JPH09304264A - Confirmation of wettability to solid wall surface of molten resin - Google Patents
Confirmation of wettability to solid wall surface of molten resinInfo
- Publication number
- JPH09304264A JPH09304264A JP11596996A JP11596996A JPH09304264A JP H09304264 A JPH09304264 A JP H09304264A JP 11596996 A JP11596996 A JP 11596996A JP 11596996 A JP11596996 A JP 11596996A JP H09304264 A JPH09304264 A JP H09304264A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- molten resin
- resin
- wetting angle
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、溶融樹脂の固体壁
面への濡れ性の確認方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for confirming wettability of a molten resin on a solid wall surface.
【0002】[0002]
【従来の技術】従来、濡れ性の確認方法としては、金属
やプラスティック等の固体表面へ水滴を垂らして濡れ角
度を測定する方法や溶融樹脂中に他の溶融樹脂をノズル
で注入して、そのときの接触角、すなわち、濡れ角度を
計測することにより、溶融樹脂間の濡れ性を確認する方
法が知られている。2. Description of the Related Art Conventionally, as a method of confirming wettability, a method of dripping water droplets on a solid surface such as metal or plastic to measure a wetting angle or injecting another molten resin into a molten resin with a nozzle There is known a method of confirming the wettability between molten resins by measuring the contact angle at that time, that is, the wetting angle.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、色替え
性や樹脂替え性に大きく関与していると考えられる溶融
樹脂の固体壁面スリップに関連性が強い溶融樹脂の固体
壁面への濡れ性の確認方法が、これまで確立されていな
かった。本発明では、これらの溶融樹脂の固体壁面への
濡れ性の確認方法を確立して、この確認方法で得られる
物性を基に、色替えや樹脂替えの良好なブロー成形品を
連続安定的に生産することを意図している。However, the method for confirming the wettability of the molten resin to the solid wall surface, which is strongly related to the solid wall slip of the molten resin, which is considered to be greatly involved in the color changeability and the resin changeability. But it was not established until now. In the present invention, a method of confirming the wettability of these molten resins to the solid wall surface is established, and based on the physical properties obtained by this confirming method, a good blow-molded product of color change or resin change can be continuously and stably produced. Intended to produce.
【0004】[0004]
【課題を解決するための手段】以上の課題を解決するた
めに、本発明においては、溶融樹脂の固体壁面への濡れ
性の確認する方法であって、窒素ガス等の不活性ガス雰
囲気で所定温度に加熱され温度調節された炉内に、被検
体である平滑な平面を有する固体を該平面が水平となる
ように静置したうえ該固体の表面上に樹脂ペレット片を
載置して溶融状態とし、液滴状態となった溶融樹脂の映
像を撮影して該固体表面に対する溶融樹脂の濡れ角度を
測定するようにした。また、第2の発明では、第1の発
明における固体表面に対する溶融樹脂の濡れ角度の測定
方法は、水平固体表面上に置かれた樹脂の液滴の高さと
底辺の最大径の比率から換算して得られた傾斜角度で決
定し、これより溶融樹脂の固体壁面への濡れ性を判別す
るようにした。In order to solve the above problems, in the present invention, a method for confirming the wettability of a molten resin to a solid wall surface is performed in an atmosphere of an inert gas such as nitrogen gas. In a furnace heated to a temperature and controlled in temperature, a solid having a smooth flat surface, which is an object to be inspected, is allowed to stand so that the flat surface is horizontal, and a resin pellet piece is placed on the surface of the solid and melted. Then, an image of the molten resin in a droplet state was photographed and the wetting angle of the molten resin with respect to the solid surface was measured. Further, in the second invention, the method for measuring the wetting angle of the molten resin with respect to the solid surface in the first invention is converted from the ratio of the height of the droplet of the resin placed on the horizontal solid surface to the maximum diameter of the bottom. The angle of inclination obtained was used to determine the wettability of the molten resin to the solid wall surface.
