JPH09304262A - Fall sphere type viscometer - Google Patents

Fall sphere type viscometer

Info

Publication number
JPH09304262A
JPH09304262A JP12543696A JP12543696A JPH09304262A JP H09304262 A JPH09304262 A JP H09304262A JP 12543696 A JP12543696 A JP 12543696A JP 12543696 A JP12543696 A JP 12543696A JP H09304262 A JPH09304262 A JP H09304262A
Authority
JP
Japan
Prior art keywords
machine oil
falling ball
falling
permanent magnet
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12543696A
Other languages
Japanese (ja)
Inventor
Akihiro Nozue
章浩 野末
Toshikazu Sakai
寿和 境
Shigeru Sasabe
笹部  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP12543696A priority Critical patent/JPH09304262A/en
Publication of JPH09304262A publication Critical patent/JPH09304262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a viscometer capable of accurately and rapidly measuring the viscosity of freezing machine oil coexisting with a liquid cooling medium. SOLUTION: A liquid cooling medium and freezing machine oil are sealed in a measuring pipe composed of a transparent pressure-resistant cylinder arranged in an inclined state to be allowed to stand, and a fall sphere 14 composed of a ferromagnetic material is attracted by a permanent magnet 16 to be held at the upstream initial position of an freezing machine oil phase 10 in such a state that a liquid cooling medium phase 12 and the freezing machine oil phase 10 are separated in an equibrium state, and a permanent magnet support rod 18 is attracted by an electromagnet 19 to separate the permanent magnet 16 from the outer wall of a measuring pipe 13 to demagnetize the same and the attraction and holding of the fall sphere 14 is released to allow the sphere 14 to fall. The passing speed of the fall sphere 14 is measured by a passage sensor 15 arranged on the downstream side of the freezing machine oil 10 and the viscosity of the freezing machine oil is measured on the basis of the correlation of the passing speed with viscosity. Since viscosity is measured in such a state that the liquid cooling medium phase 12 and the freezing machine oil phase 10 are separated and allowed to stand, an equilibrium state is not disturbed and an accurate viscosity value is obtained. When viscosity is measured in a thermostatic tank 24, the above mentioned demagnetizing operation can be performed without opening the door of the tank 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液冷媒相と共存し
ている冷媒機油相の粘度を測定する転落球式粘度計に関
する。
TECHNICAL FIELD The present invention relates to a falling ball viscometer for measuring the viscosity of a refrigerant machine oil phase coexisting with a liquid refrigerant phase.

【0002】[0002]

【従来の技術】以下、従来の粘度計について図面を参照
しながら説明する。冷媒雰囲気下で冷媒を溶解した冷凍
機油の粘度を測定する手段の1つが、特開平3−481
34号公報に開示されており、これに開示されている粘
度計や、これに類似した粘度計を用いて測定されてい
た。
2. Description of the Related Art A conventional viscometer will be described below with reference to the drawings. One of the means for measuring the viscosity of refrigerating machine oil in which a refrigerant is dissolved in a refrigerant atmosphere is disclosed in JP-A-3-481.
It was disclosed in Japanese Patent Laid-Open No. 34-34, and was measured using the viscometer disclosed therein and a viscometer similar thereto.

【0003】図6は冷媒雰囲気下で冷媒を溶解した冷凍
機油の粘度を測る上記従来の粘度計の概略構成を示す側
断面図である。図において、1は透明な耐圧容器、2は
下蓋、3は上蓋、4は冷媒出入口、5はニードル、6は
粘度計支持管、7は粘度計挟み、8は細管式粘度計、9
は上部油溜り、10は冷凍機油相、11は気体冷媒相を
示す。
FIG. 6 is a side sectional view showing a schematic structure of the above-mentioned conventional viscometer for measuring the viscosity of refrigerating machine oil in which a refrigerant is melted in a refrigerant atmosphere. In the figure, 1 is a transparent pressure-resistant container, 2 is a lower lid, 3 is an upper lid, 4 is a refrigerant inlet / outlet, 5 is a needle, 6 is a viscometer support tube, 7 is a viscometer sandwiched, 8 is a capillary viscometer, 9
Indicates an upper oil sump, 10 indicates a refrigerator oil phase, and 11 indicates a gas refrigerant phase.

【0004】上記構成の粘度計を用いた測定方法につい
て説明する。透明な耐圧容器1に冷凍機油を必要量入
れ、その開口周縁部を下蓋2と上蓋3とで挟んでねじで
固定し、上蓋3には粘度計指示管6を取り付ける。つぎ
に、冷媒出入口4から真空ポンプで耐圧容器1内を真空
にし、冷媒出入口4から冷媒を導入する。つぎに、一定
温度に保たれた恒温槽内に耐圧容器1を設置し、所定温
度に達した段階で耐圧容器1を90度傾斜させ、冷媒を
溶解させた冷凍機油を細管式粘度計8内の上部油溜り9
に充填させ、冷媒を溶解させた冷凍機油が充填された段
階で、耐圧容器1を垂直に立設させる。
A measuring method using the viscometer having the above structure will be described. A required amount of refrigerating machine oil is put in a transparent pressure-resistant container 1, and the peripheral edge portion of the opening is sandwiched between a lower lid 2 and an upper lid 3 and fixed with a screw, and a viscometer indicating tube 6 is attached to the upper lid 3. Next, the pressure-resistant container 1 is evacuated from the refrigerant inlet / outlet 4 with a vacuum pump, and the refrigerant is introduced from the refrigerant inlet / outlet 4. Next, the pressure-resistant container 1 is installed in a constant temperature bath maintained at a constant temperature, and when the temperature reaches a predetermined temperature, the pressure-resistant container 1 is tilted by 90 degrees, and the refrigerating machine oil in which the refrigerant is dissolved is stored in the thin-tube viscometer 8. Upper oil sump 9
When the refrigerating machine oil in which the refrigerant is dissolved is filled, the pressure vessel 1 is vertically installed.

【0005】細管式粘度計8内の、冷媒を溶解させた冷
凍機油は上部油溜り9を通過し、その液面が細管式粘度
計8の細管を通過する時間を目測で測定し、通過時間と
粘度との相関より、冷媒を溶解させた冷凍機油の粘度を
測定する。
Refrigerating machine oil in which the refrigerant is dissolved in the capillary viscometer 8 passes through the upper oil sump 9 and the time taken for the liquid level to pass through the capillary of the capillary viscometer 8 is visually measured to determine the transit time. The viscosity of the refrigerating machine oil in which the refrigerant is dissolved is measured from the correlation between the viscosity and the viscosity.

