JPH09304278A - Infrared gas analyser - Google Patents

Infrared gas analyser

Info

Publication number
JPH09304278A
JPH09304278A JP12117496A JP12117496A JPH09304278A JP H09304278 A JPH09304278 A JP H09304278A JP 12117496 A JP12117496 A JP 12117496A JP 12117496 A JP12117496 A JP 12117496A JP H09304278 A JPH09304278 A JP H09304278A
Authority
JP
Japan
Prior art keywords
infrared
quartz
filter
detector
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12117496A
Other languages
Japanese (ja)
Inventor
Yusuke Nakamura
裕介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12117496A priority Critical patent/JPH09304278A/en
Publication of JPH09304278A publication Critical patent/JPH09304278A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve the reduction of cost, high sensitivity, excellent reproducibility and the enhancement of stability by providing a quartz filter with a specific thickness before or behind a measuring filter. SOLUTION: A quartz filter with a thickness of 1mm in conventional technique is replaced with a quartz filter with a thickness of 3mm. By this constitution, the absorbancy of infrared rays of quartz is shifted toward a short wavelength and the main absorbing band of carbon dioxide is contained in the absorbing region thereof and the interference of carbon dioxide can be reduced as compared with a case using a filter composed of a PTFE plate. Therefore, it becomes unnecessary to use the PTFE plate and the quantity of infrared rays in the vicinity of 3.4μm being the main absorbing band of hydrocarbon increases. Further, the signal quantity of an HC detector 6 increases by about 30% and S/N is enhanced and cost is reduced. Further, the unstableness accompanying the strain of the PTFE plate at a time of high temp. and the deterioration of reproducibility is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、自動車排ガスや
燃焼排ガス等に含まれる炭化水素などの有害成分を測定
するための赤外線ガス分析計に関する。
TECHNICAL FIELD The present invention relates to an infrared gas analyzer for measuring harmful components such as hydrocarbons contained in automobile exhaust gas, combustion exhaust gas and the like.

【0002】[0002]

【従来の技術】自動車排ガスや燃焼排ガス等に含まれる
炭化水素などの有害成分を測定するためのガス分析計と
して、非分散型赤外線ガス分析計がある。この分析計
は、赤外線光源から放射された赤外線を測定ガス中に通
して、そのガス中に含まれる成分固有の赤外線の吸収量
を計測して、その成分の量を分析するものである。
2. Description of the Related Art As a gas analyzer for measuring harmful components such as hydrocarbons contained in automobile exhaust gas and combustion exhaust gas, there is a non-dispersive infrared gas analyzer. This analyzer passes infrared rays emitted from an infrared light source through a measurement gas, measures the amount of absorption of infrared rays peculiar to the components contained in the gas, and analyzes the amount of the components.

【0003】図2は、従来技術による炭化水素用赤外線
分析計の構成を示す。この分析計はシングルビーム方式
と呼ばれるもので、赤外線のビームが1つのものであ
る。赤外線光源1から放射された赤外線は、鏡で赤外線
のビームとされ、チョッパ2で断続ビームとされ、厚さ
1mmの石英フィルタ3を通って、分析用ガスを流してい
る測定セル4(図2では、単にセル4と記す) を通過
し、厚さ1mmのテトラフルオロエチレン(以下では、P
TFEと記す)板5からなるフィルタを通って、n−ヘ
キサンを満たしている炭化水素検出器6(図2では、H
C検出器6と記す)に到達する。このHC検出器6は、
セル4における特定波長の赤外線の吸収量に応じた振幅
をもち、チョッパ2のチョッピング周波数をもつ交流信
号を出力し、この交流信号が増幅器7で増幅されて最終
出力となる。
FIG. 2 shows the structure of a conventional infrared analyzer for hydrocarbons. This analyzer is called a single beam system and has one infrared beam. The infrared light emitted from the infrared light source 1 is converted into an infrared beam by a mirror, an intermittent beam by a chopper 2, a quartz filter 3 having a thickness of 1 mm, and a measurement cell 4 (FIG. Then, it simply passes through cell 4) and has a thickness of 1 mm of tetrafluoroethylene (hereinafter, P
The hydrocarbon detector 6 (in FIG. 2, HFE in FIG. 2) is filled with n-hexane through a filter composed of a plate 5.
C detector 6). This HC detector 6
An AC signal having an amplitude corresponding to the absorption amount of infrared rays of a specific wavelength in the cell 4 and having the chopping frequency of the chopper 2 is output, and this AC signal is amplified by the amplifier 7 and becomes the final output.