【0005】[0005]
【発明の実施の形態】本発明においては、溶融樹脂の固
体壁面への濡れ性の確認する方法であって、窒素ガス等
の不活性ガス雰囲気で所定温度に加熱され温度調節され
た炉内に、被検体である平滑な平面を有する固体を該平
面が水平となるように静置したうえ該固体の表面上に樹
脂ペレット片を載置して溶融状態とし、液滴状態となっ
た溶融樹脂の映像を撮影して該固体表面に対する溶融樹
脂の濡れ角度を測定するようにしており、比較的簡単な
方法で正確に固体表面に対する溶融樹脂の濡れ角度を測
定することが出来る。また、固体表面に対する溶融樹脂
の濡れ角度の測定方法は、水平固体表面上に置かれた樹
脂の液滴の高さと底辺の最大径の比率から換算して得ら
れた傾斜角度で決定するようにしているため、濡れ性を
視覚的に定量的に把握することができるので、信頼性が
高い。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a method for confirming the wettability of a molten resin to a solid wall surface is provided in a furnace which is heated to a predetermined temperature in an inert gas atmosphere such as nitrogen gas and whose temperature is controlled. A molten resin that is in a droplet state by placing a solid having a smooth flat surface, which is an object, so that the flat surface is horizontal, and placing resin pellet pieces on the surface of the solid Is taken to measure the wetting angle of the molten resin with respect to the solid surface, and the wetting angle of the molten resin with respect to the solid surface can be accurately measured by a relatively simple method. Also, the method of measuring the wetting angle of the molten resin with respect to the solid surface should be determined by the tilt angle obtained by converting from the ratio of the height of the droplet of the resin placed on the horizontal solid surface and the maximum diameter of the bottom side. Since the wettability can be visually and quantitatively grasped, the reliability is high.
【0006】[0006]
【実施例】以下図面や実験データに基づいて本発明の実
施例について詳細に説明する。図1〜図5および表1〜
表3は本発明の実施例に係り、図1は濡れ角度測定装置
の全体構成図、図2は濡れ角度の測定結果を示すグラ
フ、図3は図2の結果から推算された付着仕事を示すグ
ラフ、図4は濡れ角度とスリップ速度の相関を示すグラ
フ、図5は付着仕事とスリップ速度の相関を示すグラフ
である。また、表1は固体表面の表面状況を示し、表2
は樹脂材料の種類と所定炉内温度のデータを示し、表3
は濡れ角度と付着仕事とスリップ速度のデータを示す。Embodiments of the present invention will be described in detail below with reference to the drawings and experimental data. 1 to 5 and Table 1 to
Table 3 relates to the examples of the present invention, FIG. 1 is an overall configuration diagram of the wetting angle measuring device, FIG. 2 is a graph showing the measurement results of the wetting angle, and FIG. 3 is the adhesion work estimated from the results of FIG. FIG. 4 is a graph showing the correlation between the wetting angle and the slip speed, and FIG. 5 is a graph showing the correlation between the work of adhesion and the slip speed. Table 1 shows the surface condition of the solid surface, and Table 2
Indicates the data of the type of resin material and the temperature in the specified furnace, and Table 3
Shows the data of wetting angle, work of adhesion and slip speed.
【0007】[0007]
【表1】 [Table 1]
【0008】[0008]
【表2】 [Table 2]
【0009】[0009]
【表3】 [Table 3]
【0010】濡れ角度測定装置100は、図1に示すよ
うに構成され、He−Neレーザ光の発光装置10で発
光させたレーザ光を光線拡散器20を通過させた後、窒
素ガスを充満させ温度調節装置90で所定の温度に温度
調節された加熱炉30内に導き、炉内の被検体である平
滑な水平平面を有する金属板32上に置かれた溶融樹脂
の液滴34に照射し、さらにズームアップレンズ40を
介してスクリーン50に結像させる。このようにして得
られた映像をCCDカメラ60で撮影し、VTRデッキ
70で記録するとともに、モニタテレビ80に映し出し
て液滴の形状変化が停止した時点で金属固体表面の溶融
樹脂の濡れ角度を観測する。すなわち、平滑な固体表面
32上に置いた液滴34の形状から液滴34の高さと底
面の最大径を読み取り、最大径と高さからなる二等辺三
角形の傾斜角から濡れ角度を求めた。観測中、溶融樹脂
が酸化して濡れ角度に影響を及ぼすのを防止するため、
加熱炉30内に窒素ガスを通し、充満した。The wetting angle measuring device 100 is constructed as shown in FIG. 1, and the laser light emitted from the He-Ne laser light emitting device 10 is passed through the light diffuser 20 and then filled with nitrogen gas. It is introduced into the heating furnace 30 whose temperature is adjusted to a predetermined temperature by the temperature adjusting device 90, and the droplet 34 of the molten resin placed on the metal plate 32 having a smooth horizontal plane, which is the subject in the furnace, is irradiated with the droplet 34. Further, an image is formed on the screen 50 via the zoom-up lens 40. The image obtained in this way is photographed by the CCD camera 60, recorded by the VTR deck 70, and when the shape change of the droplet is stopped by being displayed on the monitor TV 80, the wetting angle of the molten resin on the surface of the metal solid is measured. Observe. That is, the height of the droplet 34 and the maximum diameter of the bottom surface were read from the shape of the droplet 34 placed on the smooth solid surface 32, and the wetting angle was obtained from the inclination angle of the isosceles triangle composed of the maximum diameter and the height. During observation, to prevent the molten resin from oxidizing and affecting the wetting angle,
The heating furnace 30 was filled with nitrogen gas.