【0006】[0006]

【発明が解決しようとする課題】このような従来の粘度
計では、液冷媒共存時の冷凍機油の粘度を精度よく測定
できないと言う問題があった。
However, such a conventional viscometer has a problem that the viscosity of refrigerating machine oil in the coexistence of a liquid refrigerant cannot be accurately measured.

【0007】冷凍サイクルにおいては、エバポレータ部
が低温になると、液冷媒と冷凍機油が分離して、液冷媒
相と冷凍機油相と気体冷媒相の3相状態になる。この冷
凍機油相は低温で高粘度になるが、冷媒の流れによって
撹拌され、一定量の冷媒を溶解し、液冷媒相、気体冷媒
相と平衡状態になっている。
In the refrigerating cycle, when the temperature of the evaporator portion becomes low, the liquid refrigerant and the refrigerating machine oil are separated into a three-phase state of the liquid refrigerant phase, the refrigerating machine oil phase and the gas refrigerant phase. The refrigerating machine oil phase has high viscosity at low temperature, but is agitated by the flow of the refrigerant, dissolves a certain amount of the refrigerant, and is in an equilibrium state with the liquid refrigerant phase and the gas refrigerant phase.

【0008】ところが、この状態を再現して冷凍機油の
粘度を測定するためには、よく撹拌して冷凍機油に冷媒
を溶解させたのち、長時間静置して平衡を維持しながら
液冷媒相と冷凍機油相を分離する必要がある。これは、
液冷媒相と冷凍機油の密度が近く、かつ、低温で冷凍機
油相の粘度が高いことに起因する。
However, in order to reproduce this state and measure the viscosity of the refrigerating machine oil, the refrigerant is dissolved in the refrigerating machine oil by stirring well and then allowed to stand for a long period of time to maintain equilibrium while maintaining the liquid refrigerant phase. And it is necessary to separate the refrigerator oil phase. this is,
This is because the densities of the liquid refrigerant phase and the refrigerator oil are close to each other, and the viscosity of the refrigerator oil phase is high at a low temperature.

【0009】したがって、前記従来の粘度計では、測定
直前に各相を移動させるので平衡が乱れ、液冷媒共存時
の冷凍機油の粘度を精度よく測定することができない。
また、低温時には冷凍機油の粘度が著しく増大するた
め、傾動させた耐圧容器を垂直に立設させても、冷凍機
油が非常に緩慢に落ちるため、細管式粘度計の周辺にも
冷凍機油が残存し、冷凍機油の液面が細管式粘度計の細
管部を通過するのを読み取ることができなくなる。
Therefore, in the conventional viscometer, since each phase is moved immediately before the measurement, the equilibrium is disturbed, and the viscosity of the refrigerating machine oil in the coexistence of the liquid refrigerant cannot be accurately measured.
In addition, since the viscosity of refrigerating machine oil increases significantly at low temperatures, even when a tilted pressure-resistant container is installed vertically, the refrigerating machine oil drops very slowly, and the refrigerating machine oil remains around the capillary viscometer. However, it becomes impossible to read that the liquid level of the refrigerating machine oil passes through the thin tube portion of the thin tube viscometer.

【0010】本発明は上記の課題を解決するもので、液
冷媒と共存している冷凍機油の粘度を精度よく測定でき
る転落球式粘度計を提供することを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a falling ball viscometer capable of accurately measuring the viscosity of refrigerating machine oil coexisting with a liquid refrigerant.

【0011】[0011]

【課題を解決するための手段】本発明の粘度計は、傾斜
した円管中に液冷媒と冷凍機油とを封入して静置し、前
記液冷媒相と前記冷凍機油相とに分離した状態におい
て、前記冷凍機油相中で転落球を転落させ、その速度に
より粘度を測定する転落球式粘度計である。
A viscometer of the present invention is a state in which a liquid refrigerant and a refrigerating machine oil are enclosed in a slanting circular tube and allowed to stand, and the liquid refrigerant phase and the refrigerating machine oil phase are separated. In the above, it is a falling ball viscometer in which a falling ball is made to fall in the oil phase of the refrigerator and the viscosity is measured by the speed thereof.

【0012】これにより、測定管内の冷凍機油相と液冷
媒相を静置したままで粘度を測定するので、平衡状態の
粘度を精度よく測定できる。また、減磁装置を用いて転
落球を落下させ、通過センサにより通過時間を測定する
ので、測定管部分のみを低温にして測定することがで
き、かつ、通過時間が長時間となる低温高粘度も容易に
測定することができる。
Since the viscosity is measured while the refrigerating machine oil phase and the liquid refrigerant phase in the measuring tube are allowed to stand still, the equilibrium viscosity can be measured accurately. In addition, a falling ball is dropped using a demagnetizing device and the passage time is measured by a passage sensor, so it is possible to measure only the measurement pipe part at low temperature, and a low temperature and high viscosity where the passage time is long. Can also be easily measured.

【0013】[0013]

【発明の実施の形態】透明な耐圧性の円管により測定管
を作製し、内部の液冷媒と冷凍機油の状態、たとえば濁
度、分離状態などを観察できるようにする。前記測定管
を傾斜設置し、その内部に液冷媒と冷凍機油とを封入静
置する。転落球を磁性材料で作製し、前記測定管中で分
離した冷凍機油相中の上流側の所定位置に永久磁石で吸
着保持し、前記永久磁石を減磁することにより前記転落
球の保持を開放し、転落を開始させる。前記永久磁石は
前記測定管の外壁下方に設置する。減磁装置は前記永久
磁石の転落球保持を開放する装置を意味し、実施例にお
いては前記永久磁石を転落球から遠ざけることにより減
磁しており、前記永久磁石を固定した永久磁石支持棒を
電磁石で吸引して遠ざけるが、これに限定されるもので
はない。また、前記測定管の下流側外壁下方に光学的検
出器による通過センサを所定距離をおいて設置し、その
間の通過時間により前記転落球の通過速度を測定する
が、光学的検出器に限定されるものではなく、磁気的検
出器を用いることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION A measuring tube is made of a transparent pressure-resistant circular tube so that the states of a liquid refrigerant and a refrigerating machine oil therein, for example, turbidity and separation state can be observed. The measuring pipe is installed so as to be inclined, and the liquid refrigerant and the refrigerating machine oil are enclosed and left standing therein. The falling ball is made of a magnetic material, and is adsorbed and held by a permanent magnet at a predetermined position on the upstream side in the refrigerator oil phase separated in the measuring tube, and the holding of the falling ball is released by demagnetizing the permanent magnet. And start falling. The permanent magnet is installed below the outer wall of the measuring tube. The demagnetization device means a device for releasing the fallen ball holding of the permanent magnet, and in the embodiment, it is demagnetized by moving the permanent magnet away from the fallen ball, and a permanent magnet support rod to which the permanent magnet is fixed is attached. It is attracted by an electromagnet and moved away, but it is not limited to this. Further, a passage sensor by an optical detector is installed at a predetermined distance below the outer wall of the downstream side of the measuring pipe, and the passing speed of the falling ball is measured by the passage time between them, but the optical detector is limited to the optical detector. Alternatively, a magnetic detector can be used.