【0004】分析対象となる雰囲気中には、相当な濃度
の水蒸気と炭酸ガスが含まれており、両者による赤外線
の吸収帯は、図4に示す通りである。図4は、(a)か
ら(e)に、それぞれ、炭化水素の内のn−ヘキサンと
n−ヘプタン、水蒸気、炭酸ガス、石英及びPTFEの
赤外線の吸収スペクトルを示したものであり、横軸には
下側に赤外線の1cm当たりの波数を示し、上側に対応す
る波長をμm 単位で示し、縦軸には赤外線の透過率を示
している。図4(a)と(b)から分かるように、水蒸
気の赤外線吸収帯は、炭化水素の赤外線吸収帯と大きく
重なっていて、強い干渉成分となり、この干渉を補償し
ないと精度のよい分析ができない。この水蒸気の干渉を
補償する手段として、1つには、炭化水素検出器6を、
図3に示す構造としている。すなわち、この検出器は、
セル4を通過してきた赤外線が先に通過する前部膨張室
61と後で通過する後部膨張室62と、両室をつなぐ通路に
両室の圧力差によって流れるガスの流れを検出するマイ
クロフローセンサ63とで構成されており、両室における
赤外線の吸収量の違いによって生ずる圧力差によって生
じるガスの流れによって、セル4内の吸収量を求め、ガ
ス成分を分析する。したがって、干渉成分となる水蒸気
による吸収によって生ずる前部膨張室61における圧力変
化と後で通過する後部膨張室62における圧力変化とがほ
ぼ同じになるような寸法形状に決定し、水蒸気の干渉を
補償する。しかし、この対策だけでは、広い波長領域に
わたっている水蒸気の吸収を補償しきれないので、第2
の手段として、厚さ1mmの石英のフィルタを使い、長波
長側の赤外線をカットすることにより、炭化水素のベー
ス吸収と水蒸気の吸収との重なり部分をできるだけ少な
くし、補償の精度を高めている〔図4(d)参照のこ
と〕。
The atmosphere to be analyzed contains a considerable concentration of water vapor and carbon dioxide gas, and the infrared absorption bands by both are as shown in FIG. 4 (a) to (e) show infrared absorption spectra of n-hexane and n-heptane among hydrocarbons, water vapor, carbon dioxide, quartz and PTFE, respectively. In the lower side, the wave number per 1 cm of infrared rays is shown, in the upper side, the corresponding wavelength is shown in μm unit, and the vertical axis shows the infrared transmittance. As can be seen from FIGS. 4 (a) and 4 (b), the infrared absorption band of water vapor largely overlaps with the infrared absorption band of hydrocarbons, forming a strong interference component, and accurate analysis cannot be performed unless this interference is compensated. . As a means for compensating for this water vapor interference, one is a hydrocarbon detector 6,
The structure shown in FIG. 3 is used. That is, this detector
Front expansion chamber through which infrared rays that have passed through cell 4 first pass
61 and a rear expansion chamber 62 that passes through later, and a microflow sensor 63 that detects the flow of gas flowing due to the pressure difference between the two chambers in the passage that connects the two chambers. The amount of absorption in the cell 4 is obtained from the gas flow caused by the pressure difference caused by the difference, and the gas component is analyzed. Therefore, the size and shape are determined so that the pressure change in the front expansion chamber 61 and the pressure change in the rear expansion chamber 62 that will pass therethrough that are caused by the absorption by the water vapor, which is an interference component, are almost the same, and the water vapor interference is compensated. To do. However, this measure alone cannot completely compensate for the absorption of water vapor over a wide wavelength range.
As a means of using, a 1 mm thick quartz filter is used, and infrared rays on the long wavelength side are cut off to minimize the overlapping portion between the base absorption of hydrocarbons and the absorption of water vapor, thereby improving the accuracy of compensation. [See FIG. 4 (d)].