【0011】樹脂ペレット片は加熱炉30内で所定の温
度に加熱することにより、溶融して液滴状態になるが、
その液滴状態を側面から撮影することで金属固体表面上
における溶融樹脂の濡れ角度を測定した。光源として
は、He−Neレーザ光を用いた。金属固体のテストプ
レート32は縦10mm、横10mm、厚さ3mmの大
きさをもつ炭素鋼製の金属板で、テスト表面は、表1に
示すように、炭素鋼板(表面粗さ(最大高さ)0.4μ
m)、炭素鋼板(表面粗さ(最大高さ)1.6μm)、
フッ素樹脂コーティング(PTFEコーティング)炭素
鋼板、クロムメッキ炭素鋼板であり、フッ素樹脂コーテ
ィングとクロムメッキは、いずれも0.4μmの表面粗
さ(最大高さ)の炭素鋼板の表面に施してある。一方、
このテストプレート32上に置かれる樹脂ペレットは、
表2に示すように、高密度ポリエチレンHDPE、ポリ
プロピレンPP、ポリカーボネイトPCの3種類を使用
した。これらの樹脂ペレットを2.5〜2.7mgの角
柱形状にカットし、長手方向がプレートに対して垂直に
直立するように置いた。When the resin pellet pieces are heated to a predetermined temperature in the heating furnace 30, they are melted into a droplet state.
The wetting angle of the molten resin on the surface of the metal solid was measured by photographing the state of the droplet from the side. As the light source, He-Ne laser light was used. The metal solid test plate 32 is a metal plate made of carbon steel having a size of 10 mm in length, 10 mm in width, and 3 mm in thickness. The test surface is a carbon steel plate (surface roughness (maximum height) as shown in Table 1. ) 0.4μ
m), carbon steel plate (surface roughness (maximum height) 1.6 μm),
A fluororesin-coated (PTFE-coated) carbon steel plate and a chrome-plated carbon steel plate, both of which are coated on the surface of a carbon steel plate having a surface roughness (maximum height) of 0.4 μm. on the other hand,
The resin pellets placed on this test plate 32 are
As shown in Table 2, three types of high-density polyethylene HDPE, polypropylene PP, and polycarbonate PC were used. These resin pellets were cut into a prism shape of 2.5 to 2.7 mg, and placed so that the longitudinal direction of the resin pellet was vertical to the plate.
【0012】実験によって得られた画像データは画像処
理装置に取り込んでモニタ画面上に静止画として写し、
画像処理装置に付属の静止画像内で角度を測定するプロ
グラム用いて濡れ角度を求めた。The image data obtained by the experiment is taken into the image processing apparatus and is displayed as a still image on the monitor screen.
The wetting angle was determined using a program that measures the angle in a still image attached to the image processing device.
【0013】図2は、表2の樹脂PPと樹脂PCの2種
類について、表1の固体表面a、b、c、dの4種類に
対する濡れ角度(contact angle)の結果
である(樹脂HDPEについては、緩和時間が長く今回
測定しなかった)。また、図3は、これより計算した付
着仕事(Work of adhesion)を示す。
付着仕事WA は単に液体が液滴として固体面上に付着す
る場合の付着濡れにおけるエネルギ変化を表し、次式で
与えられる。 WA =γsv+γLv−γsL ・・・・・・・・・・・・・(1) ここで、γsv、γLv、γsLは、それぞれ固体表
面、液体表面、固液界面でのエネルギを表す。FIG. 2 shows the results of the wetting angle (contact angle) for the four types of resin PP and resin PC in Table 2 for the four types of solid surfaces a, b, c, and d in Table 1 (for resin HDPE). Is a long relaxation time and was not measured this time). Further, FIG. 3 shows the work of adhesion calculated from the above.