【0014】以下、実施例について説明する。Hereinafter, embodiments will be described.

【0015】[0015]

【実施例】【Example】

(実施例1)以下、本発明の転落球式粘度計の実施例1
について図面を参照しながら説明する。本実施例は請求
項1に係わる。
(Example 1) Hereinafter, Example 1 of the falling ball type viscometer of the present invention
Will be described with reference to the drawings. This embodiment relates to claim 1.

【0016】図1は本実施例の構成を示す一部切欠側面
図である。図において、10は冷凍機油相、11は気体
冷媒相、12は液冷媒相、13は耐圧ガラス製の円管か
らなる測定管、14は鉄製の転落球、15は光学的検出
器を用いた通過センサ、16は転落球14を保持するた
めの永久磁石、17は永久磁石16を支えるばね、18
はばね17を周囲に巻いたH型で鉄製の永久磁石支持
棒、19は永久磁石支持棒18を引き寄せるための電磁
石、20は測定台、21は冷媒出入口、22はバルブ、
23は電磁石19に通電する電源、24はガラス窓を備
えた恒温槽である。
FIG. 1 is a partially cutaway side view showing the structure of this embodiment. In the figure, 10 is a refrigerating machine oil phase, 11 is a gas refrigerant phase, 12 is a liquid refrigerant phase, 13 is a measuring tube made of a pressure-resistant glass circular tube, 14 is an iron falling ball, and 15 is an optical detector. A passage sensor, 16 is a permanent magnet for holding the falling ball 14, 17 is a spring that supports the permanent magnet 16, 18
Is an H-shaped iron permanent magnet support rod around which a spring 17 is wound, 19 is an electromagnet for attracting the permanent magnet support rod 18, 20 is a measuring stand, 21 is a refrigerant inlet / outlet, 22 is a valve,
Reference numeral 23 is a power source for energizing the electromagnet 19, and reference numeral 24 is a constant temperature bath provided with a glass window.

【0017】上記構成においてその動作を説明する。測
定管13に転落球14と必要量の冷凍機油とを入れる。
つぎに、冷媒出入口21を真空ポンプと冷媒用ボンベと
に接続し、まず、真空ポンプで測定管13内を真空にす
る。このとき、冷凍機油に溶存している空気も十分に追
い出す。つぎに、冷媒用ボンベに接続を切り換え、冷媒
を導入する。必要量の冷媒を封入したのちバルブ22を
閉じ、冷凍機油に冷媒が溶解するようによく撹拌し、低
温度に保たれた恒温槽24内に設置した測定台20に測
定管13を装着する。また、転落球14を永久磁石16
で保持し、長時間静置して、冷凍機油相10と液冷媒相
12とに分離する。
The operation of the above configuration will be described. Put the falling ball 14 and a necessary amount of refrigerating machine oil in the measuring pipe 13.
Next, the refrigerant inlet / outlet port 21 is connected to the vacuum pump and the refrigerant cylinder, and first, the inside of the measuring tube 13 is evacuated by the vacuum pump. At this time, the air dissolved in the refrigerating machine oil is also sufficiently expelled. Next, the connection is switched to the refrigerant cylinder and the refrigerant is introduced. After sealing a required amount of the refrigerant, the valve 22 is closed, the refrigerant is well stirred so that the refrigerant is dissolved in the refrigerating machine oil, and the measuring tube 13 is attached to the measuring table 20 installed in the constant temperature bath 24 kept at a low temperature. In addition, the falling ball 14 is attached to the permanent magnet 16
Held for a long time and allowed to stand for a long time to separate into a refrigerator oil phase 10 and a liquid refrigerant phase 12.

【0018】このとき、冷凍機油相10に濁りが生じ
る。この現象は、温度が低い方が冷凍機油の飽和冷媒溶
解量が少なく、溶けきれなくなった冷媒が析出して粒子
状になり、冷凍機油中に分散するために起こる。この後
も長時間静置すると、密度差により冷凍機油相10と液
冷媒相12に平衡分離し、冷凍機油相10の濁りがなく
なる。
At this time, the refrigerating machine oil phase 10 becomes turbid. This phenomenon occurs because the lower the temperature is, the smaller the amount of saturated refrigerant dissolved in the refrigerating machine oil is, the refrigerant that cannot be completely melted deposits into particles, and is dispersed in the refrigerating machine oil. If the refrigerator oil phase 10 and the liquid-refrigerant phase 12 are equilibrium-separated due to the difference in density when the mixture is left still for a long time after this, the turbidity of the refrigerator oil phase 10 disappears.

【0019】完全に分離したのち、ばね17と永久磁石
支持棒18と電磁石19とからなる減磁装置を作動さ
せ、転落球14を落下させる。上記の減磁装置は、恒温
槽24の外から電磁石の電源23のスイッチをオンとし
て電磁石19を作動させ、永久磁石支持棒18を引き寄
せ、永久磁石16を転落球14から遠ざけることにより
減磁し、転落球14を落下させる仕組みにしている。落
下した転落球14が通過センサ15の間を通過する時間
を測定し、粘度と通過時間との相関から粘度を求める。
このとき、電磁石19で転落球14を直接に保持せず、
永久磁石16を使用する理由は、電磁石19の発熱で冷
凍機油相の温度が上昇するのを避けるためである。ま
た、減磁装置は、電磁石19のスイッチをオフとする
と、ばね17の弾性で永久磁石16をもとの保持位置に
戻す。
After completely separating, the demagnetizing device consisting of the spring 17, the permanent magnet supporting rod 18, and the electromagnet 19 is operated to drop the falling ball 14. The above demagnetization device demagnetizes the permanent magnet support rod 18 by pulling the switch of the power source 23 of the electromagnet on from the outside of the constant temperature bath 24 to draw the permanent magnet support rod 18 away from the falling ball 14. The falling ball 14 is designed to fall. The time taken for the fallen ball 14 to pass between the passage sensors 15 is measured, and the viscosity is obtained from the correlation between the viscosity and the passage time.
At this time, the falling ball 14 is not directly held by the electromagnet 19,
The reason for using the permanent magnet 16 is to prevent the temperature of the refrigerating machine oil phase from rising due to heat generation of the electromagnet 19. In addition, when the electromagnet 19 is turned off, the demagnetizer returns the permanent magnet 16 to the original holding position by the elasticity of the spring 17.

