en) 2009-11-11 2021-08-03 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531795A (en) * 2005-02-28 2008-08-14 ボレアリス テクノロジー オイ Method for preparing a crosslinked polymer
JP2009114313A (en) * 2007-11-06 2009-05-28 Nippon Polyethylene Kk Polyethylene resin composition, and print lamination film using the same, and print laminate product
JP2010177183A (en) * 2009-02-02 2010-08-12 Viscas Corp Insulated wire in which anti-tracking performance is improved, and manufacturing method thereof
US10246527B2 (en) 2009-11-11 2019-04-02 Borealis Ag Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
US9365708B2 (en) 2009-11-11 2016-06-14 Borealis Ag Cable and production process thereof
US9587043B2 (en) 2009-11-11 2017-03-07 Borealis Ag Polymer composition and a power cable comprising the polymer composition
JP2013511119A (en) * 2009-11-11 2013-03-28 ボレアリス エージー Cable and its manufacturing method
US10453585B2 (en) 2009-11-11 2019-10-22 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10875939B2 (en) 2009-11-11 2020-12-29 Borealis Ag Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
US11078312B2 (en) 2009-11-11 2021-08-03 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
US11390699B2 (en) 2009-11-11 2022-07-19 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
US11756700B2 (en) 2009-11-11 2023-09-12 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US9595374B2 (en) 2010-11-03 2017-03-14 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10032543B2 (en) 2010-11-03 2018-07-24 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10586634B2 (en) 2010-11-03 2020-03-10 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10950366B2 (en) 2010-11-03 2021-03-16 Borealis Ag Polymer composition and a power cable comprising the polymer composition

Similar Documents

Publication Publication Date Title
JP4902093B2 (en) Semiconductive shield composition
JP3745777B2 (en) Tree-resistant cable
JP4079575B2 (en) Cable semi-conductive shielding
EP2630187B1 (en) A semiconductive polyolefin composition which contains epoxy-groups
KR102005113B1 (en) A insulation composition and an electric cable including the same
AU2002240535A1 (en) Semiconducting shield compositions
CA2303600C (en) A crosslinkable polyethylene composition
EP1044455A1 (en) An insulating composition for an electric power cable
AU2016373307A1 (en) Medium- or high-voltage electric cable
JP4399077B2 (en) Adhesive semiconductive resin composition for semiconductive layer inside water-crosslinked polyethylene insulated power cable
EP1342247B1 (en) Power cable
JPH09306265A (en) Power cable and manufacture thereof
US6191230B1 (en) Polyethylene crosslinkable composition
JP3699514B2 (en) Cross-linked polyethylene insulated power cable and method for producing the same
WO2021200742A1 (en) Wiring material and production method therefor
JP2000164037A (en) Resin composition for insulator and power cable
KR102354984B1 (en) Tracking resistant insulation composition and high voltage cable comprising the same
KR0120400B1 (en) Composition of crosslinkable black compound used as jacket and insulation layer for outdoor power cable
JPS6140348A (en) Mixture for semiconductive layer
EP1041580A1 (en) A crosslinkable polyethylene composition
JPH10321056A (en) Cross-linked polyethylene insulated wire outdoor use
JPH03276515A (en) Water-tree resisting electric wire and cable
JPS6140349A (en) Mixture for semiconductive layer
JP3414581B2 (en) Composition for semiconductive layer of power cable
EP1141978B1 (en) A process for controlling water trees