The work of adhesion W A simply represents the energy change in the adhesion wetting when the liquid adheres to the solid surface as droplets, and is given by the following equation. W A = γsv + γLv−γsL (1) Here, γsv, γLv, and γsL represent energy on the solid surface, the liquid surface, and the solid-liquid interface, respectively.
【0014】また、液体、固体、気体の各界面では、ヤ
ングによって導かれた次の関係式で釣り合っている。 γsv−γsL=γLv(1+cosθ) ・・・・・・・・(2) よって、(1)、(2)式より、 WA =γLv(1+cosθ) ・・・・・・・・・・・・・(3) 液体表面でのエネルギγLvは、常温での表面張力、比
容と任意の温度における比容との関係から、溶融温度に
おける高分子の表面張力を推算する手法で計算した。使
用した値は、PP(230℃)では18.8mJ/
m2 、PC(260℃)では29.0mJ/m2 であ
る。The interfaces of liquid, solid and gas are balanced by the following relational expression derived by Young. γsv-γsL = γLv (1 + cosθ) ········ (2) Thus, (1) and (2), W A = γLv (1 + cosθ) ············ (3) Energy γLv on the liquid surface was calculated by a method of estimating the surface tension of the polymer at the melting temperature from the relationship between the surface tension and the specific volume at room temperature and the specific volume at any temperature. The value used is 18.8 mJ / for PP (230 ° C)
m 2 and PC (260 ° C.) are 29.0 mJ / m 2 .
【0015】図2によると、樹脂をPPとした実験で
は、全体的にPCよりも濡れ角度が小さくなった。固体
表面の材質、表面粗さの影響については、フッ素樹脂コ
ーティングの場合と炭素鋼(表面粗さ(最大高さ)0.
4μm)の場合では、濡れ角度が小さくなった。図3の
付着仕事の結果では、同一の溶融樹脂の中で固体界面を
変えたとき、濡れ角度が大きいほど付着仕事は小さくな
っている。一方、溶融樹脂別では、PCの場合、濡れ角
度はPPと比較して全体的に大きな値を示しているにも
拘わらず、溶融樹脂の表面エネルギがPPに比べるとは
るかに大きいため、付着仕事は大きな値を示している。
(3)式から判るように、付着仕事WA は濡れ角度θと
溶融樹脂の表面エネルギγLvの関数になっており、溶
融樹脂の表面エネルギの影響がかなり左右することが判
る。According to FIG. 2, in the experiment using PP as the resin, the wetting angle was smaller than that of PC as a whole. Regarding the influence of the material and surface roughness of the solid surface, the case of fluororesin coating and carbon steel (surface roughness (maximum height) 0.
In the case of 4 μm), the wetting angle was small. According to the result of the work of adhesion in FIG. 3, when the solid interface is changed in the same molten resin, the work of adhesion becomes smaller as the wetting angle becomes larger. On the other hand, in the case of different molten resins, in the case of PC, although the wetting angle shows a larger overall value than that of PP, the surface energy of the molten resin is much larger than that of PP. Indicates a large value.
As can be seen from the equation (3), the work of adhesion W A is a function of the wetting angle θ and the surface energy γLv of the molten resin, and it can be seen that the influence of the surface energy of the molten resin has a great influence.
【0016】次に、壁面におけるスリップ速度の測定結
果と濡れ角度との相関を示したものが、図4であり、こ
れから判るように、樹脂種類については、PP、PC、
HDPEの順にスリップ速度が大きくなった。固体界面
の種類や表面状態については、フッ素樹脂コーティング
壁面や炭素鋼(表面粗さ(最大高さ)0.4μm)のと
きスリップ速度が大きく、クロムメッキ壁面や炭素鋼
(表面粗さ(最大高さ)1.6μm)のときスリップ速
度が小さいという傾向が見受けられた。Next, FIG. 4 shows the correlation between the measurement result of the slip velocity on the wall surface and the wetting angle. As can be seen from this, regarding the resin types, PP, PC,
The slip speed increased in the order of HDPE. Regarding the type and surface condition of the solid interface, the slip speed is large when using a fluororesin-coated wall surface or carbon steel (surface roughness (maximum height) 0.4 μm), and when using a chromium-plated wall surface or carbon steel (surface roughness (maximum height) It was found that the slip speed was low when 1.6 μm).