【0020】以上のように本実施例によれば、液冷媒が
共存する冷凍機油の粘度を、測定管13内に冷凍機油相
と液冷媒相とが静置したままで測定するため、高い精度
で粘度を測定できるとともに、測定部分のみを低温にで
きるので、低温での測定が容易になる。さらに、永久磁
石16を用いて転落球14を保持することで、より精度
の高い温度調整ができる。
As described above, according to the present embodiment, the viscosity of the refrigerating machine oil coexisting with the liquid refrigerant is measured while the refrigerating machine oil phase and the liquid refrigerant phase remain stationary in the measuring pipe 13, so that the accuracy is high. Since the viscosity can be measured and the temperature of only the measurement portion can be lowered, the measurement at low temperature becomes easy. Furthermore, by holding the falling ball 14 using the permanent magnet 16, it is possible to perform temperature adjustment with higher accuracy.

【0021】なお、本実施例では転落球14に鉄球を用
いたが、ニッケル球などの強磁性体材料であればよく、
測定する粘度範囲によって最適な密度の材料を選択する
とよい。また、本実施例の通過センサ15は、光学的検
出器を用いたが、磁気的検出器を用いてもよい。また、
本実施例の減磁装置は、転落球14と永久磁石16との
距離を離すことで永久磁石16の磁力を減少させたが、
転落球14と永久磁石16との間に磁力線を遮断するも
のを挿入するようにしてもよい。
Although iron balls are used for the falling balls 14 in this embodiment, any ferromagnetic material such as nickel balls may be used.
It is advisable to select a material having an optimum density according to the viscosity range to be measured. Although the optical sensor is used as the passage sensor 15 in this embodiment, a magnetic detector may be used. Also,
In the demagnetization device of this embodiment, the magnetic force of the permanent magnet 16 is reduced by increasing the distance between the falling ball 14 and the permanent magnet 16.
It is also possible to insert a member for blocking the lines of magnetic force between the falling ball 14 and the permanent magnet 16.

【0022】(実施例2)以下、本発明の転落球式粘度
計の実施例2について図面を参照しながら説明する。本
実施例は請求項2ないし請求項4に係わる。
(Embodiment 2) Embodiment 2 of the falling ball viscometer of the present invention will be described below with reference to the drawings. This embodiment relates to claims 2 to 4.

【0023】図2は本実施例の構成を示す一部切欠側面
図である。なお、図1に示した実施例1と同じ構成要素
には同一番号を付与して詳細な説明を省略する。
FIG. 2 is a partially cutaway side view showing the structure of this embodiment. Note that the same components as those of the first embodiment shown in FIG.

【0024】本実施例では、ばね17と永久磁石支持棒
18と電磁石19からなる減磁装置を複数組備え、永久
磁石16を設置する位置を変えることで、転落球保持位
置を変え、転落球保持位置と通過センサ15との間の距
離を可変としている。なお、本実施例の動作は実施例1
と同様である。
In this embodiment, a plurality of pairs of demagnetizing devices each including a spring 17, a permanent magnet support rod 18, and an electromagnet 19 are provided, and the falling ball holding position is changed by changing the position at which the permanent magnet 16 is installed. The distance between the holding position and the passage sensor 15 is variable. The operation of this embodiment is the same as that of the first embodiment.
Is the same as

【0025】冷凍機油の粘度は、冷凍機油中を通る転落
球14が通過センサ15の間を通過する時間を測定し、
その通過時間と粘度との相関から粘度を求めるが、この
相関から粘度を求めるためには、転落球14が通過セン
サ15を通過するとき、終端速度になっていなければな
らない。転落球14は冷凍機油中を通過するとき、重力
により加速されて落下するが、冷凍機油の抵抗と釣り合
った速度で一定になり、それを終端速度と称し、この終
端速度に達するには、粘度が高いときは短い助走距離で
よく、一方、粘度が低いときは長い助走距離が必要であ
る。すなわち、低粘度の冷凍機油を測定するときには転
落球保持位置と通過センサ15との間の距離を長く設定
する必要がある。
The viscosity of the refrigerating machine oil is measured by measuring the time taken for the falling balls 14 passing through the refrigerating machine oil to pass between the passage sensors 15.
The viscosity is obtained from the correlation between the passage time and the viscosity. In order to obtain the viscosity from this correlation, when the falling ball 14 passes through the passage sensor 15, the terminal velocity must be reached. When the falling ball 14 passes through the refrigerating machine oil, it falls by being accelerated by gravity, but it becomes constant at a speed commensurate with the resistance of the refrigerating machine oil, which is called a terminal speed. A high runway requires a short runway, while a low runway requires a long runway. That is, when measuring low-viscosity refrigerating machine oil, it is necessary to set a long distance between the falling ball holding position and the passage sensor 15.

【0026】以上のように本実施例によれば、転落球保
持位置と通過センサ15との間の距離を可変設定できる
ようにしたことにより、粘度が低いときは転落球保持位
置と通過センサ15との間の距離を長く設定して粘度を
測定し、粘度が高いときは転落球保持位置と通過センサ
15との間の距離を短く設定して測定時間を短縮するこ
とができる。
As described above, according to this embodiment, the distance between the falling ball holding position and the passage sensor 15 can be variably set so that the falling ball holding position and the passage sensor 15 can be used when the viscosity is low. When the viscosity is high, the distance between the falling ball holding position and the passage sensor 15 can be set short to shorten the measurement time.

【0027】なお、本実施例では永久磁石と減磁装置と
の組を複数組備えることで転落球保持位置と通過センサ
15との間の距離を可変設定可能にしたが、減磁装置、
または通過センサ15を測定管13と平行にスライドさ
せるスライド板などの手段で、可変させてもよい。な
お、図に示したように、転落球14を保持しない永久磁
石16は永久磁石支持棒18から取り外してもよいこと
は言うまでもない。
In this embodiment, the distance between the falling ball holding position and the passage sensor 15 can be variably set by providing a plurality of pairs of permanent magnets and demagnetizers.
Alternatively, the passage sensor 15 may be varied by a means such as a slide plate that slides in parallel with the measuring tube 13. Needless to say, as shown in the drawing, the permanent magnet 16 that does not hold the falling ball 14 may be removed from the permanent magnet support rod 18.