【0005】このようにして水蒸気の干渉を補償して
も、炭酸ガスの干渉の方は十分には補償されない。特
に、 4.2μm 近傍の主吸収帯は非常に大きい吸収係数を
もっており、干渉成分として残って問題となる。その補
償のためにPTFE板5が用いられ、HC検出器6に到
達する前に、この波長領域の赤外線を除去している〔図
4(c)及び(e)参照のこと〕。
Even if the water vapor interference is compensated in this manner, the carbon dioxide gas interference is not sufficiently compensated. In particular, the main absorption band near 4.2 μm has a very large absorption coefficient and remains as an interference component, which becomes a problem. A PTFE plate 5 is used for the compensation, and removes infrared rays in this wavelength region before reaching the HC detector 6 (see FIGS. 4C and 4E).

【0006】しかし、PTFE板5によって炭酸ガスの
主吸収帯の干渉を除去しようとすると、図4(e)から
分かるように、PTFEの 4.2μm 近傍の吸収がシャー
プでなく、他の波長領域との吸収の比率が近いので、炭
酸ガスの干渉を除去するためには、同時に他の波長の赤
外線をも大きく吸収することになり、炭化水素の吸収帯
における赤外線の総量が低減し、感度が小さくなってし
まうという欠点を有する。更に、PTFE板5は熱膨張
係数が大きいため、温度が変化して高温になった場合
に、板が歪み、再現性や安定性が悪くなるという欠点も
もっている。
However, when trying to remove the interference of the main absorption band of carbon dioxide gas by the PTFE plate 5, as shown in FIG. 4 (e), the absorption in the vicinity of 4.2 μm of PTFE is not sharp, and it is different from other wavelength regions. Since the absorption ratios of the two are close to each other, in order to eliminate the interference of carbon dioxide gas, the infrared rays of other wavelengths are also largely absorbed at the same time, the total amount of infrared rays in the absorption band of hydrocarbons is reduced, and the sensitivity is low. It has the drawback of becoming Further, since the PTFE plate 5 has a large coefficient of thermal expansion, it has a drawback that the plate is distorted when the temperature changes and becomes high, resulting in poor reproducibility and stability.

【0007】[0007]

【発明が解決しようとする課題】この発明は、上述のP
TFE板5の使用に伴って、計測対象成分の吸収帯にお
ける赤外線の総量が低減して感度が小さくなること、及
び、温度変化に伴うPTFE板5の歪みに伴って再現性
や安定性が悪化することを解決し、コストが安く、感度
が高く、再現性及び安定性に優れた赤外線分析計を提供
することを課題とする。
This invention is based on the above-mentioned P
With the use of the TFE plate 5, the total amount of infrared rays in the absorption band of the component to be measured is reduced and the sensitivity is reduced, and the reproducibility and stability are deteriorated due to the distortion of the PTFE plate 5 due to the temperature change. It is an object of the present invention to solve the above problems, to provide an infrared analyzer that is low in cost, high in sensitivity, and excellent in reproducibility and stability.