【0017】以上の結果を基に、濡れ角度、付着仕事、
の各テスト毎の相加平均値およびそのときのスリップ速
度を表3に纏めた。表3に示したテスト条件の場合の濡
れ角度とスリップ速度の関係を図4に示した。これによ
ると、PPとPC全体における相関係数は0.29と低
く、相関性は殆どないが、PPだけについて言えば相関
係数を求めると0.77となり、PCについては0.9
9となるので、樹脂種類を固定して考えると高い相関関
係にある。同様に、表3に示したテスト条件の場合の付
着仕事とスリップ速度の関係を図5に示す。このときの
PPとPC全体における相関係数は0.94と高く、付
着仕事とスリップ速度には相関性が高いと考えられる。
これは、濡れ角度よりも溶融樹脂の影響度合が大きい付
着仕事の方がスリップ速度との相関性が高い為と考えら
れる。Based on the above results, wetting angle, work of adhesion,
Table 3 shows the arithmetic mean value and the slip speed at that time for each test. FIG. 4 shows the relationship between the wetting angle and the slip speed under the test conditions shown in Table 3. According to this, the correlation coefficient of PP and PC as a whole is as low as 0.29, and there is almost no correlation, but when it comes to PP alone, the correlation coefficient is 0.77, and for PC it is 0.9.
Therefore, when the resin type is fixed, there is a high correlation. Similarly, FIG. 5 shows the relationship between the work of adhesion and the slip speed under the test conditions shown in Table 3. At this time, the correlation coefficient between PP and PC as a whole is high at 0.94, and it is considered that the work of adhesion and the slip speed have a high correlation.
It is considered that this is because the work of adhesion, which is more affected by the molten resin than the wetting angle, has a higher correlation with the slip speed.
【0018】以上のことから、溶融樹脂については、P
Cよりも付着仕事の小さいPPの方がスリップ速度が大
きく、また、固体界面についてはクロムメッキや炭素鋼
(表面粗さ(最大高さ)1.6μm)よりも付着仕事の
小さいフッ素樹脂コーティングや炭素鋼(表面粗さ(最
大高さ)0.4μm)の方がスリップ速度が大きいとい
う傾向があり、付着仕事を指標として考えた壁面に対す
る濡れ性とスリップ速度には相関性が高いと考えられ
る。From the above, regarding the molten resin, P
PP, which has a smaller work of adhesion than C, has a higher slip speed, and the solid interface has a fluororesin coating that has a smaller work of adhesion than chromium plating or carbon steel (surface roughness (maximum height) 1.6 μm). Carbon steel (surface roughness (maximum height) 0.4 μm) tends to have a higher slip speed, and it is considered that there is a high correlation between the wettability with respect to the wall surface and the slip speed, which was considered using the work of adhesion as an index. .
【0019】以上述べたように、本発明においては、窒
素ガス等の不活性ガス雰囲気で所定温度に加熱され温度
調節された炉内に、被検体である平滑な平面を有する固
体を該平面が水平となるように静置したうえ該固体の表
面上に樹脂ペレット片を載置して溶融状態とし、液滴状
態となった溶融樹脂の映像を撮影して該固体表面に対す
る溶融樹脂の濡れ角度を測定するようにしたので、実験
の結果、下記の知見が得られた。 各種溶融樹脂、固体界面毎に、固体界面と溶融樹脂
間の濡れ角度を正確に計測することができるようになっ
た。 濡れ角度から算定した付着仕事とスリップ速度の測
定結果を比較した結果、概ね付着仕事が小さいほどスリ
ップ速度が大きくなるという傾向があるということが判
り、付着仕事を指標として考えた固体壁面での濡れ性と
スリップ速度には高い相関性があることが確認できた。 固体界面と溶融樹脂間の濡れ角度を計測した結果、
樹脂をPPとした実験では全体的にPCよりも濡れ角度
が小さくなる。また、管路内表面の材質や表面粗さの影
響はフッ素樹脂コーティングや炭素鋼(表面粗さ(最大
高さ)0.4μm)の場合には濡れ角度が大きく、クロ
ムメッキや炭素鋼(表面粗さ(最大高さ)1.6μm)
の場合には濡れ角度が小さくなり、その結果、管路材質
はクロムメッキよりフッ素コーティングした方が、ま
た、表面粗さは0.4μm以下にした方が壁面スリップ
が大きくなって、色替えや樹脂替えが向上することが判
った。As described above, in the present invention, a solid having a smooth flat surface, which is an object to be inspected, is placed in a furnace heated to a predetermined temperature in an inert gas atmosphere such as nitrogen gas and adjusted in temperature. The resin pellet piece is placed on the surface of the solid in a molten state by standing still horizontally, and an image of the molten resin in a liquid droplet state is photographed to obtain the wetting angle of the molten resin with respect to the surface of the solid. As a result of the experiment, the following findings were obtained. It has become possible to accurately measure the wetting angle between the solid interface and the molten resin for each molten resin and solid interface. As a result of comparing the work of adhesion calculated from the wetting angle and the measurement result of the slip speed, it was found that the slip speed tends to increase as the work of adhesion becomes smaller. It was confirmed that there is a high correlation between the property and the slip speed. As a result of measuring the wetting angle between the solid interface and the molten resin,