【0028】(実施例3)以下、本発明の転落球式粘度
計の実施例3について図面を参照しながら説明する。本
実施例は請求項5に係わる。
(Embodiment 3) Hereinafter, Embodiment 3 of the falling ball viscometer of the present invention will be described with reference to the drawings. This embodiment relates to claim 5.

【0029】図3は本実施例の構成を示す一部切欠側面
図である。なお、図1に示した実施例1と同じ構成要素
には同一番号を付与して詳細な説明を省略する。
FIG. 3 is a partially cutaway side view showing the structure of this embodiment. Note that the same components as those of the first embodiment shown in FIG.

【0030】図において、25は電磁石、26は電磁石
25を測定管13と平行に測定管下流側から測定管上流
側まで移動させる移動装置としてのリニアモータ、27
は電磁石25の電源である。
In the figure, 25 is an electromagnet, 26 is a linear motor as a moving device for moving the electromagnet 25 in parallel with the measuring tube 13 from the downstream side of the measuring tube to the upstream side of the measuring tube, and 27.
Is a power source of the electromagnet 25.

【0031】上記構成においてその動作を説明する。実
施例1に示した操作終了後、測定管13の下部にある転
落球14を転落球保持位置まで戻す操作を手動で行うた
めには、一旦、恒温槽24のドアを開けなければならな
いため、恒温槽24の温度が乱れる。恒温槽24の温度
調節が乱れると恒温槽24の温度が一定になる時間と、
冷凍機油相10と気体冷媒相11と液冷媒相12が平衡
になる時間を待たなければならない。本実施例では、こ
の時間を短縮するために、測定管下流側まで転落球が落
下すると、電磁石25とリニアモータなどの移動装置2
6と電磁石25の電源27からなる転落球搬送装置を用
いて転落球14を転落球保持位置に戻すようにしてい
る。
The operation of the above configuration will be described. After the operation shown in the first embodiment, in order to manually perform the operation of returning the falling ball 14 at the lower portion of the measuring tube 13 to the falling ball holding position, the door of the constant temperature bath 24 has to be opened once. The temperature of the constant temperature bath 24 is disturbed. When the temperature control of the constant temperature bath 24 is disturbed, the time during which the temperature of the constant temperature bath 24 becomes constant,
It must wait for the refrigerator oil phase 10, the gas refrigerant phase 11, and the liquid refrigerant phase 12 to equilibrate. In the present embodiment, in order to reduce this time, when the falling ball falls to the downstream side of the measuring tube, the moving device 2 such as the electromagnet 25 and the linear motor is moved.
6 is used to return the falling ball 14 to the falling ball holding position by using a falling ball conveying device including the power source 27 of the electromagnet 25.

【0032】この転落球搬送装置は、電源27のスイッ
チをオンとし、電磁石25を作動させて転落球14を保
持する。つぎに、転落球14を保持しながら移動装置2
6を作動させて、冷凍機油相10と液冷媒相12の平衡
を乱さないように、ゆっくりと転落球保持位置まで戻
す。転落球保持位置まで戻した時点で、電源27のスイ
ッチをオフとし、転落球14を放すと永久磁石16によ
り保持され、ふたたび測定可能な状態になる。
In this falling ball conveying device, the power supply 27 is turned on and the electromagnet 25 is operated to hold the falling ball 14. Next, the moving device 2 is held while holding the falling ball 14.
6 is operated to slowly return to the falling ball holding position so as not to disturb the equilibrium between the refrigerator oil phase 10 and the liquid refrigerant phase 12. At the time of returning to the falling ball holding position, the switch of the power supply 27 is turned off, and when the falling ball 14 is released, it is held by the permanent magnet 16 and becomes ready to measure again.

【0033】以上のように本実施例によれば、転落球搬
送装置を用いることにより、恒温槽24のドアを開ける
ことなく冷凍機油相10と液冷媒相12の平衡を保ちな
がら、転落球14を転落球保持装置に戻し、連続測定が
可能になる。
As described above, according to this embodiment, by using the falling ball transporting device, the falling ball 14 can be maintained while maintaining the equilibrium between the refrigerator oil phase 10 and the liquid refrigerant phase 12 without opening the door of the constant temperature bath 24. Return to the falling ball holding device to enable continuous measurement.

【0034】(実施例4)以下、本発明の転落球式粘度
計の実施例4について図面を参照しながら説明する。本
実施例は請求項6に係わる。
(Example 4) Hereinafter, Example 4 of the falling ball type viscometer of the present invention will be described with reference to the drawings. This embodiment relates to claim 6.

【0035】図4は本実施例の構成を示す模式図であ
る。なお、図1に示した実施例1と同じ構成要素には同
一番号を付与して詳細な説明を省略する。図において、
28は光学的検出器を用いた濁度センサである。
FIG. 4 is a schematic diagram showing the structure of this embodiment. Note that the same components as those of the first embodiment shown in FIG. In the figure,
28 is a turbidity sensor using an optical detector.

【0036】上記構成においてその動作を説明する。冷
凍機油に冷媒が溶解するようによく撹拌し、測定管13
を低温度に保たれた恒温槽24内に設置した測定台20
に装着する。つぎに、転落球14を永久磁石16で保持
し、長時間静置して冷凍機油相10と液冷媒相12とに
分離する。このとき、冷凍機油相10に濁りが生じる
が、前述のように、温度が低い方が冷凍機油の飽和冷媒
溶解量が少なく、溶けきれなくなった冷媒が析出して粒
子状になり、冷凍機油中に分散するためである。そのま
ま長時間静置すると、密度差により冷凍機油相10と液
冷媒相12とに分離し、冷凍機油相10の濁りがなくな
る。
The operation of the above configuration will be described. Stir well so that the refrigerant dissolves in the refrigerating machine oil.
Table 20 installed in a constant temperature bath 24 in which the temperature is kept low
Attach to Next, the falling ball 14 is held by the permanent magnet 16 and left standing for a long time to separate into the refrigerator oil phase 10 and the liquid refrigerant phase 12. At this time, the refrigerating machine oil phase 10 becomes turbid, but as described above, the lower the temperature, the smaller the amount of saturated refrigerant dissolved in the refrigerating machine oil becomes, and the refrigerant that cannot be completely melted deposits into particles, and This is because it is dispersed in. If left as it is for a long time, the refrigerator oil phase 10 and the liquid refrigerant phase 12 are separated due to the difference in density, and the refrigerator oil phase 10 is not turbid.