【0008】[0008]

【課題を解決するための手段】この課題を解決するため
に、この発明においては、測定セルの前あるいは後に、
2.5 mm から5mmの厚さの石英フィルタを備えている。
従来技術に比べて厚い石英フィルタを備えることによっ
て、炭酸ガスの主吸収帯に相当する赤外線を大幅に除去
することができるので、炭酸ガスの干渉を低減すること
ができる。
In order to solve this problem, in the present invention, before or after the measuring cell,
It is equipped with a quartz filter with a thickness of 2.5 mm to 5 mm.
Since the infrared filter corresponding to the main absorption band of carbon dioxide can be largely removed by providing the quartz filter thicker than that of the conventional technique, the interference of carbon dioxide can be reduced.

【0009】[0009]

【発明の実施の形態】この発明においては、炭酸ガスの
主吸収帯である 4.2μm 近傍の赤外線を、厚い石英板を
フィルタとして用いることによって大幅に低減させ、炭
酸ガスの干渉を低減している。図1は、この発明による
炭化水素用赤外線分析計の実施例を示す概念図で、従来
技術による炭化水素用赤外線分析計(図2参照)と異な
るところは、従来技術における厚さ1mmの石英フィルタ
3を、厚さ3mmという厚い石英フィルタ31に置き換え、
PTFE板5からなるフィルタを無くしたことである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, infrared rays in the vicinity of 4.2 μm, which is the main absorption band of carbon dioxide, are significantly reduced by using a thick quartz plate as a filter, and the interference of carbon dioxide is reduced. . FIG. 1 is a conceptual diagram showing an embodiment of an infrared analyzer for hydrocarbons according to the present invention. The difference from the infrared analyzer for hydrocarbons according to the prior art (see FIG. 2) is that a quartz filter having a thickness of 1 mm in the prior art is used. Replace 3 with a thick quartz filter 31 with a thickness of 3 mm,
That is, the filter made of the PTFE plate 5 is eliminated.

【0010】この発明の発明者は、石英の厚さを厚くす
ると図4(d)に示すように、石英の赤外線の吸収端が
短波長側にシフトしてきて、炭酸ガスの主吸収帯をその
吸収領域にほぼ含んでしまうことを見出し、更に、石英
の場合には、炭化水素の主吸収帯である 3.4μm 近傍の
吸収が、PTFE板5からなるフィルタに比べて遙に小
さいことを見出し、これを利用することによって、PT
FE板5からなるフィルタを無くすることができると同
時に、炭化水素の感度を高めることができ(HC検出器
6の信号量が20〜40%増加)、S/N比も向上し、更
に、石英は熱膨張係数が非常に小さいので、PTFE板
5の大きな熱膨張係数に伴う問題をも解決することがで
きた。
The inventor of the present invention, when the thickness of the quartz is increased, as shown in FIG. 4 (d), the infrared absorption edge of the quartz is shifted to the short wavelength side, and the main absorption band of carbon dioxide is It was found that they are almost included in the absorption region, and further that in the case of quartz, the absorption in the vicinity of 3.4 μm, which is the main absorption band of hydrocarbons, is much smaller than that of the filter made of the PTFE plate 5, By using this, PT
At the same time as eliminating the filter composed of the FE plate 5, the sensitivity of hydrocarbons can be increased (the signal amount of the HC detector 6 is increased by 20 to 40%), and the S / N ratio is also improved. Since quartz has a very small coefficient of thermal expansion, it was possible to solve the problem associated with the large coefficient of thermal expansion of the PTFE plate 5.

【0011】石英の厚さは、3〜4mmが最も有効な厚さ
であり、 2.5mm以下では十分な効果がなく、5mmを越え
るほど厚いものは構成上使い難くなる。以上の実施例で
は、シングルビームの炭化水素用赤外線分析計について
説明したが、この場合に、その効果が最も顕著であるの
で例として示したのであり、炭酸ガスの干渉を除去する
ために、厚い石英が有効であることは、ダブルビーム方
式の赤外線分析計においても同様であり、炭化水素以外
の成分を分析する場合にも有効であることは言うまでも
ない。
The most effective thickness of quartz is 3 to 4 mm. If it is 2.5 mm or less, the effect is not sufficient, and if it exceeds 5 mm, it becomes difficult to use because of its structure. In the above examples, the single-beam infrared spectrometer for hydrocarbons has been described, but in this case, the effect is most prominent, and therefore it is shown as an example. In order to remove the interference of carbon dioxide gas, It is needless to say that the fact that quartz is effective is the same as in the double-beam infrared analyzer, and is also effective when analyzing components other than hydrocarbons.