In the experiment in which the resin is PP, the wetting angle is smaller than that of PC as a whole. In addition, the influence of the material and surface roughness of the inner surface of the pipeline is large in the case of fluororesin coating and carbon steel (surface roughness (maximum height) 0.4 μm), the wetting angle is large, and chromium plating and carbon steel (surface Roughness (maximum height) 1.6 μm)
In this case, the wetting angle becomes smaller, and as a result, the wall material slip becomes larger when the pipeline material is coated with fluorine rather than chrome, and when the surface roughness is 0.4 μm or less, the wall slip becomes larger, and color change or It was found that the resin change was improved.
【0020】[0020]
【発明の効果】以上説明したように、本発明において
は、固体表面に対する樹脂の濡れ角度を簡便に、かつ、
正確に測定できるとともに、この数値から付着仕事やス
リップ速度が推算されるから、色替えや樹脂替えの良好
な成形品が得られる。As described above, in the present invention, the wetting angle of the resin with respect to the solid surface can be simply and
In addition to being able to measure accurately, the work of adhesion and the slip speed can be estimated from this value, so that a molded product with good color change and resin change can be obtained.
【図1】本発明に係る濡れ角度測定装置の全体構成図で
ある。FIG. 1 is an overall configuration diagram of a wetting angle measuring device according to the present invention.
【図2】本発明に係る濡れ角度の測定結果を示すグラフ
である。FIG. 2 is a graph showing a measurement result of a wetting angle according to the present invention.
【図3】本発明に係る付着仕事を示すグラフである。FIG. 3 is a graph showing work of adhesion according to the present invention.
【図4】本発明に係る濡れ角度とスリップ速度の相関を
示すグラフである。FIG. 4 is a graph showing a correlation between a wetting angle and a slip speed according to the present invention.
【図5】本発明に係る付着仕事とスリップ速度の相関を
示すグラフである。FIG. 5 is a graph showing the correlation between work of adhesion and slip speed according to the present invention.
【符号の説明】 10 発光装置 20 光線拡散器 30 加熱炉 32 金属板 34 樹脂液滴 40 ズームアップレンズ 50 スクリーン 60 CCDカメラ 70 VTRデッキ 80 モニタテレビ 90 温度調節装置 100 濡れ角度測定装置[Explanation of Codes] 10 Light Emitting Device 20 Light Diffuser 30 Heating Furnace 32 Metal Plate 34 Resin Droplet 40 Zoom-up Lens 50 Screen 60 CCD Camera 70 VTR Deck 80 Monitor TV 90 Temperature Control Device 100 Wetting Angle Measuring Device
Claims (2)
る方法であって、 窒素ガス等の不活性ガス雰囲気で所定温度に加熱され温
度調節された炉内に、被検体である平滑な平面を有する
固体を該平面が水平となるように静置したうえ該固体の
表面上に樹脂ペレット片を載置して溶融状態とし、液滴
状態となった溶融樹脂の映像を撮影して該固体表面に対
する溶融樹脂の濡れ角度を測定する溶融樹脂の固体壁面
への濡れ性の確認方法。1. A method for confirming the wettability of a molten resin to a solid wall surface, the method comprising the steps of: A solid having a flat surface is allowed to stand so that the flat surface is horizontal, and a resin pellet piece is placed on the surface of the solid to be in a molten state, and an image of the molten resin in a droplet state is photographed. A method for confirming the wettability of a molten resin to a solid wall by measuring the wetting angle of the molten resin with respect to the solid surface.