【0037】このとき、濁度センサ28により冷凍機油
相10と液冷媒相12が完全に分離したことを確認す
る。本実施例では濁度センサ28として発光素子と受光
素子とから構成された光学的検出器を用いており、両素
子間に介在する冷凍機油相10を通過して受光素子に到
達する光の強度に応じた信号に基づいて濁度を算出す
る。ここで、冷凍機油相10の濁度と光の透過率との間
には一定の関係があり、濁りが進行するにつれて透過率
が低下し、受光素子に到達する光量が低下する。したが
って、析出した冷媒により冷凍機油相10が白濁すると
光の透過が悪くなり、また、平衡状態に達すると透明に
なって光の透過率がよくなることから、冷凍機油相10
の濁度を測定することにより平衡状態を自動的に判定す
ることができる。さらに、冷凍機油だけの濁度をブラン
クとして測定しておき、ブランク値、またはブランク値
より少し大きい濁度を所定の濁度として設定し、所定の
濁度になると電源23のスイッチがオンとなるように設
定することにより、自動的に測定が開始される。なお、
他の動作は実施例1と同様である。
At this time, the turbidity sensor 28 confirms that the refrigerator oil phase 10 and the liquid refrigerant phase 12 are completely separated. In this embodiment, an optical detector composed of a light emitting element and a light receiving element is used as the turbidity sensor 28, and the intensity of light passing through the refrigerating machine oil phase 10 interposed between both elements and reaching the light receiving element. The turbidity is calculated based on the signal corresponding to. Here, there is a certain relationship between the turbidity of the refrigerator oil phase 10 and the light transmittance, and as the turbidity progresses, the transmittance decreases and the amount of light reaching the light receiving element decreases. Therefore, when the refrigerating machine oil phase 10 becomes cloudy due to the deposited refrigerant, the light transmission becomes poor, and when the equilibrium state is reached, the refrigerating machine oil phase 10 becomes transparent and the light transmission rate is improved.
The equilibrium state can be automatically determined by measuring the turbidity of. Further, the turbidity of only the refrigerating machine oil is measured as a blank, and a blank value or a turbidity slightly larger than the blank value is set as a predetermined turbidity, and when the predetermined turbidity is reached, the switch of the power supply 23 is turned on. By setting as above, the measurement is automatically started. In addition,
Other operations are similar to those of the first embodiment.

【0038】以上のように本実施例によれば、濁度セン
サで冷凍機油の濁度を測定することにより、平衡状態を
自動判定することができるとともに、冷凍機油の濁度が
所定の値以下になれば自動的に測定が開始するようにも
できる。
As described above, according to this embodiment, by measuring the turbidity of the refrigerating machine oil with the turbidity sensor, the equilibrium state can be automatically determined, and the turbidity of the refrigerating machine oil is below a predetermined value. If so, the measurement can be started automatically.

【0039】(実施例5)以下、本発明の転落球式粘度
計の実施例5について図面を参照しながら説明する。本
実施例は請求項7に係わる。
(Embodiment 5) Embodiment 5 of the falling ball type viscometer of the present invention will be described below with reference to the drawings. This embodiment relates to claim 7.

【0040】図5は本実施例の構成を示す一部切欠側面
図である。なお、図4に示した実施例4と同じ構成要素
には同一番号を付与して詳細な説明を省略する。図にお
いて、29は恒温槽24の温度を制御する制御装置であ
る。
FIG. 5 is a partially cutaway side view showing the structure of this embodiment. The same components as those of the fourth embodiment shown in FIG. 4 are assigned the same reference numerals and detailed explanations thereof will be omitted. In the figure, 29 is a control device for controlling the temperature of the constant temperature bath 24.

【0041】上記構成においてその動作を説明する。冷
凍機油相10は、低温で粘度が高くなると、それに伴っ
て重い液冷媒の沈降速度も遅くなるため、冷凍機油相1
0と液冷媒相12とに分離するためには長時間静置しな
ければならない。しかし、高温の方が短い時間で平衡に
達するため、段階的に温度を下げた方が平衡状態に達す
る時間が短い。そこで、恒温槽24の温度を最適化する
ために、恒温槽24の温度を測定管13を装着後下げ始
める。冷凍機油の濁度が、平衡状態の濁度よりも大きい
所定の濁度になると制御装置29により、恒温槽24の
温度をその温度で一定に保つように設定する。その温度
で静置して、濁度が平衡状態の温度になると、ふたたび
制御装置29により、恒温槽24の温度が下がるように
設定する。そして、温度が下がることにより、ふたたび
冷凍機油の濁度が平衡状態の濁度よりも大きい所定の濁
度になると、制御装置29により恒温槽24の温度をそ
の温度で一定に保つように設定する。この操作を繰り返
して、所定の温度で平衡状態の濁度になるようにする。
なお、他の動作は実施例4と同様である。
The operation of the above configuration will be described. When the viscosity of the refrigerating machine oil phase 10 increases at a low temperature, the settling speed of the heavy liquid refrigerant also decreases accordingly, so that the refrigerating machine oil phase 1
In order to separate into 0 and the liquid refrigerant phase 12, it has to stand still for a long time. However, since the higher temperature reaches equilibrium in a shorter time, the time to reach the equilibrium is shorter when the temperature is lowered stepwise. Therefore, in order to optimize the temperature of the constant temperature bath 24, the temperature of the constant temperature bath 24 is started to be lowered after mounting the measuring tube 13. When the turbidity of the refrigerating machine oil reaches a predetermined turbidity higher than the turbidity in the equilibrium state, the controller 29 sets the temperature of the constant temperature bath 24 to be constant at that temperature. When the turbidity reaches a temperature in an equilibrium state by standing still at that temperature, the temperature of the constant temperature bath 24 is set again by the control device 29 so as to decrease. When the turbidity of the refrigerating machine oil reaches a predetermined turbidity that is higher than the turbidity in the equilibrium state due to the temperature decrease, the controller 29 sets the temperature of the constant temperature bath 24 to be constant at that temperature. . This operation is repeated until the turbidity of equilibrium is reached at a predetermined temperature.
The other operations are the same as in the fourth embodiment.