【0012】[0012]

【発明の効果】この発明によれば、従来技術においても
使用していた石英フィルタ3を厚くすることによって、
PTFE板5からなるフィルタを使用したのと同等以上
に炭酸ガスの干渉を低減することができ、PTFE板5
を使用する必要がなくなる。そのため、炭化水素の主吸
収帯である 3.4μm 近傍の赤外線の光量が増大し、検出
器の信号量が約30%増大し、S/N比も向上し、コスト
も低減する。更に、高温時におけるPTFE板5の歪み
に伴う不安定性も再現性の悪さも解決する。
According to the present invention, by increasing the thickness of the quartz filter 3 used in the prior art,
It is possible to reduce the interference of carbon dioxide gas to a level equal to or more than that when a filter made of the PTFE plate 5 is used.
Eliminates the need to use Therefore, the amount of infrared light in the vicinity of 3.4 μm, which is the main absorption band of hydrocarbons, is increased, the signal amount of the detector is increased by about 30%, the S / N ratio is improved, and the cost is reduced. Furthermore, the instability and poor reproducibility associated with the distortion of the PTFE plate 5 at high temperatures can be solved.

【0013】このようにして、コストが安く、感度が高
く、再現性及び安定性に優れた赤外線分析計を提供する
ことができる。
In this way, it is possible to provide an infrared analyzer which is low in cost, high in sensitivity, and excellent in reproducibility and stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による赤外線分析計の実施例を示す概
念図
FIG. 1 is a conceptual diagram showing an embodiment of an infrared analyzer according to the present invention.

【図2】従来技術による赤外線分析計の構造を示す概念
FIG. 2 is a conceptual diagram showing the structure of an infrared analyzer according to the prior art.

【図3】シングルビーム方式の赤外線分析計に使用され
ている赤外線検出器の構造を示す概念図
FIG. 3 is a conceptual diagram showing the structure of an infrared detector used in a single beam infrared analyzer.

【図4】炭化水素、水蒸気、炭酸ガス、石英及びPTF
Eの赤外吸収スペクトル図
FIG. 4 Hydrocarbon, water vapor, carbon dioxide, quartz and PTF
Infrared absorption spectrum of E

【符号の説明】[Explanation of symbols]

1 赤外線光源 2 チョッパ 3, 31 石英フィルタ 4 セル 5 PTFE板 6 HC検出器 61 前部膨張室 62 後部膨張室 63 マイクロフローセンサ 7 増幅器 1 Infrared Light Source 2 Chopper 3, 31 Quartz Filter 4 Cell 5 PTFE Plate 6 HC Detector 61 Front Expansion Chamber 62 Rear Expansion Chamber 63 Micro Flow Sensor 7 Amplifier