測定方法は、水平固体表面上に置かれた樹脂の液滴の高
さと底辺の最大径の比率から換算して、得られた傾斜角
度で決定した請求項1記載の溶融樹脂の固体壁面への濡
れ性の確認方法。2. The method for measuring the wetting angle of the molten resin with respect to the solid surface is obtained by converting from the ratio of the height of the liquid droplets of the resin placed on the horizontal solid surface to the maximum diameter of the bottom side, and using the obtained inclination angle. The method for confirming the determined wettability of the molten resin to a solid wall surface according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11596996A JPH09304264A (en) | 1996-05-10 | 1996-05-10 | Confirmation of wettability to solid wall surface of molten resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11596996A JPH09304264A (en) | 1996-05-10 | 1996-05-10 | Confirmation of wettability to solid wall surface of molten resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09304264A true JPH09304264A (en) | 1997-11-28 |
Family
ID=14675625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11596996A Pending JPH09304264A (en) | 1996-05-10 | 1996-05-10 | Confirmation of wettability to solid wall surface of molten resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09304264A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113740210A (en) * | 2021-09-16 | 2021-12-03 | 哈尔滨工业大学(威海) | Device and method for measuring wetting behavior of plastic on metal surface under different heat sources |
CN113740209A (en) * | 2021-09-16 | 2021-12-03 | 哈尔滨工业大学(威海) | Device and method for simulating wetting behavior of plastic on metal surface under specific pressure |
-
1996
- 1996-05-10 JP JP11596996A patent/JPH09304264A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113740210A (en) * | 2021-09-16 | 2021-12-03 | 哈尔滨工业大学(威海) | Device and method for measuring wetting behavior of plastic on metal surface under different heat sources |
CN113740209A (en) * | 2021-09-16 | 2021-12-03 | 哈尔滨工业大学(威海) | Device and method for simulating wetting behavior of plastic on metal surface under specific pressure |
CN113740209B (en) * | 2021-09-16 | 2024-04-05 | 哈尔滨工业大学(威海) | Device and method for simulating wetting behavior of plastic on metal surface under specific pressure |
CN113740210B (en) * | 2021-09-16 | 2024-04-09 | 哈尔滨工业大学(威海) | Device and method for measuring wetting behavior of plastic on metal surface under different heat sources |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7620233B2 (en) | Process for checking a laser weld seam | |
US20090180106A1 (en) | Method and device for contact angle determination from radius of curvature of drop by optical distance measurement | |
JP6220718B2 (en) | Laser welding quality determination method and laser welding quality determination device | |
US20100140236A1 (en) | Laser machining system and method | |
JPWO2019239530A1 (en) | Arithmetic logic unit, detection system, modeling device, arithmetic method, detection method, modeling method, arithmetic program, detection program and modeling program | |
JP2003270117A (en) | Method and instrument for measuring dynamic contact angle | |
JPH06503650A (en) | Non-destructive continuous inspection system and method for thickness changes in section steel | |
JP5110656B2 (en) | Contact angle measurement system and contact angle measurement method | |
US20210197286A1 (en) | Method and apparatus for estimating depth of molten pool during printing process, and 3d printing system | |
JPH09304264A (en) | Confirmation of wettability to solid wall surface of molten resin | |
US4135204A (en) | Automatic glass blowing apparatus and method | |
JP2007132929A (en) | Liquid volume measuring apparatus and liquid discharging apparatus using the same | |
JPS57165806A (en) | Detector for extent of movement of image plane | |
GB2220065A (en) | Coating inspection | |
Wippo et al. | Evaluation of a pyrometric-based temperature measuring process for the laser transmission welding | |
US20210197282A1 (en) | Method and apparatus for estimating height of 3d printing object formed during 3d printing process, and 3d printing system having the same | |
JP2001099621A (en) | Laser sensor | |
JPH0381082A (en) | Method and apparatus for controlling diameter of laser beam | |
US20160067737A1 (en) | Method of monitoring the process of coating a workpiece surface | |
JP2005337781A (en) | Measuring method of surface free energy of solid and measuring instrument therefor | |
CN114624150B (en) | Contact angle measurement method for simultaneous measurement and mutual verification of microcosmic and macroscopic measurement | |
JPH04127984A (en) | Method and device for laser welding | |
JP2000146993A (en) | Method and apparatus for detection of moving object | |
US6643018B2 (en) | Optical scattering monitor | |
CN111812065A (en) | Method for detecting material light transmittance in plastic laser welding |