【0042】以上のように本実施例によれば、濁度セン
サ28と、恒温槽24の温度を制御する制御装置29を
用い、恒温槽24の温度を段階的に制御することによ
り、恒温槽24の温度を最適化し、冷凍機油相10が平
衡状態になる時間を短縮することができる。
As described above, according to this embodiment, the turbidity sensor 28 and the controller 29 for controlling the temperature of the constant temperature bath 24 are used to control the temperature of the constant temperature bath 24 step by step, whereby the constant temperature bath is controlled. It is possible to optimize the temperature of 24 and shorten the time for the refrigerator oil phase 10 to reach an equilibrium state.

【0043】[0043]

【発明の効果】以上の説明から明らかなように、本発明
の落下球式粘度計は、測定管内の冷凍機油相と液冷媒相
を静置したままで粘度を測定するので、平衡状態の粘度
を精度よく測定できる。また、減磁装置を用いて転落球
を落下させ、通過センサで通過時間を測定することで、
測定管部分のみを低温にして測定することができ、か
つ、通過時間が長時間となる低温高粘度も容易に測定す
ることができる。
As is clear from the above description, the falling-ball viscometer of the present invention measures the viscosity while leaving the refrigerating machine oil phase and the liquid refrigerant phase in the measuring pipe stationary, so that the viscosity in the equilibrium state Can be measured accurately. Also, by using the demagnetization device to drop the falling ball and measuring the passage time with the passage sensor,
It is possible to measure only the measuring tube portion at a low temperature, and it is also possible to easily measure a low temperature and high viscosity in which the passage time is long.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の転落球式粘度計の実施例1の構成を示
す一部切欠側面図
FIG. 1 is a partially cutaway side view showing a configuration of Example 1 of a falling ball viscometer of the present invention.

【図2】本発明の転落球式粘度計の実施例2の構成を示
す一部切欠側面図
FIG. 2 is a partially cutaway side view showing the configuration of Example 2 of the falling-ball viscometer of the present invention.

【図3】本発明の転落球式粘度計の実施例3の構成を示
す一部切欠側面図
FIG. 3 is a partially cutaway side view showing the configuration of Example 3 of the falling ball viscometer of the present invention.

【図4】本発明の転落球式粘度計の実施例4の構成を示
す一部切欠側面図
FIG. 4 is a partially cutaway side view showing the configuration of Example 4 of the falling ball viscometer of the present invention.

【図5】本発明の転落球式粘度計の実施例5の構成を示
す一部切欠側面図
FIG. 5 is a partially cutaway side view showing the configuration of Example 5 of the falling ball viscometer of the present invention.

【図6】従来の粘度計の構成を示す側断面図FIG. 6 is a side sectional view showing the configuration of a conventional viscometer.

【符号の説明】[Explanation of symbols]

10 冷凍機油相 11 気体冷媒相 12 液冷媒相 13 測定管 14 転落球 15 通過センサ 16 永久磁石 17 ばね(減磁手段) 18 永久磁石支持棒(減磁装置) 19 電磁石(減磁装置) 20 測定台 23 電源(減磁装置) 24 恒温槽 25 電磁石(転落球搬送装置) 26 移動装置(転落球搬送装置) 27 電源(転落球搬送装置) 28 濁度センサ 29 制御装置 10 Refrigerator Oil Phase 11 Gas Refrigerant Phase 12 Liquid Refrigerant Phase 13 Measuring Tube 14 Falling Ball 15 Passing Sensor 16 Permanent Magnet 17 Spring (Demagnetizing Means) 18 Permanent Magnet Support Rod (Demagnetizing Device) 19 Electromagnet (Demagnetizing Device) 20 Measurement Platform 23 Power supply (demagnetization device) 24 Constant temperature bath 25 Electromagnet (falling ball transfer device) 26 Moving device (falling ball transfer device) 27 Power supply (falling ball transfer device) 28 Turbidity sensor 29 Control device