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】赤外線光源と、赤外線光源からの赤外線を
通過させ、合わせて分析用ガスを流す測定セルと、測定
セルを通過した赤外線を検出する検出器を備えている赤
外線ガス分析計において、 測定セルの前あるいは後に、 2.5 mm から5mmの厚さの
石英フィルタを備えていることを特徴とする赤外線ガス
分析計。
1. An infrared gas analyzer comprising an infrared light source, a measurement cell that allows the infrared light from the infrared light source to pass therethrough and also flows an analysis gas, and a detector that detects the infrared light that has passed through the measurement cell, An infrared gas analyzer comprising a quartz filter having a thickness of 2.5 mm to 5 mm before or after the measuring cell.
【請求項2】請求項1に記載の赤外線ガス分析計におい
て、 測定セルが1つであり、前記検出器が、前部膨張室及び
後部膨張室をもち、両室間の圧力差を検出するセンサを
備えている構造の検出器であることを特徴とする赤外線
ガス分析計。
2. The infrared gas analyzer according to claim 1, wherein the number of measurement cells is one, and the detector has a front expansion chamber and a rear expansion chamber, and detects a pressure difference between both chambers. An infrared gas analyzer, which is a detector having a structure including a sensor.
【請求項3】請求項1又は請求項2に記載の赤外線ガス
分析計において、 前記検出器として炭化水素検出器を備えていることを特
徴とする赤外線ガス分析計。
3. The infrared gas analyzer according to claim 1 or 2, wherein a hydrocarbon detector is provided as the detector.
JP12117496A 1996-05-16 1996-05-16 Infrared gas analyser Pending JPH09304278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12117496A JPH09304278A (en) 1996-05-16 1996-05-16 Infrared gas analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12117496A JPH09304278A (en) 1996-05-16 1996-05-16 Infrared gas analyser

Publications (1)

Publication Number Publication Date
JPH09304278A true JPH09304278A (en) 1997-11-28

Family

ID=14804690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12117496A Pending JPH09304278A (en) 1996-05-16 1996-05-16 Infrared gas analyser

Country Status (1)

Country Link
JP (1) JPH09304278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100739353B1 (en) * 1997-09-19 2007-07-18 로베르트 보쉬 게엠베하 Drive mechanism for a motor vehicle
JP2015215253A (en) * 2014-05-12 2015-12-03 株式会社堀場製作所 Analyser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100739353B1 (en) * 1997-09-19 2007-07-18 로베르트 보쉬 게엠베하 Drive mechanism for a motor vehicle
JP2015215253A (en) * 2014-05-12 2015-12-03 株式会社堀場製作所 Analyser

Similar Documents

Publication Publication Date Title
CA1315122C (en) Dual sample cell gas analyzer
US3696247A (en) Vehicle exhaust emissions analyzer
US3995960A (en) Method and apparatus for background signal reduction in opto-acoustic absorption measurement
US6201245B1 (en) Infrared, multiple gas analyzer and methods for gas analysis
US4594004A (en) Continuous particulate-measuring apparatus using an optoacoustic effect
CA3025935A1 (en) Photothermal interferometry apparatus and method
KR950033475A (en) IR-based nitric oxide detector with water vapor compensation
CN107091818B (en) Multi-gas-chamber complex component gas analysis system and method
US20080011952A1 (en) Non-Dispersive Infrared Gas Analyzer
JP5030629B2 (en) Method and apparatus for quantitative analysis of gas concentration
US6762410B1 (en) Analysis apparatus
JPH0736050U (en) Non-dispersive infrared gas analyzer
US4801805A (en) Method of measuring multicomponent constituency of gas emission flow
Sun et al. Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption
US4253770A (en) Optoacoustic analyzer
US4110619A (en) Method of compensating for carrier-gas-composition dependence due to the collision-broadening effect in non-dispersive infrared photometers having a detector comprised of two absorption chambers arranged one behind the other
US5977546A (en) Self normalizing radiant energy monitor and apparatus for gain independent material quantity measurements
US3970387A (en) Nondispersion, two beam, infrared gas analyzer
JPH09304278A (en) Infrared gas analyser
Song et al. A four-channel-based mid-infrared methane sensor system using novel optical/electrical dual-domain self-adaptive denoising algorithm
JPH08247942A (en) Infrared ray gas analyzer
US3987304A (en) Infrared absorption spectroscopy employing an optoacoustic cell for monitoring flowing streams
Dewey Design of optoacoustic systems
Sun et al. Industrial SO 2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm
GB2024417A (en) Non-dispersive infrared gas analyser