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 液冷媒と共存している冷凍機油中の転落
球の速度から粘度を測定する転落球式粘度計であって、
透明な耐圧性の円管からなる傾斜させた測定管と、強磁
性体材料からなる転落球と、前記測定管の外壁下方に設
置した永久磁石と、前記永久磁石の減磁装置と、前記永
久磁石よりも下流側の前記測定管の外壁下方に設置した
通過センサとを備え、傾斜した前記測定管中に液冷媒と
冷凍機油とが封入静置され、液冷媒相と冷凍機油相とに
平衡分離し、前記冷凍機油相が傾斜の上流側、液冷媒相
が傾斜の下流側に分離している状態において、前記永久
磁石は前記冷凍機油相中の前記転落球を保持し、前記減
磁装置は前記永久磁石の磁力を減じて前記転落球の保持
を開放させ、前記通過センサは前記転落球が前記冷凍機
油相中をその粘度に対応して転落通過する速度を測定す
るようにした転落球式粘度計。
1. A falling ball viscometer for measuring viscosity from the speed of falling balls in refrigerating machine oil coexisting with a liquid refrigerant, comprising:
An inclined measuring tube made of a transparent pressure-resistant circular tube, a falling ball made of a ferromagnetic material, a permanent magnet installed below the outer wall of the measuring tube, a demagnetizing device for the permanent magnet, and the permanent magnet. With a passage sensor installed on the lower side of the outer wall of the measuring pipe on the downstream side of the magnet, the liquid refrigerant and the refrigerating machine oil are enclosed and settled in the inclined measuring tube, and equilibrated with the liquid refrigerant phase and the refrigerating machine oil phase. In the state in which the refrigerating machine oil phase is separated and the liquid refrigerant phase is separated into the slanting downstream side and the slanting downstream side, the permanent magnet holds the falling ball in the refrigerating machine oil phase, and the demagnetizing device. Is to reduce the magnetic force of the permanent magnet to release the holding of the falling ball, and the passage sensor measures the speed at which the falling ball passes through the refrigerating machine oil phase in accordance with its viscosity. Viscometer.
【請求項2】 転落球を保持する永久磁石と、前記永久
磁石を減磁する減磁装置との組を順次に測定管に沿って
複数組備え、前記転落球を保持する前記組を選択使用す
ることにより、転落球保持位置と通過センサとの距離を
任意に設定できるようにした請求項1記載の転落球式粘
度計。
2. A plurality of sets of a permanent magnet that holds a falling ball and a demagnetizing device that demagnetizes the permanent magnet are sequentially provided along the measuring tube, and the set that holds the falling ball is selectively used. The falling ball type viscometer according to claim 1, wherein the distance between the falling ball holding position and the passage sensor can be set arbitrarily by doing so.
【請求項3】 転落球を保持する永久磁石と、前記永久
磁石を減磁する減磁装置との1組を測定管に沿って摺動
自在に保持するスライド手段を備え、転落球保持位置と
通過センサとの距離を任意に設定できるようにした請求
項1記載の転落球式粘度計。
3. A falling ball holding position is provided with slide means for slidably holding one set of a permanent magnet holding a falling ball and a demagnetizing device for demagnetizing the permanent magnet along a measuring tube. The falling ball viscometer according to claim 1, wherein the distance to the passage sensor can be set arbitrarily.
【請求項4】 通過センサを測定管に沿って摺動自在に
保持するスライド手段を備え、転落球保持位置と通過セ
ンサとの距離を任意に設定できるようにした請求項1記
載の転落球式粘度計。
4. The falling ball type according to claim 1, further comprising slide means for holding the passage sensor slidably along the measuring pipe so that a distance between the falling ball holding position and the passage sensor can be arbitrarily set. Viscometer.
【請求項5】 測定管外壁にあって冷凍機油相中の転落
球を吸着可能な電磁石と、前記電磁石を前記測定管と平
行に下流側から上流側まで移動させる移動装置とで転落
球搬送装置を構成し、前記転落球搬送装置により転落済
みの転落球を転落球保持位置まで搬送するようにした請
求項1記載の転落球式粘度計。
5. A falling ball conveying device comprising an electromagnet on the outer wall of the measuring pipe capable of adsorbing a falling ball in the oil phase of a refrigerator, and a moving device for moving the electromagnet from the downstream side to the upstream side in parallel with the measuring pipe. The falling-ball viscometer according to claim 1, wherein the falling-ball viscometer is configured to convey the already-falling falling balls to the falling-ball holding position by the falling-ball conveying device.
【請求項6】 測定管中の冷凍機油相の濁度を測定する
濁度センサを備え、濁度により液冷媒相と冷凍機油相と
の平衡状態を検知するようにした請求項1記載の転落球
式粘度計。
6. The fall-down according to claim 1, further comprising a turbidity sensor for measuring the turbidity of the refrigerator oil phase in the measuring tube, and detecting the equilibrium state between the liquid refrigerant phase and the refrigerator oil phase by the turbidity. Spherical viscometer.
【請求項7】 測定管を収納する恒温槽と、濁度センサ
の出力信号により前記恒温槽の温度を制御する制御装置
とを備え、濁度が平衡時濁度よりも大きい所定値を超え
ると恒温槽の温度を保持し、濁度が前記所定値以下にな
ると前記恒温槽の温度を所定値だけ変えて設定する処理
の繰り返しにより、前記恒温槽内の温度を段階的に所望
の温度まで変えるようにした請求項6記載の転落球式粘
度計。
7. A thermostat for accommodating a measuring tube and a controller for controlling the temperature of the thermostat according to the output signal of the turbidity sensor, and when the turbidity exceeds a predetermined value larger than the equilibrium turbidity. The temperature inside the thermostatic bath is gradually changed to a desired temperature by repeating the process of holding the temperature of the thermostatic bath and changing the temperature of the thermostatic bath by a predetermined value when the turbidity falls below the predetermined value. The falling ball type viscometer according to claim 6, wherein.
JP12543696A 1996-05-21 1996-05-21 Fall sphere type viscometer Pending JPH09304262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12543696A JPH09304262A (en) 1996-05-21 1996-05-21 Fall sphere type viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12543696A JPH09304262A (en) 1996-05-21 1996-05-21 Fall sphere type viscometer

Publications (1)

Publication Number Publication Date
JPH09304262A true JPH09304262A (en) 1997-11-28

Family

ID=14910052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12543696A Pending JPH09304262A (en) 1996-05-21 1996-05-21 Fall sphere type viscometer

Country Status (1)

Country Link
JP (1) JPH09304262A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1681564A1 (en) * 2005-01-13 2006-07-19 Holger Behnk Device for measuring the clotting of body fluids
JP2012239926A (en) * 2011-05-16 2012-12-10 Hosokawa Micron Corp Vibrating sieve
CN106769680A (en) * 2016-11-24 2017-05-31 吕忠华 A kind of oil viscosity measurement apparatus
CN109946201A (en) * 2017-12-20 2019-06-28 邓前军 A kind of falling ball viscometer device of glass tube connection metal conversion pipe fitting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1681564A1 (en) * 2005-01-13 2006-07-19 Holger Behnk Device for measuring the clotting of body fluids
JP2012239926A (en) * 2011-05-16 2012-12-10 Hosokawa Micron Corp Vibrating sieve
CN106769680A (en) * 2016-11-24 2017-05-31 吕忠华 A kind of oil viscosity measurement apparatus
CN106769680B (en) * 2016-11-24 2019-06-14 烟台坤正密封制品有限公司 A kind of oil viscosity measuring device
CN109946201A (en) * 2017-12-20 2019-06-28 邓前军 A kind of falling ball viscometer device of glass tube connection metal conversion pipe fitting

Similar Documents

Publication Publication Date Title
CN109142406B (en) Metal phase transition research device
CN106596341B (en) A kind of three-dimensional laser positioning coefficient of viscosity measuring instrument
JPS5968645A (en) Sample quenching device
JPH09304262A (en) Fall sphere type viscometer
US7304264B2 (en) Micro thermal chamber having proximity control temperature management for devices under test
JP2015155907A (en) Method for setting temperature and tempering container
US3977935A (en) Method and apparatus for evaporating liquids
US3732736A (en) System for adsorption measurement
JPS5831541B2 (en) Freezing point depression measuring method and measuring device
US4831845A (en) Temperature testing device provided with sample-receiving chamber from which a specimen is easily detachable and in which temperature is controllable
US3077764A (en) Pour point instrument
JP2019197035A (en) Stirrer, analysis device, and dispensing method
US4389904A (en) Method and apparatus for supercooling and solidifying substances
US3304765A (en) System of viscosity detection
JP2003240696A (en) Device and method for measuring adsorption amount of adsorbent
Daunt et al. Critical temperature and critical current of thin-film superfluid 3 He
JPH10142139A (en) Instrument and method for measurement of viscosity of liquid
Glew et al. Kinetics of formation of ethylene oxide hydrate. Part I. Experimental method and congruent solutions
US3496760A (en) Method and apparatus for determining the pour point of liquids
US3590627A (en) Apparatus for detecting pour point
CN219799113U (en) Invariable free space's adsorption system
US3514993A (en) Apparatus and method for automatic crystal point detection
JPH10104182A (en) Analyzer
Lee Pattern formation and convective heat transfer during dendritic crystal growth
JPH07161522A (en) Cryostat for superconducting magnet